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Abstract—To provide customized high-quality services for
all users in the sixth generation (6G) wireless communication
systems, it is fundamental to study all 6G channel scenarios
and establish accurate channel models for these scenarios corre-
spondingly. However, the absence of comprehensive 6G scenario
categorization and the difficulties of modeling the channels for
all scenarios bring huge challenges. In this paper, we aim to
give a thorough overview of channel scenarios, identification
algorithms, and intelligent channel modeling theories. First,
different standardized scenario categorization principles are re-
viewed. A unified and exclusive scenario categorization method is
elaborated with detailed 6G scenario definitions. Second, scenario
features, feature selection principles, machine learning based
identification algorithms, as well as data pre-processing methods
are surveyed for the benefit of accurate scenario identification.
Third, the intelligent scenario adaptive channel modeling theory
based on 6G pervasive channel model is specified. Statistical
properties for industrial Internet of Things and high speed
train scenarios are simulated and compared with those from
measurements. Finally, future research directions and challenges
are addressed.

Index Terms—6G, adaptive channel modeling, industrial In-
ternet of Things, scenario categorization, scenario identification.
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I. INTRODUCTION

Wireless communication systems have now evolved into
the sixth generation (6G) [1]-[3], thereby bringing unprece-
dented changes in the way of life and in the present social
and economic landscape. Motivated by the ever-increasing
demands for high data rate, low latency, and high mobility,
the 6G communication system will be an intelligent Internet
of Everything (IoE) that aims to include all frequency bands
and communication scenarios [4]-[6]. As stated in [7], the
6G system envisions global coverage, all spectral [8], and
full applications. Considering the overwhelming geographical
diversities and channel propagation characteristics in 6G com-
munication scenarios, a comprehensive understanding of the
wireless propagation environments is fundamental to extract
and refine environmental features, then to construct accurate
channel models and establish reliable communication network.
Therefore, it is crucial to give a thorough clear categorization
of existing 6G communication scenarios. In addition, assisted
by the introduction of high efficiency intelligent technologies,
the intelligent scenario identification should be investigated to
ensure a quick access to the matching of channel statistical
model parameters and acquire the specialized channel model.
Then, the wireless communication systems can be designed
and optimized based on the acquired channel model [9]. In
particular, with regard to the global coverage feature, 6G
is expected to expand terrestrial communications to space-
air-ground-sea integrated communications [10]. However, the
expansion of 6G wireless communication scenarios in terms of
breadth and depth poses higher requirements on system design
and technical specifications.

To provide customized high-quality services for different
6G space-air-ground-sea wireless communication scenarios,
new key technologies and network architectures should be
employed in the future wireless communication systems.
Especially, the emergence of Internet of Things (IoT) [11]
scenarios and intelligent applications will bring significant
uncertainty. It is expected that adaptive technologies and
automatically adapted intelligent networks can be established
to provide dynamic, flexible, and dedicated services to all
accessed equipment, such as adaptive modulation and coding
[12]. Correspondingly, wireless communication system design,
deployment, and management need to be more intelligent and
universal [13]-[15].

One of the most important parts of 6G communication sys-
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tem is the wireless channels. Between the transmitter (Tx) and
the receiver (Rx), many uncertainties will exist due to different
system setups and propagation environments. As a basis for
system design, evaluation, and optimization, wireless channel
modeling plays an important role [6]. Traditionally, a chan-
nel model can be established through channel measurement,
multipath component (MPC) parameter estimation [16], and
statistical analysis. However, the complexity of this process
will be too high for 6G. First, 6G communication scenarios are
manifold and more complex, especially with the usage of new
technologies such as millimeter wave (mmWave), terahertz
(THz), (ultra-)massive multiple-input multiple-output (MIMO)
[17], reconfigurable intelligent surface (RIS) [18], etc. Hence,
it is impossible to cover all communication scenarios at all
frequency bands with various system configurations. Even for
a given scenario, with the expanded bandwidth, increased
antenna element number, and rising speed of the terminal, the
channel measurement data for storage and processing are huge.
Second, high-resolution MPC parameter estimation is usually
time-consuming. This is more challenging when dealing with
large volume of measurement data. Especially in high mobility
communication scenarios, e.g., high speed train (HST) [19]
and vehicle-to-vehicle (V2V) [20], [21], the channel can
change dramatically with very fast traveling speed. In such
cases, denser channel measurements should be conducted and
faster data processing should be performed to provide real-
time information. Third, new channel characteristics emerge
in various 6G scenarios. For example, HST channel scenarios
show distinct temporal non-stationarity. How to efficiently
extract channel statistical properties for specific 6G scenarios
is another task that needs to be tackled. Finally, channel
models that incorporating channel properties of various 6G
scenarios need to be formulated. However, this may bring
overwhelming complexity to channel models. Therefore, the
tradeoff among accuracy, complexity, and pervasiveness is
usually hard to obtain. For example, deterministic channel
model, such as ray tracing (RT), very much rely on the
reconstruction of the real environment, which can be highly
complex [22].

One way to solve the above mentioned problems is to
let the 6G system automatically identify the relevant com-
munication scenario and adaptively matching channel model
parameters to that scenario. This vision of 6G adaptive chan-
nel modeling procedure is explained in Fig. 1. Specifically,
based on a comprehensive and exclusive categorization of 6G
scenarios, a certain communication scenario is first identified
and then model parameters for an adaptive channel model
are matched. In terms of scenario extension and categoriza-
tion, standardization groups, including the 3GPP TR 38.901
[23], WINNER I/Il/+ [24]-[27], METIS [28], MiWEBA [29],
QuaDRiGa [30], COST 2100 [31]-[34], and IMT2020 [35],
have proposed different categorizations. However, it will be
shown later that their involved scenarios are very limited
and their categorization criteria are ambiguous. They are
not adequate for the engineers to select suitable standard
channel models for various 6G scenarios. In the scenario
identification step, as a perfect candidate to identify various
6G scenarios, machine learning (ML) has attracted much
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attention and can be expected to automatically identify wire-
less communication scenarios, process real-time measurement
data/feedback signals, track cluster variances, and extract
model parameters [36]. It has been widely applied in solving
many wireless communication problems [37]. These include
scenario identification, channel modeling, channel estimation,
positioning/localization, and network management [38]. In
addition to processing large amount of datasets with reduced
human effort, ML can provide reliable real-time decisions
with flexible adaptability. Finally, the tradeoff among accuracy,
complexity, and pervasiveness/universarity of the deterministic
RT, geometry-based stochastic channel models (GBSMs) [39],
beam domain channel models (BDCMs) [40]-[42], and cor-
relation based stochastic channel models (CBSMs) [43]-[46]
should be considered. It is worth studying various channel
modeling methodologies and choosing suitable candidates for
the pervasive channel model.

There has been no work in the literature that provides
a complete study on scenario extension, identification, and
adaptive channel modeling. Hence, this work investigates a se-
ries of communication scenarios definitions and classifications
delivered by standardized channel models, such as the 3GPP
TR 38.901 [23] and WINNER I/II [24]-[26], and proposes
a novel scenario classification framework for 6G commu-
nications. Then, we overview the commonly used feature
extraction approaches of existing ML based communication
scenario identification methods. Furthermore, the conventional
non-predictive model and ML based predictive model are
summarized. Finally, the framework of 6G adaptive channel
modeling is introduced. The future research directions and
challenges are also discussed. The main contributions and
novelties of this work are as follows:

1) Scenario categorization methods of various standardiza-
tion groups are compared and the 6G global coverage
scenarios are introduced. A comprehensive and exclusive
categorization method is proposed with detailed scenario
definitions.

2) Features used for scenario identification and feature se-
lection principles are presented. Identification methods
for the line-of-sight (LoS)/non-LoS (NLoS) and multiple
scenarios are analyzed. Besides, proper ML algorithms
for various 6G scenario identification are analyzed.

3) The channel model parameter matching for different 6G
scenarios is firstly illustrated using a newly proposed 6G
pervasive channel model (6GPCM). The model accuracy
in particular scenarios are validated by comparing the
statistical properties of channel model simulations with
those of channel measurements.

The remainder of this paper is organized as follows. In
Section II, standard scenario categorization methods are intro-
duced and a novel scenario categorization method is proposed.
In Section III, feature selection and scenario identification
methods are presented. In Section IV, various channel models
and the adaptive channel modeling methodology are intro-
duced. In Section V, the model parameters and simulated
statistical properties for industrial IoT (IloT) and HST sce-
narios are illustrated. Future directions and challenges are
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Fig. 1. Simplified wireless channel modeling procedure.

summarized in Section VI. Finally, conclusions are drawn in
Section VII.

II. WIRELESS COMMUNICATION SCENARIO
CATEGORIZATION

Previously, in the third generation (3G) to the fifth genera-
tion (5G), there were several research works that focused on
different sets of wireless communication scenarios and their
classification based on different criteria. However, in the 6G
global coverage system, scenarios exhibit increased diversity
and complexity compared to those in 3G-5G. In this section,
we elaborate on typical 3G—5G standard categorization meth-
ods and propose an extended categorization framework that
incorporates most 6G global coverage scenarios.

A. Standard scenario categorizations and definitions

Before 6G, wireless communications mainly focused on
terrestrial scenarios. There were some standardization groups
that had a light touch on different scenarios of interest. The
involved scenarios and categorization criteria used by these
standardization groups are listed in Table I. Specifically, we
summarize the shortcomings of these categorization methods
in a manner that is later suitable for 6G scenario categorization.

o The 3GPP TR 38.901 standard channel model intended
to accurately characterize wireless channels from 0.5
GHz to 100 GHz. It is applicable to both link-level and
system-level simulations. Considering multiple physical
scenario types, the supported scenarios include indoor
office, shopping mall, indoor factory, stadium, and gym.
Both outdoor-to-outdoor (O20) and outdoor-to-indoor
(02I) link topologies were included for urban microcell
(UMi) and urban macrocell (UMa) cell types. There were
also backhaul, device-to-device (D2D), and V2V access
link types. It can be seen that these categorization criteria
are quite ambiguous and that the involved scenarios are
limited.

6G adaptive channel modeling

Accurate scenario

Scenario | definitions
+
. Detailed scenario
Scenario N

classification

Wireless channel
identification

Channel model parameter
matching

Y

6G scenarios adaptive channel model

In the WINNER I document, four physical scenario
types, including in building, hotspot, metropol, and rural,
were defined. Further classified by the cell type and link
topology, there were small office/residence and indoor-
to-outdoor (120) for in building scenarios; typical UMa,
bad UMi, indoor, O2I, and four stationary feeders for
hotspot scenarios; suburban macrocell (SMa), UMa, bad
urban, O2I, and LoS feeder for metropolitan scenarios;
and rural macrocell (RMa) and LoS moving networks
for rural scenarios. Note that only indoor, UMa, UMi,
stationary feeder, SMa, and RMa scenarios were covered
in the WINNER I channel model. Here, it can be seen
that the categorization criteria cannot provide exclusive
categorization of different scenarios. The categorization
of indoor and outdoor scenarios is not complete.
Evolved from the WINNER I document, the WINNER 11
document was delivered for both link-level and system-
level simulations. A total of 18 scenarios were listed
in this document. The newly covered scenarios in the
WINNER 1II channel model were 120, bad UMi, O2I,
and rural moving networks. It supported multi-antenna
technologies, multi-user (MU), multi-cell, and polariza-
tion networks. It can be used for any wireless systems
operating at 2-6 GHz. Similar to the scenario catego-
rization in WINNER I, the categorization criteria are not
exclusive or complete.

In WINNER +, in addition to channel measurements
conducted for the validation of the WINNER 1II channel
model, mainly four measurement campaigns were carried
out for channel modeling in ultra-high frequency (UHF)
and distributed antenna systems (DAS), e.g., O2I at 522
MHz, urban macrocell at 770~790 MHz, and campus at
3.55 GHz. The main purpose of this document was to
support the update of the WINNER II channel model.
There are also some differences from the scenario defini-
tion in WINNER II. Note that this model is generalized
from two-dimensional (2D) to three-dimensional (3D) by
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TABLE I
SCENARIOS OF INTEREST IN EXISTING STANDARD DOCUMENTS.
Standardized Numbel“ of Categf)rlz‘atlon Scenarios of interest Disadvantages
groups scenarios criteria
Indoor: office, shopping mall;
Indoor industrial scenarios;
Physical scenario type, | UMIi: street canyon and open area with 020
cell type, and O2I; e Categorization criterion is quite ambiguous;
3GPP TR 38.901 17 link type, UMa: 020 and O2I; e The involved scenarios are limited.
link topology Backhaul: urban, street canyon;
D2D/V2V: open area, street canyon, indoor;
Others: stadium, gym.
In building: small office/residential, 120;
. . Hotspot: typical UMi, bad UMi, indoor, O2I, e Categorization of scenarios is
Physical scenario type, . . .
WINNER 1 17 cell type, stationary feeder (4); not complet;, _ ‘
Jink topology Metropol: suburban, UMa, bad urban, O2I, e The criterion can not provide exclusive
LoS feeder; categorization of different scenarios.
Rural: RMa, LoS moving networks.
In building: office/residential, 120;
Phvsi . Hotspot: typical UMi, bad UMi, large indoor e Detailed categorization of indoor and
ysical scenario type, | oy "0 tati feeder (4), feeder link BS; td ios is not lete;
WINNER II 18 cell type, all, , stationary fee _er( ), feeder lin ;| outdoor scenarios is not complete; _
link topology Metropol: suburban, typical UMa, bad UMa, e The criterion can not provide exclusive
O2I macro-cell; categorization of different scenarios.
Rural: RMa, moving networks (2).
522 MHz: urban O2I, urban pedestrian, urban
vehicular; . .
R | s Bl 300 woun 0m oy o o e din
2.53 GHz: UMa; upP! .
3.55 GHz: DAS.
Basic propagation environment: dense urban,
Physica.l scenario type, | urban, .rural, Vofﬁce, shopping mall, highway, o The categorization of basic propagation
METIS 11 link type, open air festival, stadium; environment is not clear
link topology Link type: BS-EU, BS-BS, D2D; ) ’
Link topology: 020, O2I, I2I.
Access: open area, street canyon, hotel lobby;
MiWEBA 8 Link type ]CS;cylzl:la.\ul/fronthaul. above rooftop, street e The involved scenarios are quite limited.
D2D: open area, street canyon, hotel lobby.
UMi: street canyon, open square;
Physical scenario type, | Indoor: office, shopping mall, airport;
mmMAGIC 10 cell type, O2I: open area, street canyon, hotel lobby; e The involved scenarios are quite limited.
link topology Stadium;
Metro station.
Distributed systems: multi-node (indoor MU,
outdoor MU, O2I MU, O2I and I2I distributed
Li nodes, outdoor relay, outdoor peer-to-peer),
ink type, iy : s alacs ;
multi-BS; e The involved wireless channels are quite
COST2100 12 channel type, Polarimetric ch I limited
link topology olarimetric channel; _ imited.
Vehicular channel: V2V, vehicular-to-
infrastructure;
UWB.

considering elevation angles, and can be used for over-
the-air (OTA) testing.

o The METIS document defined a number of basic prop-

agation environments, link types, and link topologies
following the propagation mechanisms. The mentioned
propagation environments were dense urban, urban, rural,
indoor (office and shopping mall), highway, open air
festival, and stadium. The link types of interest included
BS-user equipment (EU), BS-BS, and D2D, and the link
topologies included 020, O2I, and indoor-to-indoor (I2I).
The total number of involved scenarios is 11. However,
the criterion to classify the propagation environment is
not clear and the involved scenarios are quite limited.

o In MiWEBA, according to the link type, there were three

main categories of scenarios, including access in open
area, street canyon, and hotel lobby; fronthaul/backhaul

in the above rooftop and street canyon; and D2D also in
open area, street canyon, and hotel lobby. The number of
involved scenarios is 8. The involved scenarios are quite
limited and there is a lack of transition of scenarios, such
as 120 and O2I.

In mmMAGIC, following the signal transmission mecha-
nisms, scenarios were classified as direct transmission and
indirection transmission (scattering, ground reflection,
and blockage). Then, 10 scenarios were mentioned by
further dividing each scenario into indoor and outdoor
cases. Nevertheless, the mentioned indoor, outdoor, and
transition between indoor and outdoor scenarios are quite
limited. UMa was not taken into consideration since
a frequency spectrum above 6 GHz is expected to be
initially used for small cell BS.

e In COST2100, channel measurement activities were car-
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ried out for different scenarios, including distributed co-
operative systems, polarimetric channels, vehicular chan-
nels under high mobility, ultra-wideband (UWB) chan-
nels, as well as mmWave and sub-mmWave systems.
Here, the distributed cooperative systems included mul-
tiple nodes with a single base station (BS) and multiple
user channels. There were indoor MU MIMO, outdoor
MU, 021 MU MIMO, O2I and I2I distributed nodes, out-
door relay channels, and outdoor peer-to-peer channels.
The communication scenarios considered in COST2100
are also limited.

In general, existing standardized wireless communication
scenario categorizations are either not complete or not clear
enough. They are unable to provide useful reference for 6G
system engineers to choose the dedicated channel models for
various 6G scenarios.

B. 6G-oriented scenario extension

1) 6G-oriented scenario categorization criterion: The pro-
posed 6G-oriented global coverage scenario categorization
framework is illustrated in Fig. 2. The criterion behind the
proposed categorization scheme is from far to near and from
global to specific. We aim to establish a comprehensive, subtle,
and exclusive scenario categorization framework. By mapping
geometrical and other physical parameters for each dedicated
scenario, we expect this framework to serve as an important
reference for further scenario identification.

Based on the three basic principles of exclusivity, in-
tegrity, and standardization, 6G communication scenarios are
classified into space-air-ground-sea, we first classify wireless
communication scenarios into 5 main categories, i.e., space,
aerial, terrestrial, maritime, and transformation scenarios. In
the following, we will briefly discuss each category.

2) Space communication scenario categorization: The
space communication scenario becomes important in pro-
viding seamless coverage for wireless communications [47].
According to the orbital altitude, space communications can
be further divided into high, middle, and low earth orbit
(LEO) satellites, with the heights above 35,786 km, between
2,000~35,786 km, and below 2,000 km, respectively. They
can be used for indoor and outdoor communications. A typical
communication scenario in this category is the international
space station, which operates at an altitude of 379 km. Due
to the long propagation link distance of satellite scenario and
the influence of meteorological conditions such as ionosphere
and cloud, rain and fog [48], it has broad coverage capability
and super bandwidth connection. So the exclusivity of this
kind of scenario is ensured by the height of the scenario
and the characteristics of the channels. The hierarchical order
and functional differentiation of low orbit, medium orbit, high
orbit, and space station ensure the integrity of the classification
of communication scenario.

3) Aerial communication scenario categorization: Aerial
communications using aircraft, unmanned aerial vehicle
(UAV), balloon, missile, etc., can provide long-haul signal
transmission without extremely high costs. They can not only

be used for wireless communications between aerial equip-
ments, but also be used to exchange information with terres-
trial or space receivers/centers. In particular, UAV plays a more
important role in providing light-weight, flexible, and full-
view real-time communication and tracking. In this category,
the typical communication scenarios are drones and aircraft
communications. Considering that the aviation channel link
is short, it is mainly affected by atmospheric attenuation and
other factors. The channel differences caused by different flight
altitudes of aircraft are large. The high maneuverability and
arbitrary trajectory of UAVs may cause channel time-domain
non-stationary characteristics. The applications in millimeter
wave and terahertz frequency bands bring spatial-temporal
sparsity. The channel model has high delay resolution under
high bandwidth conditions. Relying on the flight altitude and
speed, the classification of the aerial communication scenario
is exclusive. Based on the near-earth distribution character-
istics of different high-layer scatterers in the air-to-ground
channel of UAV, it can ensure the integrity of the scenario
classification. According to the correlation of large/small scale
parameters between different layer modeling multi-links, it fur-
ther guarantees the standardization of scenario classification.

4) Terrestrial communication scenario categorization: Ter-
restrial communications still account for the majority of 6G
wireless communications. It can be divided into indoor and
outdoor scenarios.

For indoor scenarios, there are residence, office, education
area, industry, commerce, and agriculture. The residence sce-
nario can be further divided into multi/highrise residential,
single-family house/villa, country courtyard, cave dwelling,
Hakka earth building, water building, yurt, recreational vehi-
cle, sample room, isolation room, and resort. The typical office
scenarios include open centralized office area, isolated cen-
tralized office area, small independent office, meeting room,
logistics service room, emergency command center, secret
room, and archives. The education area can also be further
divided into students apartment, teaching building, library,
canteen, stepped auditorium, stadium, laboratory, computer
room, and convenience service store. The industry scenarios
include warehouse, medium/large manufacturing plant, assem-
bly plant, medium/large production line factory, power station,
water treatment plant, and steel/petroleum smelter. The typi-
cal commerce scenarios are shopping mall, hotel, restaurant,
cinema, culture and sports museum, cabaret, internet cafe,
bookstore, swimming pool, chess room, indoor arena, indoor
attractions, airport, high speed rail station, subway station,
hospital, and bank. There are also agricultural scenarios,
including field, farm, and indoor farmers market.

The outdoor scenarios are more complex. We divide them
into typical urban, suburban, terrestrial transportation, in ve-
hicle, remote area, and underground. First, in typical urban
scenarios, there are open area, hotspot area, street canyon, and
roof. For the open area scenarios, we further divide them into
square, park, velodrome, scenic spot, ski resort, outdoor courts,
airfield, golf course, and beach. Hotspot area scenarios include
festival square, station square, outdoor stadium, gas/charging,
outdoor parking, highway service area, and fairgrounds. Street
canyons include main streets in suburb/country, rural-urban
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Fig. 2. 6G-oriented scenario categorization framework.
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continuum, city, and outskirts, as well as city branch.

Suburbs can be further classified into town and village. In
towns, there are transportation hub, non-staple food base, lo-
gistics storage center, reservoir, nursing home, waste treatment
plant, slaughterhouse, and prison. In villages, there are farm
land, pond, fruit garden, nursery, country road, and wilder-
ness. Terrestrial transportation mainly includes highway, street,
crossroads, viaduct, underground parking lot, and tunnel, as
well as open space, viaduct, cutting, tunnel, and station. In
vehicle scenarios can be classified as carriage, cabin, cockpit,
and medical shelters. Obstructed areas and open areas are the
two main forms of remote areas. The underground scenarios
include industry, transportation, and others. There are mine
and well drilling in industry, tunnel, subway, underground
parking lot, and dugout in business. Additionally, there are
other scenarios including cave, underground river, missile silo,
and underground data center.

Specific examples include residential, office, industrial, and
commercial, etc. Among them, the typical multi-high-rise
residential is designed according to the urban family model
with rich functions and diversified structures, and shows
regularity according to the regional layout. The structure
of a single-family house or villa is significantly different,
and the floor length/width/height is significantly different
from that of an ordinary house. Offices in the urban core
have a single function and structure, but a relatively random
layout. Considering the production process, indoor lighting,
and complex architecture used to facilitate the passage of
a variety of lifting and transportation equipment, industrial
buildings generally use multi-span structures with large length
and width. Commercial buildings can be divided into shopping
malls, supermarkets, hotels, office buildings, and exhibition
halls according to the function. The basestation is generally
located outdoor, and the communication scenario needs to
consider the moving process from outdoor to indoor scenario.
The indoor scenario environment is usually closed and the
signal can be reflected repeatedly. The outdoor environment
is relatively open, the coverage area is wide, the propagation
loss is large, and various scatters in the environment can bring
obvious multipath effects. The exclusivity of the terrestrial
classification is ensured by the average height of the building,
the average floor spacing, the height fluctuation of the building,
the regional LOS proportion, and the indoor proportion. The
structure is divided into indoor and outdoor, and the integrity
of the scenario classification is achieved by further refinement
combined with functions. Based on the logical framework of
3GPP TR 38.901, it is extended to ensure the standardization
of scenario classification.

In Table II, we have listed some definitions of typical
terrestrial transportation scenarios as examples. Through pa-
rameterized scenarios, we will be able to find the most distinct
features that can be used for further scenario identification.
For example, the most distinct differences between Internet of
vehicles and HST network are the height and moving speed.
There are also obvious variances of moving speed for detailed
scenarios in Internet of vehicles. The width and height can be
associated to categorize detailed scenarios in HST network.

5) Maritime communication scenario categorization: Mar-
itime communication is a key part of accomplishing full
coverage communication. It not only refers to the sea sur-
face, coast, and island, but also includes underwater acoustic
communication scenarios, such as epipelagic area, twilight
area, deep scattering layer, and hadal zone. The sea surface
communication scenarios include ship, super ship, marine
navigation aids, amphibious vehicle, drilling platform, and
iceberg; the coast scenarios include shore, harbor, pier, beach,
and protective dam; and the island scenarios include vol-
canic, coral, alluvial, mainland, and ocean islands. Above the
sea surface, there are ports and shoreline on the sea. The
layout of the port is similar to the residence and industry.
The shoreline structure is usually narrow and long. There
are certain differences between two scenarios in terms of
structure. The underwater acoustic channels can be divided
into shallow sea area (<100 m) communication scenario and
deep sea area (>100 m) communication scenario according
to the depth of the water area [49]. Due to changes in
the physical properties of sea water such as depth, salinity
and temperature, the propagation properties of sound waves
in ocean communication are different in different depths.
In contrast, the quality of underwater acoustic channels in
deep waters is better. In shallow waters, sound waves can
be reflected and scattered by the seabed and sea surface
during propagation, resulting in a strong multipath effect at the
receiver. In addition, compared with the ultra-high propagation
speed of electromagnetic waves in ground communication, the
transmission speed of underwater acoustic waves is 1500 m/s,
resulting in a very large Doppler effect at the receiver. The
classification of maritime scenarios from different physical
depth layers and transmission speeds can ensure the exclusivity
of this type of scenario. The classification from above and
below the water surface and the water bank can guarantee the
integrity of scenario classification.

6) Transitions between communication scenarios: The tran-
sitions between communication scenarios are also included
in the proposed framework. For example, 12I, 120, 020,
O2I, and other inter-scenario transformation. Due to space
limitations in this paper, we will not elaborate on them.

To sum up, existing standardized scenario classification
methods are incomplete or fuzzy, the classification logic is not
clear, and the corresponding granularity is rough. Moreover, it
lacks multi-scenario classification for 6G full coverage scenar-
ios and scenario transformation. The proposed classification
framework gives the physical definition, new planning, and
scenario expansion for 6G full coverage scenarios according
to environmental difference and channel characteristics. Un-
der the guidance of comprehensive coverage-architecture, the
classification is carried out abiding by three criteria of exclu-
sivity, integrity, and standardization. It provides an important
basis for the research of 6G wireless communication scenario
classification and the development of channel modeling.

III. IDENTIFICATION OF WIRELESS COMMUNICATION
SCENARIOS

The identification of wireless communication scenarios is
helpful for engineers to efficiently customize wireless com-
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TABLE 11
DEFINITIONS OF TYPICAL TERRESTRIAL TRANSPORTATION SCENARIOS.
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. Length Width Height Mobility Distance range
Scenario LoS/NLoS (m) (m) (m) (km/h) (m)
Highway LoS/NLoS > 5,000 35~50 Inf 90~110 1,000~3,000
Street LoS/NLoS > 200 12~40 Inf < 60 50~300
Crossroads LoS/NLoS < 100 12~40 Inf 10 300
Internet of Viaduct LoS > 5,000 6~26 Inf 35~110 100~3,000
vehicles Und d
ndergroun NLoS 50~1,000 40~500 3.5~5 <20 15~300
parking lot
Tunnel NLoS 1,000~15,000 18~30 5~10 100~600 15~2,000
Open space LoS > 1,000 > 1,000 Inf <300 200~-3,000
Viaduct LoS > 5,000 6~26 10~30 < 200 200~3,000
HST . 48~63
network Cutting LoS/NLoS > 300 1419 3~10 <200 200~3,000
Tunnel NLoS 1,000~15,000 10~20 5~10 < 200 100~3,000
Station LoS/NLoS 500 8~10 10~60 < 80 15~200
TABLE IIT
SELECTED FEATURES FOR SCENARIO IDENTIFICATION.
Category Domain Feature Ref.
Raw data Time domain, CIR, CTF 501, [51]
frequency domain
Distribution shape Time domain PDF, peak number, skewness, kurtosis/peakedness [52]-[56]

Power domain

PL, RSS, Rician K -factor

[15], [57]-[60]

Threshold comparison Time domain

Channel gain, temporal ACF, RMS DS

[50], [54], [61]-[63]

Spatial domain

Angular PSD, spatial CCF, RMS AS

[15], [62], [63]

Frequency domain

Doppler PSD, FCF, RMS DPS

[51], [62]-[64]

munication systems and to provide high-quality services in
some special communication scenarios, such as V2V and
HST. In this section, scenario related features and scenario
identification algorithms, especially ML-based algorithms, will
be studied. Relevant features and data-processing will be firstly
discussed, followed by conventional manual methods. Then,
new ML-based automatic methods will be examined.

A. Features and data pre-processing

1) Scenario-related features: Based on communication sce-
nario identification, we can select several relevant features, as
listed in Table III.

o Channel impulse response (CIR)/channel transfer func-
tion (CTF): One feature that contains rich information is
the CIR h(t) in the time domain or the CTF H(f) in the
frequency domain. However, the large data size induced
by channel measurement snapshots and taps may hinder
the timely decision, which is an issue in time-varying
environments.

o Distribution shapes: The probability density function
(PDF), peak number of the delay power spectral den-
sity (delay PSD), skewness, and kurtosis/peakedness are
characteristics of the distribution shapes to distinguish
different scenarios. Here, PDF indicates the probability

distribution of the wireless channels. Usually, a LoS
scenario follows the Rice distribution, while a NLoS
scenario follows the Rayleigh distribution. Therefore, it
can be used to distinguish LoS and NLoS scenarios. The
peak number of the delay PSD can be used to identify
a rich scattering environment. Delay PSD peaks with
different delays represent MPCs from different scatterers.
Other parameters are defined as below.
Skewness indicates to what extent the probability distri-
bution is asymmetric. It can be calculated as
3

o= B = "
where u and o are the expectation and standard deviation
of h(t), respectively. The skewness of a LoS scenario is
usually smaller than that of a NLoS scenario [56].
Kurtosis/peakedness shows the strident of a peak. It can
be calculated as

4
- OTE o
g
It is often compared with the normal distribution, which
corresponds to the case x = 3. The kurtosis in the LoS
case is larger than that in the NLoS case.

o Power domain threshold comparison: Path loss (PL) is an

important indicator of large-scale fading. It is influenced
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by the transmission distance d as

Ly = PL(do) - 10710910(6%) 3)
where PL(dp) is the PL at the reference distance dy
and v is the path loss exponent in a certain scenario.
PL can be used to distinguish communication scenarios
with significantly different traveling distances.

Received signal strength (RSS) is the total received signal
power in decibel (dB), which can be calculated as

RSS = 10log1o P 4

where P is the total receive signal power.
Rician K-factor is the ratio between LoS power and
NLoS power in watts as

Bos

K =
Paios

®)

where Pp,s is the LoS power and Pyros is the NLoS
power. Therefore, the Rician K-factor can be used to
reflect the channel condition, namely, whether it is a LoS
case or a NLoS case.

Time domain threshold comparison: Channel gain is an
important indicator of power distribution at different time
instants. A large channel gain means that there are strong
MPCs that have contributed to the Rx or means a LoS
case. A small channel gain may be caused by weak MPCs
or purely by noise. The channel gain can be calculated
as the square of CIR.

The temporal autocorrelation function (ACF) measures
how fast the channel characteristics change with time.
For a time variant scenario with high mobility, the ACF
can decrease very fast and the stationary duration can be
very small.

The root mean squared (RMS) delay spread (DS) reflects
the dispersion degree of the wireless channels in the time
delay domain. For scenarios with rich scatterers, the RMS
DS is usually very large.

Spatial domain threshold comparison: The angular PSD
can also be used for scenario identification. It can be
obtained by the conventional Bartlett beamformer or cal-
culated based on the extracted MPC angular parameters.
The spatial cross-correlation function (CCF) measures
how fast the channel characteristics change at different
antenna elements. For a (ultra-)massive MIMO scenario
with very large antenna array, the CCF can decrease
rapidly with the expansion of antenna distance and the
stationary interval can be observed.

RMS angular spread (AS) reflects the dispersion degree
of the channels in the angular domain. Here, the interested
angle can be azimuth angle of arrival (AAo0A), elevation
Ao0A (EAoA), azimuth angle of departure (AAoD), and
elevation AoD (EAoD).

Frequency domain threshold comparison: The Fourier
transform of the temporal ACF gives the Doppler PSD
to show the power distribution over different frequency
points. The frequency correlation function (FCF) shows

how the channel characteristics change at different fre-
quency points. For wireless channels with large band-
width, this phenomenon can be significant. The Doppler
effect is caused by the relative motion of Tx and Rx. The
RMS Doppler spread (DPS) reflects the dispersion degree
of the channels in the frequency domain. For the static
scenario, there is no Doppler effect; thus, its RMS DPS
tends to 0.

2) Feature selection: Efficient scenario identification relies
on the features used. For different scenarios and algorithms,
features that play crucial roles may be different. In [15], it was
reported that the selected features for scenario identification
should be informative, discriminating, and independent.

Features can be calculated and used to make decisions by
comparing them with typical values/thresholds, as they assume
different values in different scenarios. In [65], this method was
developed for key parameter threshold-based identification.
However, this method does not work well for time-varying
environment, where channel properties change with time.

Multi-feature fusion is also efficient for scenario recog-
nition. In [12], the authors proposed a multi-feature fusion
based scenario recognition method for HST channels. The
CIRs of some scenarios, such as rural, station, suburban, and
multi-link scenarios, were measured. They used the Rician K-
factor, RMS DS, RMS AS, and RMS DPS. The relevance of
scenarios was analyzed to show that the suburban and multi-
link scenarios had stronger relevance.

3) Data pre-processing: To cope with a large volume
of data and to improve identification efficiency, data pre-
processing can be performed to remove redundant information.
Too much redundant information will be a barrier to accurate
scenario identification, but too little information may also lead
to incorrect scenario identification. Therefore, appropriate pre-
processing is meaningful for scenario identification. It mainly
includes normalization and dimension reduction.

Normalization limits the processed data within a certain
range, e.g., [0,1], thus improving classification or regression
performance. The most commonly used method is z-score
normalization, which unifies the processed data following the
standard normal distribution. Also, batch normalization makes
the input vectors of each layer follow the same distribution.
Therefore, the vanishing gradient can be avoided and the
convergence rate can be improved.

Dimension reduction can be used to reduce computational
complexity. Principal component analysis (PCA) is widely
used. Singular value decomposition (SVD) can transform
correlated data into linearly uncorrelated values. The kernel
method is used to handle especially complex distributed
datasets [15]. The radial basis function (RBF) kernel is a
typical example.

A band-pass filter can also be used to denoise the data by
setting the absolute cutoff frequency slightly larger than the
signal frequency. It has been verified that band-pass filter can
filter as much white Gaussian noise as possible.

B. Conventional manual identification method

The intuitive way to identify LoS/NLoS and other scenarios
is by human inspection/manual identification. Conclusions can
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be drawn by observing the most distinct characteristics through
synthesized analysis. For example, the LoS scenario can be
easily identified if there is a dominant peak in delay PSD
with the corresponding delay equals to the time duration of
the signal from the Tx to Rx linearly. However, it is usually
not reliable when no distinct characteristic is available.

In 6G (ultra-)massive MIMO communication scenarios,
the increase in antenna number brings massive augmentation
of data. In time-varying V2V and HST scenarios, wireless
channels also show very different propagation characteristics
in short time periods. The complexity of data in spatial,
temporal, and spectral domains is phenomenal, making manual
identification impractical.

C. ML-based intelligent scenario identification

1) ML algorithms: ML algorithms can be categorized as
supervised learning, unsupervised learning, and reinforcement
learning [66], [67]. Their applications in the scenario identifi-
cation are summarized in the following.

o Unsupervised algorithms: This kind of algorithm does
not require labels for datasets. The k-means is a typical
clustering algorithm without pre-labeling. Based on the
randomly selected numbers as cluster centers, it itera-
tively divides data samples into a number of groups by
minimizing the intra-cluster distance. Gaussian mixture
model (GMM) can also be used to characterize features
using several Gaussian distributed models.

o Supervised algorithms: They decide the relative param-
eters of the classifier using the training datasets. Then,
this model is used for the classification of unlabeled
datasets. The k-nearest neighbor (k-NN) classifies sce-
narios by assigning a data sample to the most common
class. There is also the weighted k-NN algorithm to
alleviate the sensitivity of the k-NN algorithm. Support
vector machine (SVM) is a supervised ML algorithm
that works well for classification and regression. It can
provide accurate classification by finding the largest gaps
of samples in an optimal high-dimensional hyperplane. It
behaves well even with noisy and nonnormally distributed
data. Random forest consists of multiple decision trees
and makes final decisions based on the voting of all
decision trees.

« Reinforcement learning (RL): RL is a representative one
of the paradigms and methodologies of ML, which is
used to describe and solve the problem of maximizing
or achieving specific goals through learning strategies in
the interaction between agent and environment. RL can
solve the problems that cannot be solved by supervised
learning methods in communication scenarios. The com-
monly used RL algorithm is the model based algorithm,
which optimizes and classifies communication networks
by modeling the specialized environment. Since such
algorithms are highly efficient in the training process,
such intelligent methods have received more and more
attention by communication communities recently.

2) ML-based scenario identification: In Table 1V, several
existing works on LoS/NLoS and multiple scenario identifica-
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tion using different ML algorithms are given. Their selected
features are also listed.

Most works have focused on LoS and NLoS identification,
as they can benefit practical applications such as localization
[82]. With an unsupervised algorithm, the k-means algorithm
was used to identify LoS and NLoS scenarios for UAV to BS
scenarios in [59]. Many works used supervised algorithms for
LoS and NLoS identification. The frequently used algorithms
are SVM, random forest, artificial neural network (ANN),
CNN, LSTM. In addition, semi-supervised learning, such as
safe semi-supervised SVM, was widely proposed to realize
NLOS identification for indoor smartphone position and navi-
gation based on the features extracted from the channels [72].

The SVM algorithm was used for the identification of
LoS and NLoS scenarios for the UAV-to-ground scenario in
[60]. Then, a 3D city map with building position and height
was reconstructed. In [54], NLoS identification for the UWB
channel was performed using both SVM and a mathemat-
ical convolution method. The features employed were CIR
and different subsets of eight metrics, e.g., RSS, maximal
amplitude, rise time, standard deviation, mean excess delay,
RMS DS, kurtosis, and skewness. Different CIR data points
were also used during comparison. It was concluded that
the increased number of CIR data points or features may
not lead to accuracy improvement. In addition, it was shown
that the convolution-based method can provide comparable
identification performance with fewer CIR data samples.

Using the CNN, classification of LoS and NLoS UWB
propagation conditions was performed in [53]. The selected
feature was downsampled delay PSD rather than CIR of
indoor environment measurement data. It was shown that
the proposed method has reduced computational cost while
maintaining a similar performance. It was also pointed out that
additional features such as range and energy can be included,
but with an increase in training time. In [50], both SVM and
CNN were used for LoS and NLoS scenario identification.
With S-V model simulation data, it was pointed out that SVM
performed less satisfactorily. It is worth mentioning that short-
time Fourier transformation was applied to the CIR, and then
the CTF images were used as the input of the CNN. Therefore,
the LoS and NLoS identification task was transformed to an
image recognition problem.

With the LSTM network, channel state information (CSI)
along with RSS, RMS DS, kurtosis, and skewness were used
as input features to identify LoS and NLoS conditions in [57].
Based on channel measurements in a meeting room, the results
showed that a larger bandwidth and more features, especially
the latter term, can benefit the identification accuracy.

There are also works on indoor and outdoor identifica-
tion, and multiple typical scenario identification. Supervised
algorithms are usually used, including SVM, BPNN, CNN,
etc. In [51], based on real-time measurement data, the CTF
and FCF were compared for four different environments. ML
algorithms, including decision trees, SVM, and k-NN, were
used to classify four scenarios. It was shown that the k-NN
method with CTF and FCF as features performed the best. It
was indicated that this method can be applied to real-time
deployment scenarios. In [75], the back-propagation neural
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1
2 TABLE IV
3 SUMMARY OF EXISTING SCENARIO IDENTIFICATION WORKS USING ML.
4
5 Identification Ref. Algorithms Scenarios Simulations/ Selected features
6 methods Measurements
UMa, UMi, RMa,
; [59] k-means UAV £.=900 MHz RSS
9 [60] SVM UAV-to-ground WINNER 11, dense urban RSS
10
[55] | SVM, Random forest, V2V, MIMO, o
11 [56] ANN V2V £.=5.9 GHz, B=15 MHz Kurtosis, Rician K -factor
12
13 Energy, amplitude,
[54] SVM, convolution Indoor, UWB Indoor office, SISO rise time, RMS DS,
14 LoS & NLoS standard deviation,
15 mean excess delay,
16 kurtosis, skewness
[50] Mean excess delay,
17 68] SVM, CNN Indoor, UWB S-V model, SISO RMS DS,
18 [69] number of effective rays,
19 image of CTF
. Indoor hall, SISO, Mean, standard deviation,
20 [70] Random forest Indoor, WiFi fe=5.75 GHz, B=25 MHz skewness, kurtosis
21
22 71 FNN Indoor. UWB Indoor, SISO, Total power,
23 (1] fAoot £.=6489 MHz, B=499.2 MHz first path power
24 Indoor, SISO, ]
25 [53] CNN Indoor, UWB £,=499.2 MHz, B=64 MHz Delay PSD
Urban dense, macro area, )
26 [52] CNN UAV MIMO, f.=800 MHz Delay PSD
27 [62] 3GPP. UMa. Configurations,
28 [63] CNN UMa massive MIMO space-time-frequency
29 correlation
RNN, LSTM, Indoor office, SISO,
30 58] hypothesis test Indoor, WLAN £,=2.462 GHz, B=20 MHz CSL, RSS
31
32 [57] Meeting room, SISO, CSI, RSS,
[72] LSTM, SSL Indoor, acoustic fe=2.4 ~5.4 GHz, RMS DS,
33 B=600 MHz, 1.2 GHz, 3 GHz kurtosis, skewness
34
B | Decisi SVM, | Laborat id Indoor, SISO
35 ecision tree, R aboratory, narrow corridor, ndoor, R
73] k-NN lobby, sports hall f.=2.4 GHz, B=100 MHz RSS, CTF, FCF
36 [74]
37 [75] BPNN Urban, suburban, V2V, SISO, Delay PSD, RMS DS,
38 tunnel, NLoSv fc=5.9 GHz, B=30 MHz SF, Rician K -factor
Multiple
39 scenarios Ind —000 MHz:
76 CNN Indoor, Outd ndoor, fe=900 MHz; MPC ters
40 76l ndoor, uidoor Outdoor, f,=900 MHz/2.4 GHz parameters
41
42 [77] Ru‘l(?—basv..td Highway trafﬁc, Number of scenarios=110007 Complexity metric
43 classification automated vehicles
44 ,
Model tuning, D cue HST, SISO, PL,
45 [78] deterministic analysis GSM-R system fe=932 MHz, B=100 MHz geomorphologic analysis
46
[51] . Open space, lab, SISO,
47 [64] Correlation pattern Indoor #,=2.4 GHz, B=100 MHz CTF, FCF
48
49 [79] Fuzzy C-means Industrial Tennessee Eastman, 4 scenarios 16 attributes
50
51
Simulation: QuaDRiGa, SISO,
52 LoS & NLoS; k-NN, SVM, RMa (LoS & NLoS), =26 Gl—? B=100 MH PL, Rician K-factor,
. [1 5] fc . z, VA
53 Multiple k-means, GMM UMa (LoS & NLoS), Measurement: HST, SISO RMS DS, RMS AS
s ios HST (Viaduct &Cutting) , : ’ ’
54 scenarios fe=2.35 GHz, B=50 MHz
55 Ex Sk Kurtosi
. . pressway ewness, kurtosis,
Binary hypothesis V2V, SISO,
56 (611 testing (LoS & NLoS), .=5.2 GHz, B=120 MHz RMS DS,
57 urban intersection peak-to average ratio,
58 (LoS & NLoS) Rician K -factor
59
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network (BPNN) was used to identify four V2V scenarios, i.e.,
urban areas, highways, tunnels, and LoS blocked by vehicles
(NLoSv). The input features were delay PSD, RMS DS,
shadow fading (SF), and Rician K-factor. It was shown that
the proposed BPNN was able to provide over 98% accuracy
in identifying four scenarios. In [76], a CNN was used to
distinguish indoor and outdoor scenarios at different frequency
bands. The input features were MPC parameters such as am-
plitude, time delay, and Doppler frequency. The results showed
the astonishing performance of a CNN in dealing with MPC
parameters. In [78], scenario classification of the HST GSM-R
system was studied based on geographic information systems
(GIS). The model tuning and deterministic analysis were
proposed to distinguish the special propagation scenarios. In
[58], an RNN combined with LSTM was used for indoor office
NLoS condition identification with commodity wireless local
area network (WLAN) devices. The input vector consisted of
the RSS using the real and imaginary parts of the CSI. The
early stopping scheme was used to avoid overfitting and the
simple hypothesis test was used to make the final decision. It
was also found that the phase information may not be suitable
for identification in a time-varying environment. In [79], the
fuzzy C-means clustering algorithm was used to classify 4
typical industrial scenarios by using a total of 16 features. In
[15], unsupervised and supervised ML algorithms were used to
identify both measured HST viaduct and cutting, and simulated
QuaDRiGa RMa and UMa scenarios. It was indicated that
the unsupervised GMM and supervised k-NN and SVM can
provide significant accuracy over 90%, while the k-means can
only yield accuracy of approximately 80%. In [61], binary
hypothesis testing was used for NLoS identification based on
expressway and urban intersection scenarios. Several features,
including skewness, kurtosis, RMS DS, peak-to-average ratio,
and Rician K -factor, were considered to measure their influ-
ences on identification accuracy. It was found that the Rician
K -factor performed less satisfactorily and that the RMS DS
was significantly impacted by the environment.

3) Power consumption: ML power consumption has an
important influence on improving efficiency and optimizing
the deployment of ML algorithms. It is affected by system
hardware and software, which mainly considers floating point
operation (FLOPs) as a quite important measurement index
for unsupervised and supervised algorithms. Different con-
figuration tactics for the same number of parameters will
result in different FLOPs. While for high-precision or more
complex algorithms, such as deep learning, FLOPs will go up
a lot when the exponential growth in the number of system
parameters and the size of data sets [80]. However, from
the perspective of the classification application system, model
simplification techniques are currently used to reduce the ML
power consumption, and the overall ML performance gain
should be weighed against the power configuration of the
entire communication system.

4) Explainability: Currently in the field of communication
scenario classification, there is an unexplainable black box
problem in ML, which means that users can only see the
classification results, without understanding the reasons and
processes of their decisions. It is difficult to distinguish
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the clear logic with closed-form expressions behind artificial
intelligence, so the ML explainability has become an urgent
problem to be studied and solved necessarily [81]. Towards
ML based intelligent scenario identification like CNN and
reinforcement learning, the mainstream approach to explain-
ability is to analyze channel impulse response (CIR) through
Saliency map (importance map), or to construct a set of
simple and effective convolution filters for measuring features
changes during training process, which can be used to explain
the learning mechanism of and visualize qualitative analysis
of important features.

In summary, it can be seen that the selected features can
have significant impacts on identification performance. For
multiple scenario identification, supervised learning algorithms
exhibit better accuracy, and features with abundant informa-
tion, e.g., CTF and MPC parameters, can yield better per-
formance. However, existing works on scenario identification
mainly focus on LoS and NLoS identification, as well as
indoor and outdoor classification. There is still lack of the
identification of multiple scenarios. In addition, most works
focused on single-input single-output (SISO) channels at sub-
6 GHz frequency band, and only a few papers have discussed
MIMO channels. Thus, there is a lack of scenario identification
at higher frequency band with large array for 6G.

D. Digital map/picture based scenario identification

In addition to the aforementioned scenario identification
using on-site channel measurements, digital map/picture is an-
other important method that can be used for efficient scenario
identification. It contains abundant physical and geographic
information that is sufficient to provide macroscopic identi-
fication of scenarios. For example, typical urban scenarios,
including open area, hotspot, street canyon, and roof, can
be easily distinguished, as they exhibit different numbers of
buildings, streets, etc.

The 2D digital map/picture can be acquired through satel-
lite/camera, reconstruction using some software. In the future,
with the development of imaging and emulation technologies,
3D environmental information, e.g., used in virtual reality,
which contains more refined environment restoration, is ex-
pected to provide better scenario identification performance.
Compared with wireless channel measurement, which requires
expensive equipment and exhaustive labor, this is a less expen-
sive and more convenient method. In addition, benefiting from
the powerful image processing capability of ML algorithms,
real-time scenario identification can be performed in a timely
and accurate manner.

Furthermore, based on accurate scenario identification, fun-
damental channel propagation characteristics can also be pre-
dicted using ML algorithms, even with randomly placed Tx
and Rx under different frequency bands. In [83], 3D electronic
maps, including locations of Tx and Rx, distance, building
density, average height, etc., were associated with real channel
measurements to predict the PL of a typical hotspot area.
The operated center frequencies were 700 MHz, 2.4 GHz,
and 3.5 GHz. It was shown that this method can provide
accurate prediction of PL even without a large amount of mea-
surement data. It is worth noting that channel characteristics
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should not only include large-scale parameters such as PL and
shadowing, but also include small-scale parameters. Thus, in
real wireless communication, optimum system design can be
performed/switched in a timely manner for a superior user
experience. However, this line of work has not yet received
much attention. There are also ML algorithms researches on
the identification of other special scenarios. For example, ML
algorithms were used in [84], such as ANN, SVM, kNN,
and RF to classify land use land cover based on remote
sensing image data provided by satellites. The ensemble ML
approach combined with multi-source geographical image
dataset to improve the classification accuracy of arid regions
was proposed in [85]. Hyper spectral image about studying ML
based crop identification with temporal data information for
crop phenology planning was adopted in [86]. The automating
road junction ML based identification using crowdsourcing on
GPS transformed digital map data were adopted in [87].

Considering that the 6G wireless communication scenarios
are usually complex and the scenario changes all the time,
identifying the scenario type and formulating the correspond-
ing parameter optimization strategy is quite difficult and
critical for wireless network optimization. The conventional
identification scheme relying on subjective experiences and
manual decision rules has gradually exposed the disadvantages
of low scalability, which is difficult to ensure the identification
quality. The artificial intelligence algorithms can improve
the scenario identification accuracy, and thus increase the
efficiency of wireless network optimization and positioning.
In addition, it can predict the channels using the multiple
linear regression algorithm and provide an important reference
for the adaptive optimization of subsequent communication
schemes. However, how to reduce model complexity, training
time, computing storage spaces and communication overhead
between devices while ensuring accuracy still needs to be
studied.

IV. 6G CHANNEL MODELING METHODOLOGIES
A. Conventional non-predictive wireless channel modeling

Conventional non-predictive channel models mainly include
deterministic and stochastic models [88]. Deterministic chan-
nel models use real channel measurements and ray tracing.
However, they are site-specific and usually have high com-
plexity to carry out channel measurements or re-construct the
real channels.

Stochastic models use CBSM, GBSM, and BDCM. CBSM
relies on independent and identically distributed (i.i.d.) Gaus-
sian assumption. The channel coefficient is fully determined
by the spatial covariance matrix. With different approxima-
tions to this matrix, one has the Kronecker-based stochastic
channel model (KBSM) and Weichselberger model. They have
very low complexity, but their accuracy is not satisfactory,
especially the KBSM, which assumes a rich scattering en-
vironment. GBSM describes wireless channels based on the
geometrical relationships among Tx, scatterers, and Rx. The
MPC delay, AoD, AoA, amplitude, etc., can be derived with
the aid of some empirical distributions. GBSM has very high
accuracy and flexibility, but the computational complexity is

also very high. BDCM, originally known as virtual channel
representation (VCR), is a promising method that can provide
a better tradeoff between accuracy and complexity. It char-
acterizes the channel propagation between virtual beam pairs
and can provide a performance between CBSM and GBSM.
This is an emerging method for future 6G wireless channel
modeling.

B. ML-based wireless channel modeling

The utilization of ML algorithms in wireless channel mod-
eling is twofold: channel characterization and prediction [89].
On the one hand, to reduce the complexity of conventional
channel modeling methods, researchers resort to ML algo-
rithms to extract channel statistical parameters and to explore
underlying properties. On the other hand, the many possible
6G scenarios pose high demands for channel prediction.
Existing channel measurement data is expected to predict
the channel statistical properties of wireless channels in the
future for new scenarios, and at new frequency bands. In [90],
ML-assisted channel modeling and channel estimation were
introduced. There are already works on the ML-based channel
characterization. They are summarized in Table V.

Many works have been performed for wireless channel mod-
eling at sub-6 GHz and mmWave frequency bands. In [91],
a generative adversarial networks-long short term memory
(GAN-LSTM) framework was proposed to predict sub-6 GHz
channel statistics, including RMS DS and RMS AS. In [95],
CNN was used to predict the PL exponent of outdoor mmWave
band channels. The impacts of building density and average
distance from the Tx were analyzed using RT simulation data.
In [92], [93], a hybrid physics-based and data-driven modeling
framework was proposed to show very high accuracy and
great generalization ability. Based on real measurement and
RT simulation data, the through-vegetation cluster parameters,
including vegetation attenuation, RMS DS, and RMS AS,
were predicted using an ANN. Instead of estimating channel
model parameters through high-resolution MPC parameter
estimation and clustering, summarized statistics that hold
enough information were learned by using a ML algorithm
based on approximate Bayesian computation and a DNN with
two hidden layers in [96]. The summarized statistics include
reflection gain, number of scatterers, probability of visibility,
polarization ratio, and noise variance. The performance of the
proposed methods was validated based on simulation data and
real measurement data from an indoor NLoS environment at
60 GHz. In [65], with extensive training data collected from
real channel measurements and GBSM simulations, channel
statistical properties such as received power, RMS DS, and
RMS AS could be exported using the feed-forward neural
network (FNN) and RBF-NN. This result indicated that ML
will play an important role in future channel modeling. In
[102], RF and KNN were used for the prediction of PL
and RMS DS. A feature selection scheme was also proposed
to further improve the prediction accuracy. In [98], the PL
and RMS DS were predicted for 60 GHz mmWave channels
in corridor and hall. The ML methods used included back
propagation (BP), SVM, and genetic algorithm (GA). It was
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TABLE V

ML-BASED WIRELESS CHANNEL CHARACTERIZATION/PREDICTION.
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Ref. Scenario ML algorithms Statistical properties
Received power, delay PSD,
[91] Sub-6 GHz GAN-LSTM RMS DS. RMS AS
[65] MmWave FNN, RBF-NN Received power, RMS DS, RMS AS
[92] MmWave ANN Vegetation attenuation,
[93] (28 GHz, street canyon) RMS DS, RMS AS
MmWave . . .
[94] (28 GHz, urban) Multiple linear regression PL
MmWave
1931 (outdoor) CNN PL
MmWave Approximate Bayesian computation, Reflection gain, scatterers number,
[96] (60 GHz, indoor) DNN visibility probability, polarization ratio,
noise variance
MmWave .
[97] (60 GHz) RBF-NN RSS, PL, shadow fading
MmWave
[98] (60 GHz) BP, SVM, GA PL, RMS DS
[99] VVLC MLP-NN, RBF-NN, RF PL
Kalman filters, particle filters; . .
1531 vav Hungarian method, Kuhn-Munkres-based method MPC tracking, clustering
[100] V2v RF PL
[101] UAV EBT, GPR End-to-end loss
UAV, mmWave
(102] (60 GHz) RF, k-NN PL, RMS DS
High mobility .
[103] massive MIMO ST-AR, CVNN Angel-delay domain channel
[104] Time-varying, mmWave : .
[105] (outdoor, 26 GHz) RBF-NN, ANN PL, shadow fading, RMS DS, RMS AS
[106] Terrestrial, urban MLP Field strength (RSS)
[107] Urban, 170 MHz MLP Field strength (RSS)
38(8)} Underground mine MLP, RBF PL
[110] Satellite ANN Channel excess attenuation
(111] DSRC MLP-NN PL

shown that the combination of SVM with GA can provide
excellent fitness with the measurement data. In [108], PL
fading in an underground former gold mine at 60 GHz was
estimated using MLP and RBF.

There are also works on channel modeling for other sce-
narios, including satellite, V2V, UAV, massive MIMO, etc.
In [55], to handle the very large amount of time-varying
V2V channel measurement data, ML techniques were used
for LoS/NLoS identification, MPC tracking, and clustering
[112]. This provides essential information for further chan-
nel modeling. In [110], an ANN was used to estimate the
channel excess attenuation of a ()-band satellite channel. In
[94], multiple linear regression was proposed to predict the

PL model of a different operating environment using the
measurement data of a certain scenario. In [113], a cluster
kernel-based channel model was proposed to take advantage
of both stochastic and deterministic channel models. In [99], to
improve the accuracy of deterministic and stochastic models,
the PL was predicted for vehicular visible light communi-
cation (VVLC), and a CTF model was proposed using ML
algorithms. The vehicle mobility and environmental effect-
related parameters were considered as inputs, such as distance,
ambient light, Rx inclination angle, and optical turbulence.
MLP-NN, RBF-NN, and decision tree-based RF algorithms
were employed and compared for real measurement data to
demonstrate the high accuracy of PL prediction. In [104], the
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RBF-NN was used to build the PL and shadowing model,
and the ANN was used to build the time-varying joint small-
scale channel parameters. In [114], big data enabled cluster-
based channel modeling methods were summarized, including
clustering techniques, cluster tracking algorithms, and different
cluster-based channel models. In [115], the channel modeling
of the vehicular visible light communication was proposed
to improve the model accuracy for pass loss, and build the
channel frequency response model through consideration of
vehicle mobility and environmental effects. In [116], ML
based multilayer perceptron model was trained with statistics
computed from channel realizations, to calibrate the model
parameters as a regression problem involving mapping of the
channel transfer function or impulse response. In [117], a
combination of the Exponential and the Generalized Gamma
Distribution was proposed to model the underwater channel
environment with great accuracy, and built a convolutional
neural network capable of estimating the parameters from
received signal.

For channel prediction, in [111], a real-time PL prediction
method was proposed based on the MLP for dedicated short-
range communications (DSRC). A higher prediction accuracy
was achieved in comparison to the statistical method. In [100],
a non-parameterized data-driven approach RF was used for
the PL prediction of V2V communication. The contributions
of different features were also discussed to achieve accurate
performance. In [103], both unsupervised and supervised
ML techniques were leveraged for massive MIMO-OFDM
high mobility wireless channel prediction. Through 3GPP
NLoS scenario simulation, the proposed spatio-temporal au-
toregressive (ST-AR) and complex-valued NN (CVNN) based
channel prediction methods showed enhanced channel predic-
tion performance. In [101], the prediction of end-to-end loss
(including shadow fading) was formulated as a supervised
regression problem. The authors used ensemble bagged trees
(EBT) and exponential Gaussian process regression (GPR)
methods to process raw data and processed data, respectively,
to show accurate performance. In [97], the RBF-NN was used
to investigate the receive power, PL, and shadow fading of
a 60 GHz mmWave channel. It showed that the RBF-NN
outperformed the back propagation network.

It can be seen that, NNs are widely used for wireless channel
modeling. The most interesting statistical properties are PL,
shadow fading, RMS DS, and RMS AS. In channel prediction
works, most output features are PL. There is still lack the
prediction of more channel statistical information. In both
channel modeling and prediction, the involved scenarios are
very limited.

C. Pervasive channel modeling

Although the above mentioned conventional non-predictive
and ML-based predictive channel models have different merits
in terms of accuracy and complexity, there is still a lack
of unified channel modeling framework that is pervasive
for all frequency bands and all scenarios. It is desirable to
analyze system performance with different technologies, fre-
quency bands, array sizes [118], etc., under the same channel

modeling framework. The pervasive channel model should
be beneficial to figure out the relationships among model
parameters, propagation characteristics, as well as system
performance. It is especially important for the 6G channel
model standardizations and the investigation of fundamental
theories and technologies of 6G networks. In addition, with the
adjusted model parameters, the pervasive channel model can
be degenerated to the simplified channel models for specific
scenarios.

As shown in Fig. 3, a pervasive channel modeling theory can
be established with a unified modeling methodology, a unified
CIR, and integrated statistical properties of 6G channels for
all spectra and all scenarios. One intuitive option is to utilize
the pervasiveness of the GBSM and to fit most channel
characteristics of various scenarios into the GBSM. In [119],
the 6GPCM was proposed based on the GBSM. It combined
most channel characteristics into a unified framework and
derived a unified CIR for all frequency bands and all scenarios.
The impacts of frequency bands, scenarios, mobile velocities,
and antenna array sizes were analyzed based on the 6GPCM.
Another option is to use the GBSM as the main framework.
Since RT has high accuracy and can provide MPC parameters
in very complicated environments, while ML can predict
channel characteristics in future time, new frequency band,
and unknown environments, they can be used as supportive
methods for the main framework, where GBSM is the core,
to provide extra credits of the pervasive channel model.

The pervasive model uses a unified cluster-based geometric
stochastic channel modeling method, a unified channel im-
pulse response expression, and a comprehensive consideration
of the statistical characteristics of 6G all-band all-scenario
channels. It can be simplified to a target channel model
for a specific frequency band and a specific scenario by
adjusting the parameters of the channel model. Through the
analysis of 6G universal channel model, the complex mapping
relationship between channel model parameters, channel statis-
tical characteristics and communication system performance,
frequency bands and scenarios, can be studied. As a unified
channel model framework, it is crucial to promote 6G channel
model standardization, 6G generic theory, and system fusion
construction.

V. 6G SCENARIO ADAPTIVE CHANNEL MODELING

The 6G scenario adaptive channel modeling can be achieved
through intelligent scenario identification and automatic chan-
nel model parameter matching, as shown in Fig. 4. After
identifying the targeted communication scenario, the relative
channel model parameters should be automatically matched
and the dedicated channel model should be abstracted.

In this section, we will use the 6GPCM as an example to
serve as the core of 6G scenario adaptive channel modeling
[119]. Detailed procedures and all the 6GPCM related param-
eters are summarized in Fig. 4, including the user defined
and wireless channel parameters. As for the user defined pa-
rameters, system setup, array configuration, and static/mobility
related parameters need to be determined in advance. The large
scale fadings (LSFs), cluster related parameters, and MPC
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6G space-air-ground-sea integrated networks.

Fig. 3. A pervasive channel modeling theory [119].

related parameters should be matched to the targeted scenario.
Under the simplified 6GPCM framework, dedicated CIR/CTF
for a certain scenario can then be derived.

In the following, we will show how to use of 6GPCM,
model parameter matching, and its abbreviations for several
typical space-air-ground-sea communication scenarios.

A. Complex channel matrix

The complex channel matrix of the 6GPCM is given as
H=[PL-SH BL-WE-AL"* H, (6)

where PL, SH, BL, WE, and AL denote the LSFs, i.e.,
path loss, shadowing, blockage loss, weather effect loss, and
atmospheric gas absorption loss, respectively. The small-scale
fading (SSF) is represented by Hs = [hgp,7.(t, 7)| 5 s prrs
where p = 1,--- ,Mp and ¢ = 1,--- , Mg, My and Mg
are Tx and Rx antenna element numbers, respectively. The
CIR hgp s (t,7) is derived as the sum of LoS and NLoS
components, as illustrated in (11)—(13). Here, K (t) is the
Rician factor at time instant ¢. There are antenna patterns,
Faraday rotation, and amplitude, delay, AAoA, AAoD, EAoA,
and EAoD for each MPC of clusters. More detailed symbol
interpretations and derivations of the LoS and NLoS compo-
nents can be found in [119]. All parameters are time variant
and change with the cluster birth-death in the spatial, tem-
poral, and frequency domains, hp, f, (¢, 7), the CIR between
ApTand A(If at the carrier frequency f., is derived as the
sum of LoS and NLoS components, as illustrated in (11).
Here, K(t) is the Rician factor at time instant ¢, and the

calculation of 1%, (t,7) and hy'9? (t,7) can be represented

as (12) and (13) respectively, Fjq) 7., v(-) and Fpq) 7 v ()
are the antenna patterns of Tx (Rx) antenna for vertical and
horizontal polarizations at corresponding carrier frequency f.,
respectively, K, (t) is the cross polarization power ratio, p
is co-polar imbalance, 6,7, 05V "and 0217 are initial phases
modeled as random variables uniformly distributed over (0,
27]. Besides, F. represents Faraday rotation referring to the
rotation of the polarization plane caused by the propagation
of electromagnetic waves through the ionosphere in LEO
satellite scenario, and ¥, = 108/f2 is the Faraday rotation
angle, where f. is in GHz. Otherwise, in scenarios without
considering the influence of ionosphere, we can set ¥,,, = 0.
Additionally, Py ., 7. (t) and 7gp m, 5. (t) is the power and
delay of the mth ray in the nth cluster between AZ; and
Al at time instant ¢. Also, 6} and 67" denote random
phase in (0, 2], Tqu(t) is the time delay of LoS path at
time instant ¢, and given the speed of light c, Tqu(t) can be
calculate as 7/ (t) = || AR (t) — AT (t)||/c = Dyy(t)/c, where
|I|| calculates the Frobenius norm. Just to be clear, Table VI
summarizes the definitions of significant parameters.

B. Parameterization and modeling of 6G communication sce-
narios

In Table IV of [119], the configurations and model param-
eters of the 6GPCM at different frequency bands and scenar-
ios were listed, including center frequency, antenna number,
shadow fading, RMS DS, RMS AS, etc. However, only indoor
scenarios in the THz band, UAV-to-ground scenario, and
ultra-massive MIMO scenario were discussed. More dedicated
parameter settings for all scenarios will be added in the future.
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TABLE VI
DEFINITIONS OF SIGNIFICANT PARAMETERS.

Parameters Definitions
AZ;7 Af; The pth Tx antenna element and gth Rx antenna element
o1, 0R Antenna spacings of Tx and Rx arrays
cA,c? The first-bounce and last-bounce clusters of nth path

T (t), vR(t)7 vAn (t), v*n ()

Speeds of the Tx, Rx, cluster C;?, and cluster Cf at time ¢

ali (1), 0l (1), 04" (1), 05" (t)

Azimuth angles of movements of the Tx, Rx, cluster C/, and cluster CZ at time ¢

n

ab(0),aB(1), (0, 0% (1)

Elevation angles of movements of the Tx, Rx, cluster C;?, and cluster Cf at time ¢

T T
Amp’ TE,mp

Azimuth angle of departure (AAoD), elevation angle of departure (EAoD) from AgT) to

(A)

the mth scatterer in C,; "’ at initial time

R R
¢A7mn ’ ¢E,mn

azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA) from AgR) to

the mth scatterer in C,(LZ) at initial time

T T R R
P40 PE,L>PA,LPE,L

AAoD, EAoD, AAoA, and EAoA from A{ to Af‘ at initial time

dr 4k

My ? " Mn,

Distance from A?(R) to the mth scatterer in C;? (D) at initial time

df i, (1), g, ()

p,Mn

)

Distance from A?R) to the mth scatterer in C;? z at time ¢

@l;’mn (%), c/l?;mn () Unit vector from A?(R) to the mth scatterer in Cj#at time
D, Dyy(t) Distance from AT to AF at initial time and time 7, respectively

fﬁqp(t)v fD,qp,mn (t)

Doppler shift from Ag to AqR of the LOS path and the NLOS path at time ¢

Pyp,mn (), Tap,m, (£)

Power and delay of the ray from A}; through the mth scatterer in C;} and the mith scatterer in CZ to Af; at time ¢

Fpa),vs Fpla),H

Antenna patterns of AZ(A{;) for vertical and horizontal polarizations

TABLE VII
SIMPLIFIED MODELS OF THE 6GPCM AND PARAMETER ADJUSTMENTS.

Distinct
Scenarios channel Parameters and modeling methods Other key parameter adjustments
characteristics
Space
(IE)EO Ionof?phere Faraday rotation matrix (Fr) AL=1,BL=1p=1, Mp(t) = Mp,
' ettect Psurv(Af) =1, Ym, = 0,

satellite) P (AR — -

[120] Rain SUTV( T) =1 ﬁn(pa Q) =1

attenuation Model rain attenuation (RA)
Aerial 3D movement Movements of Tx, R?(, and scatterers AL=1,BL=1,WE=1,p=1, ¥m.n =0, My(t) = My,
(UAV) all have elevation angles Par(Af) =1, Ym, =0,

(121] LSPs relate to

the height

. &n(p,q) =1
LSPs relate to the height

Terrestrial Existing of

WE =1, n = 1, wm,n =0, Mn(t) = Mn,

(IloT) DMCs Model DMCs Pan(Af) =1, 9m,, =0,
NL NL
(1221 hyzl;,n?c (t,7) = hqp,nfcs,c (&) + hqp,o.ffMC (t,7)
Large Doppler Doppler frequency of MPC is time-
Terrestrial shift/spread variant WE =1 p=1v%mn =0 Mn(t) = Mn,
: . . vAn =0, v%n = 0,07 =0
((U)HST) . . Channel parameters are time-variant, Paurs( Af) -1 T 0 ’
[123] Time dpmam clusters are distributed on the inner sury L T N
non-stationarity wall of the vacuum tube and Par(Ar) =1, &n(p,g) =1
birth-death in time domain
Waveguide Nyp(t) relates to waveguide effects
effect in different positions
NLoS
Location Papge 07> Prgp, g2 (1:7), and AL=1,BL=1,WE =1, p=1, ¥ = 0, My(t) = My,
Maritime NLoS2 i _ K() ;Lo 2 S; NLoS;
1241 dependence hyp.t- (t,7) will appear or hap. 1. (6, T) = /K(t)+1 RS, (8,7) + X7y TSI (t,7),

disappear in the channel Paur(Af) =1, Ym,, =0

Fluctuation of
sea waves

i _ én(p,q) =1
Pierson-Moskowitz (P-M) spectrum
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Targeted communication scenario

Carrier frequency/wavelength; bandwidth

Tx and Rx distance; array type; polarization pattern; inclination
angle; adjacent antenna distance; antenna number

Velocity: acceleration speed; 3D trajectory

| | PL; shadow fading; Rician K-factor: blockage loss; weather effect

loss; atmospheric gas absorption loss

Cluster number; mean and variance of intra-/inter-cluster RMS DS

— and RMS AS: cluster survival probability in spatial-temporal and

frequency domains

MPC number; intra-/inter-cluster RMS DS and RMS AS

CIR/CTF

Fig. 4. Detailed procedures and parameter matching of scenario adaptive channel modeling.
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Fr |: prfm (¢E L(t) EL(t)) ] ]27rfL Tap t)5 ( L (t))

. T—T,
ap-Je Fop.1 (ng,L(t)’ , (t)) 0 e Fp f..m (d)E,L(t) oh, L(t)) »
12)
Ngp(t) My ( ) gV H
DAC Z Z { aoterV (OF m, (1), ¢A o () ] ko, ()€ 7mn
apnle m—1 Q;fu (¢E,mnt ¢A mn t )ejomn \/ﬁejgfnf (13)
pr.v( E (t), } j2rf (t)
sJes sMin mn 2 . e TJcTqp,mn . 5 T — T M, t .
{Fp,fcﬂ (8 (0 8F (1)) | V0 (7= Tapma (8)
In this work, we emphasize the parameters that may be imbalance p = 1, the time-invariant MPC number in the

sensitive to wireless communication scenarios and system
settings. Taking the space satellite, UAV, terrestrial V2V and
HST, and maritime communication scenarios as examples,
we list the most distinct channel characteristics, parameters
and modeling methods, and key parameter adjustments in
Table VII. Only the single-link and single-frequency case is
considered.

In satellite channels, the ionosphere effect and rain at-
tenuation should be considered. We characterize them by
introducing the Faraday rotation matrix F,, which represents
the rotation of the polarization plane caused by electromag-
netic wave propagation through the ionosphere, and the rain
attenuation factor RA. The space scenario can be characterized
by defining in the 6GPCM AL = BL = 1, the co-polar

n-th cluster M, (t) = M,, the cluster survival probabil-
ity at integral multiples of frequency and space intervals
Por(Af) = Pyr(Ar) = 1, the frequency dependent factor
Ym,, = 0 because of the limited bandwidth, and the 2D spatial
lognormal process &, (p,q) = 1, which simulates the smooth

power variation at the p-th transmit and ¢-th receive antennas.

The aerial scenario must include the 3D movement property.
This can be done by introducing elevation angles for the Tx,
Rx, and scatterers. The LSPs should be related to the UAV
height. The simplified parameters for this specific channel are
AL=BL=WE =1, u=1, M,(t) = M,, Py (Af) =
1, Ym, = 0, &.(p,q) = 1, and the Faraday rotation angle
Ym.n = 0 in the 6GPCM for this scenario.

In terrestrial scenarios, we take the IIoT and ultra-HST
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Fig. 5. The CDFs of RMS DSs in IloT scenarios with different antenna
heights (f. = 28 GHz, Mg = M7 = 1,v® =T = 0 m/s, N(to) = 15).
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Fig. 6. The LCRs in HST viaduct scenarios (f. = 930.2 MHz, K = 5.514
in viaduct I, K = 1.54 in viaduct II, vZ" ~ U(0,5) m/s).

(UHST) scenarios as examples. First, for the IIoT channel,
dense multipath is the key channel characteristic. We can
address this characteristic by analyzing the model dense
MPCs. Other parameters that can be fixed and the suggested
values are: WE = 1, p = 1, Ympn = 0, Mp(t) = M,,
Pyw(Af) =1, and ~,,, = 0. In Fig. 5, we give an example
of 6GPCM to fit the RMS DS of IIoT channel measurement
data in [125]. Two cases with different antenna heights are
compared. In case 1 and case 2, we set the height of antenna
arrays to 0.84 m and 1.6 m, respectively. Here, most of the
surrounding objects are higher than the Tx and Rx antenna
arrays in case 1, while the objects are generally lower than the
antenna arrays in case 2. As shown in Fig. 5, the larger the
height of the antenna arrays, the larger the RMS DS will be.
The simulation result is consistent with the measurement data,
since there are less multipath components that are blocked by
surrounding objects to reach the Rx side in case 2.

Then, for the (U)HST channel, there is a very large
Doppler shift. Distinct time domain non-stationarity brings
cluster birth-death in the time domain and time-variant channel

—+— Analytical (viaduct I), K = 5.514
— % — Analytical, K =3
—-%-— Analytical, (viaduct II), K = 1.54
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Fig. 7. The AFDs in HST viaduct scenarios (f. = 930.2 MHz, K = 5.514
in viaduct I, K = 1.54 in viaduct II, v4™ ~ U(0,5) m/s).

parameters. In addition, clusters are distributed on the inner
wall of the vacuum tube, and the waveguide effect must be
characterized by setting the number of clusters between the p-
th and ¢-th antenna in different positions. In this scenario, the
channel has: WE =1, u = 1, ¥y, = 0, M, (t) = M,,
vin = pZn = T = 0, Psurv(Af) = Pqurv(AT) = 1,
Ym,, = 0, and &, (p, ¢) = 1. In Figs. 6 and 7, the level crossing
rate (LCR) and average fading duration (AFD) are simulated
using the 6GPCM. The fitted two groups of viaduct channel
measurement data with different height and also different
scatterer heights are referred from [126]. Among them, the
biggest difference between viaduct I and viaduct II scenarios
is the difference of Rician factor K, i.e., the proportion of LoS
component, caused by the height difference of the Tx relative
to the surrounding scatterers (trees). From the simulated and
measurement results shown in Figs. 6 and 7, we can see that
the LCR at the envelope level of 5 dB below the median value
in viaduct II is a little more than twice of the value in viaduct I,
while the AFD varies slightly.

In the maritime scenario, the channel is location dependent.
So that the LoS and NLoS MPCs in the rough sea surface and
over the sea surface evaporation waveguide will appear and
disappear in the channel. The fluctuation of sea waves can
be characterized by the Pierson-Moskowitz spectrum. Other
simplified parameters are AL = BL = WE =1, p = 1,
wm,n = 0, Mn(t) = M,, Psurv(Af) =1, Ym, = 0, and
&n(p,q) = 1.

VI. FUTURE RESEARCH DIRECTIONS AND CHALLENGES

A. Effective feature selection for various 6G scenario identi-
fication

In addition to global coverage, 6G will be an integrated
intelligent network that covers all spectra and full applications.
The exploited frequency resource will move from conventional
sub-6 GHz to mmWave, THz, and optical wireless. Other
applications, such as (ultra-)massive MIMO, RIS, and IIoT,
should also be included. Therefore, scenario identification is
a challenging task for 6G. How can we fully consider and
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make better use of the relative characteristics to improve the
accuracy of scenario identification? The features commonly
used are CIR, CSI, delay PSD, kurtosis, skewness, Rician K-
factor, RMS DS/AS, etc. To handle more complex scenario
identification tasks, more general and effective features should
be proposed. It should not only use the pure environmen-
tal features, but also use features that are representative of
different frequency bands and applications. For example, the
improved PL and coherent bandwidth should be considered,
as PL is usually larger at higher frequency bands and there
exists frequency non-stationarity for a larger bandwidth. The
stationary interval of (ultra-)massive MIMO, scatterer height
and density, etc., should also be considered.

B. Efficient ML algorithm for grandiose data and propagation
channel digital map processing

With the rapid development and deployment of 6G and
the optimization of network performance, ML and digital
map are gradually received more attention in communication
scenarios. Digital map extends from simple architectural map
to new intelligent maps containing complex information [127].
Firstly, digital map evolves from static to dynamic because the
mobility with intelligent terminals. Secondly, the digital map
contains not only the conventional building environment infor-
mation, but also the intelligent terminal information or network
information, as well as the frequency band and bandwidth used
in each scenario. Generally, the new digital map has large
data volume, high complexity, and high processing cost. The
improvement of digital map model structure, data dimension,
and dynamic response will bring massive communication data
to be processed. In this case, conventional data processing
methods are no longer suitable for the new intelligent digital
map processing. Thus, new ML methods is adopted to further
extract and analyze the features of intelligent digital map for
identifying channel classification information. In addition, it is
difficult to uniformly analyze and process the physical envi-
ronment features in different communication scenarios without
standardization of digital map. Therefore, it is necessary to
establish a unified framework and standards for digital map.

C. 6G pervasive channel model and RT for adaptive channel
modeling

6G pervasive channel model also needs to be further stud-
ied and expanded in the specific segmentation scenarios of
space-air-ground-sea, and more scenario measurement data
is needed for verifying and refining. First of all, in terms
of the full frequency band, how to solve the problem of
spectrum resource congestion, research such as short-wave,
infrared and ultraviolet spectrum characteristics and compre-
hensive utilization is a future challenge. Secondly, how to
build an integrated network of space-air-ground-sea in the full
coverage scenario channels, and study global deep coverage
and channel modeling including underwater communication
and underground communication is another challenge. Thirdly,
how to study orbital angular momentum communication and
other channel characteristics analysis, scenario classification
and identification, scenario parameter adaptive matching, etc.
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is also a key challenge in the future in terms of all-application
scenario channels and the key communication technologies
spawned.

It is an important direction for RT simulation to help build-
ing high-precision channel information database, and provide
effective data supports for adaptive wireless channel modeling.
However, for mobile communication scenarios such as vehicle
networking and drones in 6G scenarios, RT simulation will
meet huge computational complexity and processing problems,
and how to effectively model channel properties to hold better
high accuracy when solving complexity problems is a certain
challenge.

The complexity of RT calculation depends on the complex-
ity of the scenario and the maximum number of reflections
allowed by the propagation mechanism. It determines the
number of intersections between rays and surfaces, which
is also the most time-consuming part of RT calculation.
Currently, preprocessing algorithms can usually be used to
reduce the number of faces and optimize the number of
rays emitted, to reduce the number of intersections. With the
development of computer hardware resources, optimization
can also be achieved through high-performance GPU parallel
acceleration. Considering the computational complexity of
large-scale complex scenarios, such as the Industrial internet
of things or mobile scenarios, high-performance computing
resources may be required, and the simulation can be deployed
on servers with GPU acceleration [128], [129].

VII. CONCLUSIONS

In this work, a comprehensive framework that integrates
scenario extension, identification, and adaptive channel mod-
eling has been proposed for 6G. By comparing scenario
categorization in existing standardization documents, it has
been shown that the scenario categorization needs to be
extended to cover most 6G scenarios. Furthermore, the sce-
nario identification technique has been comprehensively in-
vestigated. The scenario features, ML-based algorithms, and
data pre-processing methods have been carefully analyzed
and compared. The novel scenario adaptive channel modeling
has been proposed, in which the model parameter matching
for particular 6G scenarios has been illustrated. Based on
the 6GPCM, statistical properties such as IloT and HST
scenarios have been simulated. The RMS DSs, LCRs, and
AFDs of the channel model simulations have shown great
agreement with those of the channel measurement data. It has
also been indicated that the proposed scenario categorization
method can serve as an important pre-requisite for the accurate
identification of 6G communications scenarios and adaptive
modeling of 6G wireless channels. Finally, future research
directions and challenges have been given.
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Response to the Reviewers’ Comments on Paper-10T-25827-2022:
“Channel scenario extensions, identifications, and adaptive modeling for 6G
wireless communications”

The authors would like to thank the editor and all of the reviewers for their helpful and insightful
comments. We have improved the quality of the manuscript by carefully taking all the comments
into account. The modifications in this revised manuscript as well as the response to the editor’s and
reviewers’ comments are described below.

Editor:

While acknowledging the merit of this paper, the reviewers also pointed that a revision is needed to
address all comments. Say, the motivation of this survey paper should be clearer. In section 2-4. a

more detailed summarization is required. The examples of "superior algorithm proposals" in Sec.
VI-B should be more convincing.

Authors: In the revised manuscript, we have revised the paper according to all reviewers’
comments. Specifically, we have further clarified the motivation of this survey work. In Section
II-IV, we have given more detailed summarizations for scenario categorization, intelligent scenario
identification, and 6G channel modeling. In Section VI-B, we have added more convincing
descriptions about the machine learning and digital map.

Reviewer 1:

This is an interesting and timely contribution to literature on channel and propagation models. 1

have some comments on the current state of the manuscript, and they follow below, in no particular
order.

1. Sec II-B: how to make sure that the proposal covers all relevant scenarios, and that no two
scenarios are better off merged? This is a hard question., but an attempt at answering it would be
welcome.

Authors: Compared with the scenario categorization strategies proposed in other standardized
documents, this paper adopts two basic principles of comprehensive and exclusive to classify and
define all scenarios according to the physical properties of the environment from the four levels of
space, aerial, terrestrial, and maritime. The classification framework of space-air-ground-sea can
ensure that the classification framework will cover communication scenarios to the fullest extent.

In the framework of space-aerial-terrestrial-maritime classification, communication scenarios are
distinguished by physical parameters such as average height, average floor spacing, building height
fluctuation, regional LOS ratio, and indoor ratio based on building parameter standards. The
classification principle based on the physical properites of a scenario ensures that two or more

1
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scenarios are scarcely duplicated.

The differences in physical parameters of various communication scenarios lead to great
discrepancies in channel properties. Through actual channel measurement or ray-tracing simulation
verification of the channel characteristics of partial scenarios, it is ensured that the channel
properties of each scenario are clearly distinguished from each other, thus ensuring that there is
little need to merge because any two scenarios have less overlap with each other.

With the enrichment of various measured scenario data sets and 6G wireless communication
technological evolution, future communication scenario classification or distinguishment will
continue to be optimized and partial scenarios may also change for better purpose.

2. There are some general statements that need a bit of revision, for example "ML algorithms can be
categorized as supervised learning, unsupervised learning, and deep learning (DL) [61]. " This is a
clumsy statement (as deep learning is not a third type of learning w.r.t. supervision!) and I don't
think it can be found in Ref. 61.

Authors: In the revise manuscript, we have rectified relative statements as follows (see the
sentences in blue font in the 2nd paragraph and the last paragraph on the left side of Page 10):

6

L algorithms can be categorized as supervised learning, unsupervised learning, and
reinforcement learning [66], [67].”

“RL is a representative one of the paradigms and methodologies of ML, which is used to describe
and solve the problem of maximizing or achieving specific goals through learning strategies in the
interaction between agent and environment. RL can solve the problems that cannot be solved by
supervised learning methods in communication scenarios. The commonly used RL algorithm is the
model based algorithm, which optimizes and classifies communication networks by modeling the
specialized environment. Since such algorithms are highly efficient in the training process, such
intelligent methods have received more and more attention by communication communities
recently.”

[66] V. Gupta, V. K. Mishra, P. Singhal, and A. Kumar, “An overview of supervised machine
learning algorithm,” in Proc. SMART’ 2022, Moradabad, India, Dec. 2022, pp. 87--92.

3.The discussion on ML lacks elements of power consumption (important with scaling) and
explainability (important with mission-critical applications).

Authors: In the revise manuscript, we have added the corresponding contents about the discussion
of power consumption and explainability on ML as follows (see the sentences in blue font in the
2nd paragraph on Page 9):

(1) We have added contents about power consumption as follows (see the sentences in blue font in
the last paragraph on the left side of Page 12):

6

'L power consumption has an important influence on improving efficiency and optimizing the
deployment of ML algorithms. It is affected by system hardware and software, which mainly

2
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considers floating point operation (FLOPs) as a quite important measurement index for
unsupervised and supervised algorithms. Different configuration tactics for the same number of
parameters will result in different FLOPs. While for high-precision or more complex algorithms,
such as deep learning, FLOPs will go up a lot when the exponential growth in the number of system
parameters and the size of data sets [80]. However, from the perspective of the classification
application system, model simplification techniques are currently used to reduce the ML power
consumption, and the overall ML performance gain should be weighed against the power
configuration of the entire communication system.”

[80] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency of deep
convolutional neural networks on CPUs and GPUs,” in Proc. IEEE BSS’ 2016, Atlanta, USA, Oct.
2016, pp. 477--484.

(2) We have added the new contents about explainnability as follows (see the sentences in blue font
in the last paragraph on the left side of Page 12):

“Currently in the field of communication scenario classification, there is an unexplainable black
box problem in machine learning, which means that users can only see the classification results,
without understanding the reasons and processes of their decisions. It is difficult to distinguish the
clear logic with closedform expressions behind artificial intelligence, so the ML explainability has
become an urgent problem to be studied and solved necessarily [81]. Toward ML based intelligent
scenario identification like CNN and reinforcement learning, the mainstream approach to
explainability is to analyze channel impulse response (CIR) through Saliency map (importance
map), or to construct a set of simple and effective convolution filters for measuring features
changes during training process, which can be used to explain the learning mechanism of and
visualize qualitative analysis of important features.”

[81] S. Zheng and C. Ding, “A group lasso based sparse KNN classifier,” Pattern Recognition Lett.,
vol. 131, pp. 227--233, Mar. 2020.

4. 1 was not convinced with examples of "superior algorithm proposals" in Sec. VI-B; they don't
really show superiority in the sense this section implies. Also, does this section say something more
than "we need to ML better?"

Authors: In the revise manuscript, we have added the corresponding contents which show superior
algorithm proposals and ML superiority as follows (see the sentences in blue font in the 2nd
paragraph in Section VI-B on the left side of Page 20):

“With the rapid development and deployment of 6G and the optimization of network performance,
ML and digital map are gradually received more attention in communication scenarios. Digital map
extends from simple architectural maps to new intelligent maps containing complex information
[127]. Firstly, digital map evolves from static to dynamic because the mobility with intelligent
terminals. Secondly, the digital map contains not only the conventional building environment
information, but also the intelligent terminal information or network information, as well as the
frequency band and bandwidth used in each scenario. Generally, the new digital map has large

3
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data volume, high complexity, and high processing cost. The improvement of digital map model
structure, data dimension, and dynamic response will bring massive communication data to be
processed. In this case, conventional data processing methods are no longer suitable for the new
intelligent digital map processing. Thus, new ML methods is adopted to further extract and analyze
the features of intelligent digital map for identifying channel classification information. In addition,
it is difficult to uniformly analyze and process the physical environment features in different
communication scenarios without standardization of digital map. Therefore, it is necessary to
establish a unified framework and standards for digital map.”

[127] Y. Zeng and X. Xu, “Toward environment-aware 6G communications via channel knowledge
map,” IEEE Wireless Commun., vol. 28, no. 3, pp. 84--91, June 2021.

5. In Sec. VI-C, there's a comment about complexity of the deterministic RT channel. What
computational resource is required to handle this complexity?

Authors: In the revise manuscript, we have added the content about complexity of the deterministic
RT channel as follows (see the sentences in blue font in the 3rd paragraph on the right side of Page
17):

“The complexity of RT calculation depends on the complexity of the scenario and the maximum
number of reflections allowed by the propagation mechanism. It determines the number of
intersections between rays and surfaces, which is also the most time-consuming part of RT
calculation. Currently, preprocessing algorithms can usually be used to reduce the number of faces
and optimize the number of rays emitted, to reduce the number of intersections. With the
development of computer hardware resources, optimization can also be achieved through
high-performance GPU parallel acceleration. Toward the computational complexity of large-scale
complex scenarios, such as the Industrial internet of things or mobile scenarios, high-performance
computing resources may be required, and the simulation can be deployed on servers with GPU
acceleration [128], [129].”

[128] D. He, B. Ai, K. Guan, L. Wang, Z. Zhong, and T. Kiirner, “The design and applications of
high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A
Tutorial,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 10--27, Aug. 2018.

[129] Z. Yun and M. Iskander, “Ray tracing for radio propagation modeling: Principles and
applications,” IEEE Access, vol. 3, pp. 1089--1100, July 2015.

Reviewer 2:

This paper is a survey paper related to the sixth generation (6G) channel scenarios. The authors
surveyed many references in terms of scenario categorizations, identification, and channel modeling.
In addition, the authors proposed an intelligent adaptive scenario identification and channel
modeling framework.
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1. The writing has some space to be improved. For example, the abstract and introduction cannot
indicate this paper is a survey paper. The authors should enhance the writing and presentation to
improve readability.

Authors: In the revised manuscript, we have improved the paper writing accordingly to enhance
the readability. The whole content is in the form of a survey, and we give some of our own
important innovations finally. Specifically, we have revised the abstract as follows (see the
sentences in blue font in the 1nd paragraph on Page 1):

(1) We have revised the abstract as following:

“To provide customized high-quality services for all users in the sixth generation (6G) wireless
communication systems, it is fundamental to study all 6G channel scenarios and establish accurate
channel models for these scenarios correspondingly. However, the absence of comprehensive 6G
scenario categorization and the difficulties of modeling the channels for all scenarios bring huge
challenges. In this paper, we aim to give a thorough overview of channel scenarios, identification
algorithms, and intelligent channel modeling theories. First, different standardized scenario
categorization principles are reviewed. A unified and exclusive scenario categorization method is
elaborated with detailed 6G scenario definitions. Second, scenario features, feature selection
principles, machine learning based identification algorithms, as well as data pre-processing
methods are surveyed for the benefit of accurate scenario identification. Third, the intelligent
scenario adaptive channel modeling theory based on 6G pervasive channel model is specified.
Statistical properties for industrial Internet of Things and high speed train scenarios are simulated
and compared with those from measurements. Finally, future research directions and challenges are

addressed.”

(2) Further, we have added the overview contents in introduction as follows (see the sentences in
blue font in the 2nd paragraph in Section I on the right side of Page 2):

6

ence, this work investigates a series of communication scenarios definitions and classifications
delivered by standardized channel models, such as the 3GPP TR 38.901 [23] and WINNER I/l
[24]-[26], and proposes a novel scenario classification framework for 6G communications. Then,
we overview the commonly used feature extraction approaches of existing ML based communication
scenario identification methods. Furthermore, the conventional non-predictive model and ML based
predictive model are summarized. Finally, the framework of 6G adaptive channel modeling is
introduced. The future research directions and challenges are also discussed.”

2. The motivation of this survey paper is limited. Why do the authors want to provide a survey of
this field?

Authors: In the revised manuscript, we have added the motivation as follows (see the sentences in
blue font in the 1st paragraph in Section I on the right side of Page 1):

“Considering the overwhelming geographical diversities and channel propagation characteristics

5
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in 6G communication scenarios, a comprehensive understanding of the wireless propagation
environments is fundamental to extract and refine environmental features, then to construct
accurate channel models and establish reliable communication network. Therefore, it is crucial to
give a thorough clear categorization of existing 6G communication scenarios. In addition, assisted
by the introduction of high efficiency intelligent technologies, the intelligent scenario identification
should be investigated to ensure a quick access to the matching of channel statistical model
parameters and acquire the specialized channel model. The wireless communication systems can be
designed and optimized based on the acquired channel model [9].”

[9] M. Yang et al., “Machine-learning-based scenario identification using channel characteristics in
intelligent vehicular communications,” [EEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp.
3961--3974, July 2021.

3. As a survey paper, the authors should survey more related work in this field to give a more
comprehensive overview.

Authors: In the revised manuscript, we have added the latest literature and given more overview in
the revised manuscript.

(1) We have added new semi-supervised learning algorithms and identification contents of UWB
and acoustic as follows (see the sentences in blue font in the last paragraph in Section III-C on Page
10):

“In addition, semi-supervised learning, such as safe semi-supervised SVM, was widely proposed to
realize NLOS identification for indoor smartphone position and navigation based on the features
extracted from the channels [74].”

Meanwhile, more related information has been added in Table IV.

[70] J. B. Kristensen, M. Massanet Ginard, O. K. Jensen, and M. Shen, “Non-line-of-sight
identification for UWB indoor positioning systems using support vector machines,” in Proc. IEEE
WS’ 2019, Guangzhou, China, 2019, pp. 1--3.

[71] A. Kirmaz, D. S. Michalopoulos, I. Balan, and W. Gerstacker, “LOS/NLOS classification using
scenario-dependent unsupervised machine learning,” in Proc. I[EEE PIMRC’ 2021, Helsinki,
Finland, 2021, pp. 1134--1140.

[74] X. Bai, L. Zhang, T. Yang, and Z. Hu, “Semi-supervised learning based acoustic NLOS
identification for smartphone indoor positioning,” in Proc. [EEE ICSPCC’ 2019, Dalian, China,
2019, pp. 1--6.

[75] M. Zhao, Y. Yu, C. Y1, H. Wang, and S. Gao, “Machine-learning-assisted scenario classification
using large-scale fading characteristics and geographic information,” in Proc. IEEE ICCC’ 2022,
Sanshui, Foshan, China, 2022, pp. 43--48.

[76] K. Abdullah et al., “A machine learning-based technique for the classification of
indoor/outdoor cellular network clients,” in Proc. IEEE CCNC’ 2020, Las Vegas, NV, USA, 2020,

pp. 1--2.
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(2) We have added some additional remote sensing and image descriptions in Section III-D (see the
sentences in blue font in the 1st paragraph on the left side of Page 13):

“There are also ML algorithms researches on the identification of other special scenarios. For
example, ML algorithms were used in [84], such as ANN, SVM, kNN, and RF to classify land use
land cover based on remote sensing image data provided by satellites. The ensemble ML approach
combined with multi-source geographical image dataset to improve the classification accuracy of
arid regions was proposed in [85]. Hyper spectral image about studying ML based crop
identification with temporal data information for crop phenology planning was adopted in [86].
The automating road junction ML based identification using crowdsourcing on GPS transformed
digital map data were adopted in [87].”

[84] R. Saini and S. Rawat, “Land use land cover classification in remote sensing using machine
learning techniques,” in Proc. IHCSP’ 2023, BHOPAL, India, 2023, pp. 99--104.

[85] H. Du, M. Li, Y. Xu, and C. Zhou, “An ensemble learning approach for land use/land cover
classification of arid regions for climate simulation: A case study of Xinjiang, Northwest China,”
IEEE J. Sel. Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 2413--2426,
2023.

[86] R. Sharma, D. Pantola, S. D. Kalony, and R. Agarwal, “Analysis machine learning approach
and model on hyper spectral (Sentinel-2) images for land cover classification: Using SVM,” in Proc
SMART’ 2021, Moradabad, India, 2021, pp. 680--684.

[87] C. Djouvas, 1. Despotis, and C. Christodoulou, “Automating road junction identification using
crowdsourcing and machine learning on GPS transformed data,” in Proc. SMAP’ 2021, Corfu,
Greece, 2021, pp. 1--6.

(3) We have added new contents about ML-based wireless channel modeling in Section IV-B as
follows (see the sentences in blue font in the 1st paragraph on the left side of Page 15):

“In [115], the channel modeling of the vehicular visible light communication was proposed to
improve the model accuracy for pass loss, and build the channel frequency response model through
consideration of vehicle mobility and environmental effects. In [116], ML based multilayer
perceptron model was trained with statistics computed from channel realizations, to calibrate the
model parameters as a regression problem involving mapping of the channel transfer function or
impulse response. In [117], a combination of the Exponential and the Generalized Gamma
Distribution was proposed to model the underwater channel environment with great accuracy, and
built a convolutional neural network capable of estimating the parameters from received signal.”

[115] B. Turan and S. Coleri, “Machine learning based channel modeling for vehicular visible light
communication,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 9659--9672, Oct. 2021.

[116] R. Adeogun, “Calibration of stochastic radio propagation models using machine learning,”
IEEE Antennas Wireless Propag. Lett., vol. 18, no. 12, pp. 2538--2542, Dec. 2019.

[117] A. Al-Amodi, M. Masood, and M. Khan, “Underwater wireless optical communication
channel characterization using machine learning techniques,” in Proc. IEEE OGC’ 2022, Shenzhen,
China, Dec. 2022, pp. 50--54.
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1

2 4. At the end of each section 2-4, I suggest the authors provide a more detailed summarization. The
i current summarizations are not profound.

5

6 Authors: In the revised manuscript, we have given more profound and detailed summarizations at
; the end of each section 2-4 as follows:

9

10 (1) We have added categorization summary contents at the end of Section II as follows (see the
1; sentences in blue font in the 3rd paragraph on the right side of Page 7):

13

14 “To sum up, existing standardized scenario classification methods are incomplete or fuzzy, the
1 2 classification logic is not clear, and the corresponding granularity is rough. Moreover, it lacks
17 multi-scenario classification for 6G full coverage scenarios and scenario transformation. The
18 proposed classification framework gives the physical definition, new planning, and scenario
19 expansion for 6G full coverage scenarios according to environmental difference and channel
;? characteristics. Under the guidance of comprehensive coverage-architecture, the classification is
22 carried out abiding by three criteria of exclusivity, integrity, and standardization. It provides an
23 important basis for the research of 6G wireless communication scenario classification and the
;g development of channel modeling.”

26

27 (2) We have added identification summary contents at the end of Section III as follows (see the
;g sentences in blue font in the 2nd paragraph on the left side of Page 13):

30

31 “Considering that the 6G wireless communication scenarios are usually complex and the scenario
gg changes all the time, identifying the scenario type and formulating the corresponding parameter
34 optimization strategy is quite difficult and critical for wireless network optimization. The
35 conventional identification scheme relying on subjective experiences and manual decision rules has
g? gradually exposed the disadvantages of low scalability, which is difficult to ensure the identification
38 quality. The artificial intelligence algorithms can improve the scenario identification accuracy, and
39 thus increase the efficiency of wireless network optimization and positioning. In addition, it can
40 predict the channels using the multiple linear regression algorithm and provide an important
2; reference for the adaptive optimization of subsequent communication schemes. However, how to
43 reduce model complexity, training time, computing storage spaces and communication overhead
44 between devices while ensuring accuracy still needs to be studied.”

‘0

47 (3) We have added 6G modeling summary contents at the end of Section IV as follows (see the
23 sentences in blue font in the 3rd paragraph on the right side of Page 15):

?1) “The pervasive model uses a unified cluster-based geometric stochastic channel modeling method, a
52 unified channel impulse response expression, and a comprehensive consideration of the statistical
gi characteristics of 6G all-band all-scenario channels. It can be simplified to a target channel model
55 for a specific frequency band and a specific scenario by adjusting the parameters of the channel
56 model. Through the analysis of 6G universal channel model, the complex mapping relationship
;7; between channel model parameters, channel statistical characteristics and communication system
59 performance, frequency bands and scenarios, can be studied. As a unified channel model
60
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framework, it is crucial to promote 6G channel model standardization, 6G generic theory, and
system fusion construction.”

5. The explanations of equations should be improved.

Authors: In the revise manuscript, explanations of equations have been improved. The formulas of
the parameters have been explained in detail without further modification. There are a lot of
parameters involved in the model. We have added the introduction of important parameters in the
revised manuscript, but more detailed parameter descriptions can be found in the references.We
have provided the following supplementary explanations for the formula parameters in Section V.A:

“h, (t,7), the CIR between A; and A ;f at the carrier frequency f., is derived as the sum of LoS
and NLoS components, as illustrated in (11). Here, K(t) is the Rician factor at time instant t, and

the calculation of h,”; (t,t) and h, " (t,v) can be represented as (12) and (13) respectively.
F

PO (t,r) and F

s (&T) are the antenna patterns of Tx (Rx) antenna for vertical and

horizontal polarizations at corresponding carrier frequency f., respectively. «, (t) is the cross

. . . . . VH HV HH .
polarization power ratio, y is co-polar imbalance, 6, 0 and O, are initial phases

modeled as random variables uniformly distributed over (0, 2r]. Besides, F. represents Faraday

rotation referring to the rotation of the polarization plane caused by the propagation of
electromagnetic waves through the ionosphere in LEO satellite scenario, and vy, =108/ f is the

Faraday rotation angle, where f. is in GHz. Otherwise, in scenarios without considering the

influence of ionosphere, we can set y, =0. Additionally, F,, . (¢)andzt

p.m,.. (2) is the power and

qp.m,
delay of the m th ray in the n th cluster between A; and A;f at time instant t . Also,
0" and 0" denote random phase in (0, 2x], z'qu (2) is the time delay of LoS path at time instant t,
and given the speed of light c, qup (t) can be calculate as qup ()= szlllf (t)- ;l; (t)H/c =D, (1)/c,

where calculates the Frobenius norm.”

6. For different categorizations, I suggest the authors use some examples or pictures to introduce the
seminal work in each categorization.

Authors: In Fig. 2, we have given the complete classification for wireless communication scenarios.
Correspondingly, we have listed some important scenarios.

(1) We have added classification framework and principles as follows (see the sentences in blue font
in the 2nd paragraph in Section II-B on the left side of Page 5):

“Based on the three basic principles of exclusivity, integrity, and standardization, 6G
communication scenarios are classified into space-air-ground-sea,”

(2) We have added space communication scenario contents as follows (see the sentences in blue
font in the 3rd paragraph in Section II-B on the left side of Page 5):
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“A typical communication scenario in this category is the international space station, which
operates at an altitude of 379 km. Due to the long propagation link distance of satellite scenario
and the influence of meteorological conditions such as ionosphere and cloud, rain and fog [48], it
has broad coverage capability and super bandwidth connection. So the exclusivity of this kind of
scenario is ensured by the height of the scenario and the characteristics of the channels. The
hierarchical order and functional differentiation of low orbit, medium orbit, high orbit, and space
station ensure the integrity of the classification of communication scenario.”

[48] X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson. “5G from space: An overview of
3GPP non-terrestrial networks. IEEE Commun. Standards Mag., vol. 5, no. 4, pp. 147--153, Dec.
2021.

(3) We have added aerial communication scenario contents as follows (see the sentences in blue
font in the 1st paragraph in Section II-B on the right side of Page 5):

“In this category, the typical communication scenarios are drones and aircraft communications.
Considering that the aviation channel link is short, it is mainly affected by atmospheric attenuation
and other factors. The channel differences caused by different flight altitudes of aircraft are large.
The high maneuverability and arbitrary trajectory of UAVs may cause channel time-domain
non-stationary characteristics. The applications in millimeter wave and terahertz frequency bands
bring spatial-temporal sparsity. The channel model has high delay resolution under high bandwidth
conditions. Referring to the flight altitude and speed, the classification of the aerial communication
scenario is exclusive. Based on the near-earth distribution characteristics of different high-layer
scatterers in the air-to-ground channel of UAV, it can ensure the integrity of the scenario
classification. According to the correlation of large/small scale parameters between different layer
modeling multi-links, it further guarantees the standardization of scenario classification.”

(4) We have added terrestrial communication scenario contents as follows (see the sentences in blue
font in the 3rd paragraph in Section II-B on the left side of Page 7):

“Specific examples include residential, office, industrial, and commercial, etc. Among them, the
typical multi-high-rise residential is designed according to the urban family model with rich
functions and diversified structures, and shows regularity according to the regional layout. The
structure of a single-family house or villa is significantly different, and the floor length/width/height
is significantly different from that of an ordinary house. Offices in the urban core have a single
function and structure, but a relatively random layout. Considering the production process, indoor
lighting, and complex architecture used to facilitate the passage of a variety of lifting and
transportation equipment, industrial buildings generally use multi-span structures with large length
and width. Commercial buildings can be divided into shopping malls, supermarkets, hotels, office
buildings, and exhibition halls according to the function. The basestation is generally located
outdoor, and the communication scenario needs to consider the moving process from outdoor to
indoor scenario. The indoor scenario environment is usually closed and the signal can be reflected
repeatedly. The outdoor environment is relatively open, the coverage area is wide, the propagation
loss is large, and various scatters in the environment can bring obvious multipath effects. The
exclusivity of the terrestrial classification is ensured by the average height of the building, the

10
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average floor spacing, the height fluctuation of the building, the regional LOS proportion, and the
indoor proportion. The structure is divided into indoor and outdoor, and the integrity of the
scenario classification is achieved by further refinement combined with functions. Based on the
logical framework of 3GPP TR 38.901, it is extended to ensure the standardization of scenario
classification.”

(5) We have added maritime communication scenario contents as follows (see the sentences in blue
font in the 1st paragraph in Section II-B on the right side of Page 7):

“Above the sea surface, there are ports and shoreline on the sea. The layout of the port is similar to
the residence and industry. The shoreline structure is usually narrow and long. There are certain
differences between two scenarios in terms of structure. The underwater acoustic channels can be
divided into shallow sea area (<100 m) communication scenario and deep sea area (=100 m)
communication scenario according to the depth of the water area [49]. Due to changes in the
physical properties of sea water such as depth, salinity and temperature, the propagation properties
of sound waves in ocean communication are different in different depths. In contrast, the quality of
underwater acoustic channels in deep waters is better. In shallow waters, sound waves can be
reflected and scattered by the seabed and sea surface during propagation, resulting in a strong
multipath effect at the receiver. In addition, compared with the ultra-high propagation speed of
electromagnetic waves in ground communication, the transmission speed of underwater acoustic
waves is 1500 m/s, resulting in a very large Doppler effect at the receiver. The classification of
maritime scenarios from different physical depth layers and transmission speeds can ensure the
exclusivity of this type of scenario. The classification from above and below the water surface and
the water bank can guarantee the integrity of scenario classification.”

[49] M. Domingo, “Overview of channel models for underwater wireless communication networks,”
Physical Commun., vol. 1, no. 3, pp. 163--182, Sept. 2008.

7. As for future directions, it should be enhanced. The authors should provide more detailed and
valuable directions, which can help the researchers in this field find inspiration.

Authors: In the revised manuscript, we have added the new future research direction.

(1) The contents about ML algorithm and channel digital map of VI-B have been modified as
follows (see the sentences in blue font in the 2nd paragraph in Section VI-B on the left side of Page
20):

“With the rapid development and deployment of 6G and the optimization of network performance,
ML and digital map are gradually received more attention in communication scenarios. Digital map
extends from simple architectural maps to new intelligent maps containing complex information
[127]. Firstly, digital map evolves from static to dynamic because the mobility with intelligent
terminals. Secondly, the digital map contains not only the conventional building environment
information, but also the intelligent terminal information or network information, as well as the
frequency band and bandwidth used in each scenario. Generally, the new digital map has large
data volume, high complexity, and high processing cost. The improvement of digital map model

11
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structure, data dimension, and dynamic response will bring massive communication data to be
processed. In this case, conventional data processing methods are no longer suitable for the new
intelligent digital map processing. Thus, new ML methods is adopted to further extract and analyze
the features of intelligent digital map for identifying channel classification information. In addition,
it is difficult to uniformly analyze and process the physical environment features in different
communication scenarios without standardization of digital map. Therefore, it is necessary to
establish a unified framework and standards for digital map.”

[127] Y. Zeng and X. Xu, “Toward environment-aware 6G communications via channel knowledge
map,” IEEE Wireless Commun., vol. 28, no. 3, pp. 84--91, June 2021.

(2) The contents about 6G pervasive channel model have been modified as follows (see the
sentences in blue font in the 1st paragraph in Section VI-C on the left side of Page 20):

“6G pervasive channel model also needs to be further studied and expanded in the specific
segmentation scenarios of space-air-ground-sea, and more scenario measurement data is needed
for verifying and refining. First of all, in terms of the full frequency band, how to solve the problem
of spectrum resource congestion, research such as short-wave, infrared and ultraviolet spectrum
characteristics and comprehensive utilization is a future challenge. Secondly, how to build an
integrated network of space-air-ground-sea in the full coverage scenario channels, and study global
deep coverage and channel modeling including underwater communication and underground
communication is another challenge. Thirdly, how to study orbital angular momentum
communication and other channel characteristics analysis, scenario classification and
identification, scenario parameter adaptive matching, etc. is also a key challenge in the future in
terms of all-application scenario channels and the key communication technologies spawned.”

(3) The contents about RT have been modified as follows (see the sentences in blue font in the 1st
paragraph in Section VI-C on the right side of Page 20):

“It is an important direction for RT simulation to help building high-precision channel information
database, and provide effective data supports for adaptive wireless channel modeling. However, for
mobile communication scenarios such as vehicle networking and drones in 6G scenarios, RT
simulation will meet huge computational complexity and processing problems, and how to
effectively model channel properties to hold better high accuracy when solving complexity problems
is a certain challenge.

The complexity of RT calculation depends on the complexity of the scenario and the maximum
number of reflections allowed by the propagation mechanism. It determines the number of
intersections between rays and surfaces, which is also the most time-consuming part of RT
calculation. Currently, preprocessing algorithms can usually be used to reduce the number of faces
and optimize the number of rays emitted, to reduce the number of intersections. With the
development of computer hardware resources, optimization can also be achieved through
high-performance GPU parallel acceleration. Toward the computational complexity of large-scale
complex scenarios, such as the Industrial internet of things or mobile scenarios, high-performance
computing resources may be required, and the simulation can be deployed on servers with GPU

12
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acceleration [128], [129]."

[128] D. He, B. Ai, K. Guan, L. Wang, Z. Zhong, and T. Krner, “The design and applications of
high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A
Tutorial,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 10-27, Aug. 2018.

[129] Z. Yun and M. Iskander, “Ray tracing for radio propagation modeling: Principles and
applications,” IEEE Access, vol. 3, pp. 1089—1100, July 2015.

8. I suggest the authors give a table to summarize the notations that this paper used.

Authors: In the revised manuscript, the corresponding table has been added to summarize the
notations (see the contents in blue font in Table VI on Page 17).

TABLE VI
DEFINITIONS OF SIGNIFICANT PARAMETERS.

Parameters Definitions
Ag, Af;' The pth Tx antenna element and gth Rx antenna element
ér,0R Antenna spacings of Tx and Rx arrays
Cf?, (G54 The first-bounce and last-bounce clusters of nth path

T (#), v (t), A (£),v*n (t) | Speeds of the Tx, Rx, cluster C22, and cluster C'Z at time ¢

ok (1), ok (), ryﬁ” (t),ai" (t)] Azimuth angles of movements of the Tx, Rx, cluster C/, and cluster CZ at time ¢

af(t), aR(t), ag"(t),ugn (t)| Elevation angles of movements of the Tx, Rx, cluster C;', and cluster CZ at time ¢

¢)£ P Azimuth angle of depar}:lre (AAoD), elevation angle of departure (EAoD) from AgT) to
Mn? 7B M the mith scatterer in C5") at initial time

azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA) from AgR) to

¢)R ,gbR . Z S s
A;mn’ TE,mn the mith scatterer in C$Z) at initial time

G i bE PR PR AA0D, EAoD, AAoA, and EAoA from AT to AT at initial time

d%n, dfin Distance from A?(R) to the mth scatterer in C’;? )3t initial time
dgmn (&) df;m“ (t) Distance from A?(R) to the mth scatterer in C;{:‘(Z)at time ¢
&Emn (®); é?fm“ (t) Unit vector from AF{U?’) to the mth scatterer in Co %) at time ¢t
D, Dgp(t) Distance from A7 to Af at initial time and time 7', respectively
f}é’qp(t), fD,qpmn (t) Doppler shift from Ag to Af of the LOS path and the NLOS path at time ¢
Pyp,m, (), Tgp,mn (t) Power and delay of the ray from Az; through the mith scatterer in C/3 and the mith scatterer in CZ to Af‘ at time ¢
Fo),vs Fp(),H Antenna patterns of A;{(AQR) for vertical and horizontal polarizations

9. All pictures are unclear, the authors should re-produce them to improve the quality.

Authors: In the revised manuscript, we have improved the quality of all the pictures.

10. There are some grammatical errors. I suggest the authors proofread the manuscript carefully to
improve the quality further.

Authors: In the revised manuscript, we have carefully proofread and modified the contents.
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