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Abstract— Progressive deep image compression (DIC) with
hybrid contexts is an under-investigated problem that aims to
jointly maximize the utility of a compressed image for multiple
contexts or tasks under variable rates. In this paper, we con-
sider the contexts of image reconstruction and classification.
We propose a DIC framework, called residual-enhanced mask-
based progressive generative coding (RMPGC), designed for
explicit control of the performance within the rate-distortion-
classification-perception (RDCP) trade-off. Three independent
mechanisms are introduced to yield a semantically structured
latent representation that can support parameterized control
of rate and context adaptation. Experimental results show that
the proposed RMPGC outperforms a benchmark DIC scheme
using the same generative adversarial nets (GANs) backbone
in all six metrics related to classification, distortion, and per-
ception. Moreover, RMPGC is a flexible framework that can
be applied to different neural network backbones. Some typical
implementations are given and shown to outperform the classic
BPG codec and four state-of-the-art DIC schemes in classification
and perception metrics, with a slight degradation in distortion
metrics. Our proposal of a nonlinear-neural-coded and richly
structured latent space makes the proposed DIC scheme well
suited for image compression in wireless communications, multi-
user broadcasting, and multi-tasking applications.
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I. INTRODUCTION

IMAGE compression is vital to the digital and green society,
as transmitting visual information consumes a major part of

the telecommunication resources. In many visual applications,
the reconstruction of a compressed image is an interme-
diate step within a specific, high-level task. For example,
in machine-oriented tasks such as target recognition, the goal
is to locate and track a target in a sequence of images with
the best possible accuracy. In audiovisual production, the goal
is to produce perceptually authentic and pleasing images.
In essence, taking the application context into account allows
one to prioritize the information that is preserved during the
compression and transmission of an image. This motivates
the development of task-oriented and semantic-aware image
compression.

Deep image compression (DIC) [1], [2] has recently
attracted significant research attention as a new paradigm to
compress images using deep neural network (DNN). A major
advantage of DIC over conventional schemes lies in its
potential to achieve very low-rate compression under certain
contexts. By “context”, we mean how an image is used
by its recipient for a specific purpose, e.g., visual record-
ing/surveillance, target detection, or entertainment. Similar to
conventional image compression standards [3] such as JPEG,
BPG, and JPEG2000, the DIC framework is composed by
structured modules such as latent representation, quantization,
rate estimation, entropy codec, and reconstruction [4]. A key
advantage of DIC over traditional compression schemes lies
in its flexibility of optimizing latent representations accord-
ing to the application context. More specifically, traditional
image compression relies on expert-crafted latent representa-
tion modules, which are difficult to adapt to different contexts.
In contrast, DIC can effectively learn latent features that are
most important for a given task/context and, thus, preserve
them better during lossy compression [5].

In real-time communications, a DIC codec is required
to quickly adapt to varying channel capacities (i.e., rate-
adaptation) and diverse contextual feedback (i.e., context adap-
tation). While rate adaptation can be implemented either within
the latent representation [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16] or within the quantization [17], [18], [19], [20],
[21], [22] modules in a DIC, context adaptation is mainly
implemented within the former module. This paper focuses
on the latent representation module for two reasons. First,
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rate and context adaptations can be jointly optimized; second,
representation learning benefits tremendously from using deep
learning techniques [23].

Compared with classic image compression schemes, a major
disadvantage of DIC is the high computational power required
to train a DNN-based codec, which may include millions of
parameters. The computational challenge becomes particularly
prominent in scenarios that require fast adaptation. The choice
of the DIC architecture is thus critical to address such a
challenge. Depending on how the latent representation adapts
to rate and contextual change, we distinguish two types of
DIC architectures in the literature: encoder-based [6], [7],
[8], [9] and latent-based [10], [11], [12], [13], [14], [15],
[16]. The former encodes a different representation each time
the feedback condition changes, while the latter encodes a
structured latent representation, which can be used later for
fast adaptation to various feedback conditions. The “encode
once and for all” property of the latent-based architecture
avoids multiple calls to the DNN encoder function, making
it much more attractive for scenarios with fading wireless
channels [24], [25], multi-user broadcasting, and multi-tasking
applications. In this paper, we focus on latent-based DIC.

A. Problem Statement

While most works on DIC have focused on single context,
usually either image reconstruction [4], [26] or image classi-
fication [5], [27], our goal is to design compression schemes
that work in hybrid contexts. Image compression in hybrid
contexts should enable the reconstructed image to obtain
both high visual quality and high performance in downstream
artificial intelligence (AI) tasks. The schemes should also be
rate adaptive, in the sense that compression at different rates
should require no retraining. Moreover, the DIC should have
flexible and configurable mechanisms to realize progressive
transitions between different contextual goals in a resource-
limited scenario.

B. Contributions

To our best knowledge, the problem of latent-based rate
adaptive DIC for hybrid contexts has not yet been studied
in the literature. This is a non-trivial problem because a
careful design is required to match the high-level contextual
goals with low-level progressive coding mechanisms. More
importantly, the encoder should be guided to learn a structured
latent representation that is effective for both rate and context
adaptation. Specifically, the contributions of this paper are as
follows.

First, our paper is among the first to state and study the
problem of learning a communication-friendly latent repre-
sentation for progressive DIC. We introduce a DIC scheme
called residual-enhanced mask-based progressive generative
coding (RMPGC), which combines a spatial-mask mechanism,
residual-based layering, and contextual importance estimators
in the latent space. To our best knowledge, RMPGC yields
the richest latent structure in the DIC literature to date. Such
a structure can provide state-of-the-art flexibility to encode
an image with variable bit rates and different contextual
goals. Experiments show that using the same generative DNN

backbone, RMPGC outperforms a benchmark DIC scheme
called variable rate generative coding (VRGC) [16] in all
tested metrics related to classification accuracy, reconstruction
fidelity, and perceptual quality. Moreover, RMPGC is a flexible
framework that can be applied to different DNN backbones.
We illustrate this by applying RMPGC to an advanced DNN
backbone. The resulting scheme outperforms the classic BPG
codec and four state-of-the-art DIC schemes in classification
and perception metrics, however, with a slight degradation in
distortion metrics. This indicates the value of the proposed
latent space design as a general and transferable technique.

Second, our paper makes an initial attempt to systemat-
ically investigate the rate-distortion-classification-perception
(RDCP) trade-off, which is fundamental in hybrid context
DIC. We apply a model-based approach to investigate the
RDCP trade-off empirically. Given the proposed DIC model,
we reduce the problem of finding optimal encoder-decoder
pairs to finding optimal hyper-parameters in our model.
We then propose and investigate three independent approaches
for parameterized control of the RDCP trade-off: loss func-
tion weighting, spatial mask blending, and layered rate
splitting. Empirical studies show that there are regions in
the hyper-parameter space where distortion and classifica-
tion metrics can be jointly improved. This suggests that
the strict distortion-classification-perception (DCP) trade-off
proved in [28] is not applicable to DIC due to a critical change
of problem formulation, which further involves encoder opti-
mization and rate constraint. Studies show that the proposed
RMPGC codecs have a hyper-parameter space that is effective
to maneuver the RDCP trade-off.

C. Organization

The remainder of this paper is organized as follows. Related
work is introduced in Section II. Section III discusses the
RDCP trade-off and provides a high-level description of our
approach. Section IV introduces the proposed DIC methods
and implementations, followed by experimental results and
discussions in Section V. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

Table I provides an overview of existing studies on DIC
and positions our paper in the literature. There is a wealth of
literature for reconstruction-oriented image coding, therefore
only representative and recent works are listed. Moreover, rate-
adaptive coding solely for the context of classification does
not attract much research attention because the code rate is
already very low. A brief review of the related literature is
given below.

A. Single Context DIC

The most widely-studied context is image reconstruction,
where DIC is optimized for pixel-level mean-squared error
(MSE) [29], [30], [31], [32]. This is a general-purpose context
that aims to maximize the overall image fidelity and treats
each pixel as equally important. For image classification (by
machines), it has been shown that DIC can obtain extremely
low rates by learning to encode the most discriminative
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TABLE I

SUMMARY OF RELATED DIC LITERATURE

features that contribute most to classification accuracy [27].
The classification-related information is often called semantics
of an image [33]. For the context of image perception, low
rates are shown to be attainable by DIC with generative
models [26]. Popular generative models include generative
adversarial nets (GANs) [34] and variational auto-encoders
(VAEs) [35]. In particular, GANs [36], [37], [38], [39] have
emerged as a promising framework for image compression
to produce perceptually realistic images with sharp features.
The potential of GAN-based image compression goes beyond
improving image perception, as studies show that GANs can
learn latent representations that are disentangled and semanti-
cally editable [40], [41].

B. Hybrid Context DIC

DIC with hybrid contexts is an important research area that
can maximize the potential utility of a compressed image. For
example, in many target recognition applications, only encod-
ing abstract features for image classification (e.g., [5], [42]) is
insufficient. The receiver should also be able to reconstruct the
image when necessary, so that it can be inspected by humans
or used by other algorithms. Different contexts generally
require different, and often competing, strategies in the lossy
compression process when deciding on the priority of the
information to be encoded. Particularly, a common challenge
in many applications is to strike a balance between image
classification and reconstruction. Some pioneering works of
hybrid-context DIC were introduced in [43], [44], [45] to
jointly optimize the classification accuracy and reconstruc-
tion fidelity. The class activation mapping (CAM) [46], [47],
[48], [49], [50], which identifies class-specific image regions,
was adopted in [45], [51], [9], and [8] to assign more bits
to semantically-salient areas. The GAN-based compression
framework was initially introduced in [9] for hybrid-context
DIC.

C. Rate-Adaptive DIC

Extending fixed-rate DICs into rate-adaptive DICs is not
a trivial task. This is because, in fixed-rate DIC, each rate
is associated with a different DNN model [10]. Pipelining
multiple DNN models for variable rates is cumbersome and
clearly undesirable. The goal of rate-adaptive DIC is to build
a compact and unified DNN model that has an explicit
mechanism for rate control. Rate-adaptive DICs can be fur-
ther classified into two paradigms: quantization-based and
representation-based.

Fig. 1. Two architectures of rate adaptive DIC: (a) encoder-based architecture;
(b) latent-based architecture.

A straightforward approach to building rate-adaptive DIC
is via quantization. Adaptive quantization techniques, widely
used in conventional source coding, have been modified and
adapted for DIC. The DICs proposed in [17] and [18] scale
the latent vector representation with different coefficients, such
that the representation vectors fall into different quantiza-
tion intervals. Similarly, [19], [20] proposed to manipulate
the Lagrange multiplier and quantization intervals to obtain
variable rates. A technique called nested quantization was
introduced in [21] and [22]. Quantization-based rate adaptation
techniques, however, do not promote in-depth optimization
of the latent presentation and cannot support context-aware
adaptation in general.

D. Rate-and-Context Adaptive DIC

For a DIC to be jointly adaptive in terms of rate and context,
the representation-based DIC paradigm is preferred. As illus-
trated in Fig. 1, there are two basic architectures for rate-
and-context adaptive DIC: encoder-based and latent-based.
The encoder-based architecture has recently been extended
to address the hybrid-context problem [8], [9]. The approach
therein is closely related to the well-established region-of-
interest (ROI) compression methods. The drawback of this
approach is that a new latent representation should be coded
each time the rate or context condition changes, therefore
adaption brings extra costs in terms of computational load and
processing delay.

Our paper focuses on the latent-based DIC architecture [10],
[11], [12], [13], [14], [15], [16], which encodes a structured
latent representation once. Adaptation to rate and context can
be achieved by manipulating data in the structured latent
space. Latent-based DIC can be categorized into two types:
layer-based and spatial mask-based. The first type [10], [11],
[12], [13], [14], [15] utilizes residual networks to transform
the original image into a layered latent vector with ordered
dependency. Rate variation is then achieved by adjusting the
number of layers for transmission. The second type [16]
exploits the redundancy of the latent representation in different
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spatial channels. Spatial masks are then used to modulate the
channels given a target rate. However, all these studies on
latent-based DIC are restricted to a single type of context:
image reconstruction. To our best knowledge, the problem of
joint rate-and-context adaptation for multiple contexts has not
been studied for latent-based DIC.

III. GOAL AND INTUITION OF PROGRESSIVE DIC DESIGN

A. Communication-Friendly Latent Representation for DIC

One goal of this paper is to promote a research direction
called communication-friendly latent representation learning,
which lies in the intersection of the fields of communication
engineering and neural representation learning [52]. The term
communication-friendly has two implications. First, it means
the latent representations should facilitate the encapsulation of
contextually-prioritized information into separate data packets,
such that contextual priority and transmission priority can
be aligned. This is related to the effectiveness of end-to-end
communications. Second, it means the decoding of latent rep-
resentations should be robust to bit errors and lossy channels.
This is a reliability problem. In this paper, we mainly focus
on the first aspect, i.e., effectiveness.

Fig. 2 illustrates the rationale of different types of
communication-friendly coding. Latent-based DIC can be
classified into two types: variable-rate encoding [17], [18],
[19], [20] and compositional encoding [13], [14], [15], [16],
[21], [22], [53]. In variable-rate encoding, the encoder gener-
ates latent vectors (denoted as Yn in Fig. 2) were designed
to be received integrally by the decoder. Such encoding
schemes [17], [18], [19], [20] are mainly obtained by applying
different quantization techniques to the latent vector. The
emphasis of these techniques is then on quantization, not on
the structure of the latent representation.

Compositional coding, in contrast, focuses on designing
structured latent space vectors. A latent vector is composed of
a hierarchy of subvectors Zn, each of which is characterized
by its own data rate, dependence on other subvectors, and
relative importance to different contextual goals. In other
words, an image is represented into small pieces of interrelated
data. This coding paradigm typically yields incremental per-
formance when more pieces of data are available for decoding.

Compositional encoding can be further categorized into dif-
ferent types. If the data pieces Zn have homogeneous impor-
tance, we have multiple description coding [53]. On the other
hand, if the data pieces have ordered importance, we have
progressive coding (in a wide sense). Based on whether a data
piece relies on other data pieces for decoding, we can further
distinguish two types of progressive coding: in layered (e.g.,
residual-based) image representation [13], [14], [15], [21],
[22], there are strict dependencies among the latent subvectors,
with the higher-level subvectors depending on the decoding
of the lower-level ones. The second type does not have such
a dependency, but still marks different data pieces for their
contextual importance [16].

Our paper falls within the scope of progressive DIC, which
can bring a number of benefits to context-aware commu-
nications. First, from the perspective of source coding, the

Fig. 2. Classification of latent-based variable-rate DIC schemes and illus-
tration of their rate adaptation mechanisms (Zi denotes different pieces of
data after encoding, Ri denotes different rates of data packet encapsulation,
V (Zi) is a function that marks the importance of data piece Zi with respect
to certain context).

latent representation can be designed to adapt to different
contextual goals. This means contextually-relevant information
is better preserved in lossy compression. Second, from the
perspective of reliable transmission, the source and channel
coding can be jointly optimized by carefully matching the
source importance with different tiers of channel coding.
This means contextually-relevant information is better pro-
tected against lossy channels. Finally, from the perspective of
transmission delay, data pieces with higher importance have
higher priority in streaming or packet scheduling. This means
the perceived transmission delay can be reduced. In short,
a compositional and ordered latent presentation in progressive
DIC is communication-friendly.

B. The RDCP Trade-Off

The existence of a distortion-classification/perception trade-
off is well-known in image processing. A previous theoretical
study in [28] established a strict DCP trade-off. We first clarify
that such a conclusion does not apply to DIC because only
decoder optimization was considered therein (see Eqn. (7)
in [28]). In essence, [28] proved that once the latent vector
is determined, there is a fundamental trade-off among DCP in
the decoding process. This is because the degrees of freedom
in designing the latent space are ignored.

Unlike the optimization problem formulated in [28], DIC
involves joint optimization of the encoder and decoder. Fur-
thermore, in DIC, the encoding rate is expected to have a
global impact on DCP metrics. Thus, if besides distortion,
classification, and perception, we take into account the encod-
ing rate, we have an RDCP trade-off problem, which not only
generalizes the DCP trade-off studied in [28], but also the clas-
sical rate-distortion (RD) trade-off in lossy compression [54].
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C. Assumptions and High-Level Approach

Navigating the optimal boundary of the RDCP trade-off
entails searching for optimal encoder-decoder pairs, which
is a difficult problem. To make an empirical study feasible,
we make two simplifying assumptions. First, we use a model-
based approach, so that the original optimization problem is
reduced to searching for optimal parameters in the proposed
DIC model. We will show later that our model facilitates
a structured search of the feasible space. Second, we note
that achieving high perceptual quality alone (measured as
the divergence from the natural image distribution) does not
seem to impose any rate requirements. As a result, when
considering bit rate allocation policies, we will focus on the
trade-off between distortion and classification. In summary,
our methodology for exploring the RDCP trade-off space
consists of three steps: 1) choosing an encoding rate R;
2) using some hyper-parameters to generate models with
different rate splitting policies between distortion and clas-
sification; 3) training DNN models with weighted loss related
to DCP.

From a practical perspective, our goal is to navigate
the RDCP trade-off via a parameterized model. Ideally, the
semantically-salient and/or reconstruction-demanding areas in
the image should be represented and encoded with higher
priority and more bits. The remaining areas, which are contex-
tually less important, may suffer from high distortion. A GAN
is then used to counterbalance such a distortion by producing
perceptually authentic images.

D. Framework and Design Intuitions

Fig. 3 shows the framework of our proposed progressive
DIC scheme for hybrid contexts. The framework consists of
three modules: a semantics analysis module, a GAN-based
image compression module, and, within it, an adaptive bit
allocation module. The GAN-based DIC enables reconstructed
images to have higher perception quality, leveraging the ability
of the GAN to match the statistics of the reconstructed image
to the input image. The semantics analysis module classifies
the input image and uses CAM to get the input image’s
semantic importance heatmap corresponding to the predicted
class. Then, the obtained importance heatmap is resized to
the same size as the latent vector and defined as the semantic
importance map (SIM). The encoder of the GAN-based image
compression module transforms the input image into a latent
vector, which can interact with SIM to enable semantics-aware
DNN training. Moreover, during compression, a map called
latent vector complexity map (LCM) is generated according to
the latent vector. The LCM is calculated as the variance vector
of the latent vector/tensor along the channel dimension. Based
on the SIM, LCM, and target rate, the bit allocation module
generates a binary mask, which is then applied to the latent
vector. Finally, the latent vector is quantized, concatenated
with the mask, and converted into bit streams. In the decoder,
the latent vector and mask are recovered from bit streams and
then jointly used to reconstruct the image.

We note that the resizing procedure to obtain SIM is
essentially an approximation to an ideal function that can

Fig. 3. Framework of the proposed progressive DIC scheme.

mark the semantic importance of each entry in the latent
vector. As we will show later, this approximation is effective
in practice for two reasons. First, due to the spatial invariant
property of the convolutional neural network (CNN) [23],
[56], the latent vector retains the spatial characteristics of the
original image. Therefore, much of the semantic importance
knowledge revealed by the heatmap can be transferred to the
latent vector space by resizing operation. Second, during DNN
training, the SIM is used as a conditional input to the generator
and discriminator in GAN. This will encourage the network
to learn to encode semantic salient information according to
SIM.

For concreteness, we focus on two contextual goals:
image classification and reconstruction. To achieve progressive
behavior in terms of both bit rates and performance on
these context, we introduce three different mechanisms in our
design. The first mechanism consists of a suitable loss function
for DNN training. This has a global effect to obtain two
contextual goals. The second mechanism applies spatial masks
to the image as a visual attention mechanism. This yields
explicit progressive behavior when combined with different
bit allocation strategies. The third mechanism relies on layered
multi-scale representation to strike a balance between the two
contextual goals of image reconstruction and classification.
The rational for these three mechanisms are explained below.

1) Loss Function Design and Semantic Feature Matching:
Our GAN-based image compression network consists of an
encoder E, a quantizer Q, a decoder G (in GAN-based DIC,
the generator acts as a decoder), a discriminator D, and a rate-
distortion formulation. The encoder compresses an image x ∈
R

H×W×3 into the latent vector z, which is in turn quantized
to ẑ and sent to the decoder to be reconstructed as image y.
In the training stage, x and y are input to the discriminator to
calculate the discriminator loss. The input image is compressed
by a factor of K to a latent vector with size H

K × W
K × C,

where H and W denote the input image’s height and width,
respectively, and C is the number of channels of the latent
vector.

The conventional loss functions used in GAN-based com-
pression schemes include the MSE loss and the GAN loss.
To encourage the encoding of semantic information into the
latent representation, we add to the loss function a semantic
feature matching (SFM) term LSFM, which measures the
matching degree between the features extracted from the
original and recovered image. Therefore, the distortion term
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Fig. 4. Illustration of spatial mask-based bit allocation strategies. The white
dots in the mask indicate areas where more bits are allocated; the first row
has a higher rate than the second row.

L(x, G(ẑ)) used for DNN model training includes three
loss functions: LSFM, LMSE, and LGAN, which correspond
to metrics for classification, reconstruction, and perception,
respectively. The SFM loss is

LSFM =
1

HξWξCξ

Hξ∑
i=1

Wξ∑
j=1

Cξ∑
k=1

‖ ξ(x)i,j,k − ξ(y)i,j,k ‖2 ,

(1)

where ξ(·) is a pre-trained feature extractor in the semantics
analysis network. Here, Hξ × Wξ × Cξ is the size of the
feature extracted from x and y.

2) Spatial Mask and Bit Allocation: One way to achieve
progressive encoding is to apply masks to the latent vector.
To highlight the fact that the latent vector typically preserves
the spatial structure of the original image, we call any mask
applied to the latent vector a spatial mask. Different masks
can be generated according to different contextual goals.
As previously explained with Fig. 3, the semantics analysis
module outputs a semantics importance map (SIM), which
indicates the semantic importance of each element in the
latent vector. The SIM is essentially a spatial mask optimized
for image classification. On the other hand, the LCM, which
measures (or captures) the entropy or complexity of a spatial
region, is essential for image reconstruction.

Fig. 4 illustrates the difference between SIM and LCM
generated from the same image, as well as their impact on
the reconstructed image. We can see that SIM focuses on the
cat head, which contains the relevant information for classifi-
cation, but LCM focuses on the flower background and texture,
which are more important for reconstruction. Moreover, SIM
and LCM can be blended to yield a certain trade-off between
image classification and reconstruction. Once the spatial mask
is complemented by a bit allocation module that assigns bits
according to values in the mask, we can have a progressive
encoding mechanism with explicit behavior.

3) Residual-Based Layered Representation: As illustrated
in Fig. 4, given a latent representation without layered struc-
ture, the spatial mask approach tends to yield tunnel-visioned
images at low encoding rates. To overcome this drawback,
we adopt a residual-based approach to produce a multi-scale
latent vector with a layered structure. As shown in the left
column of Fig. 5, multiple layers can be progressively stacked
in the latent space. Each upper layer can be seen as a residual
solution between a coarser and a finer scale [55]. As a result,

Fig. 5. Illustration of the latent representations of mask-based and/or residual-
based DIC schemes. The encoding rate increases progressively from the first
row to the third row. In the residual-based DIC scheme, extra available bits
are used to add more layers in the latent space. In the spatial mask-based DIC
scheme, extra bits are used to better encode spatially important regions.

the bottom layers are used to reconstruct an approximation
of the original image, while the addition of each upper
layer delivers gradual refinements to the image. However, the
residual-based approach is applied to the entire image without
spatial attention.

In this paper, we propose to unify the layered and
spatial-masking approaches to yield the RMPGC. The layering
stacks in RMPCG are further partitioned into base layers and
enhance layers. This partition is guided by a hyper-parameter
Cb, which specifies how many lower layers are taken as the
base layer. A single spatial mask is then applied to the enhance
layers (upper layers) of the latent representation, while the
base layers are kept intact (i.e., not subject to the spatial
mask). We note that such a partition implies a two-phase rate
allocation strategy: the first phase is to allocate a minimum
rate to the base layer using hyper-parameter Cb, followed by
the second phase of finer-grain rate allocation using spatial
masks.

The above partition is a practical and deliberate simpli-
fication of a multi-level layer-mask blending policy, which
assigns a different spatial mask to different layers. Such a
multi-level policy is more flexible in theory, but suffers from
two critical drawbacks. First, the DIC model is difficult to
train and converge. Second, the need to transmit multiple
masks as side-information will result in significant overheads.
Possible extensions to a multi-level RMPGC are left for future
work. Moreover, we remark that the three-dimensional latent
structure of RMPGC is different from the structure illustrated
in [10], which uses multi-level quantization instead of spatial
attention.

4) Parameters for Rate Control: Based on the above pro-
posed DIC design, the encoded bit rate after latent represen-
tation and quantization (and before applying lossless adaptive
arithmetic coding) is controlled by a number of parameters.
First, there are some hyper-parameters that jointly determine
the range of encoding rates, including the downsampling rates
K of the original image (which decides the length H/K
and width W/K of the 3D latent space as illustrated in
Fig. 9), the number of channels C in the latent vector (which
decides the height of the 3D latent space), the base layer
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partition parameter Cb, and the quantization level L. These
hyper-parameters are decided before training a DIC model to
bound the range of encoding rates to be

Rmin = CbHWK−2 log2 L, (2)

Rmax = CHWK−2 log2 L. (3)

Within this range, the previously introduced spatial masking
techniques are used to achieve rate transitions with a minimum
step of (C − Cb) log2 L bits. We note that the above rate
calculations are approximations that do not take into account
the signaling overheads used to encode mask information.

Within our proposed framework, the above three progressive
mechanisms can be applied separately or jointly to yield dif-
ferent implementations of progressive DIC schemes. We will
subsequently focus on two representative DIC implementa-
tions: mask-based progressive generative coding (MPGC) and
RMPGC. The latter can be seen as a generalization of the
former.

IV. IMPLEMENTATIONS OF THE PROPOSED

PROGRESSIVE DIC

A. The Generative Compression Network

In our proposed framework, a least square GAN
(LSGAN) [57] is adopted as the generative compression
network. During training, we use the multi-scale discrimi-
nator [58]. The multi-scale discriminator and generator are
trained in an alternating manner. The discriminator is trained
with the following objective function

LD = min
D1,D2,D3

Ex{
3∑

k=1

[(Dk(x) − 1)2 + (Dk(G(ẑ))2]}, (4)

where Ex is the empirical mean over a batch, and Dk is the
kth scalar discriminator.

Following the discriminator training, the encoder and
decoder are trained to solve the rate-distortion optimization
problem given by

min
E,G

Ex{L(x, G(Q(E(x)))) + λRR(ẑ)}, (5)

where R(ẑ) is the rate of the original image’s latent rep-
resentation, which will be explained below. The distortion
term L(x, G(Q(E(x)))) is the weighted sum of the MSE loss
LMSE and GAN loss LGAN [58], which are respectively defined
as

LMSE =
1

3HW

H∑
i=1

W∑
j=1

3∑
k=1

‖ xi,j,k − yi,j,k ‖2 , (6)

LGAN =
3∑

k=1

(Dk(G(ẑ)) − 1)2. (7)

The final distortion loss L(x, G(ẑ)) is given by the weighted
sum of these loss terms, with the weights indicating competing
priorities of different contextual goals:

L(x, G(ẑ))=min
E,G

Ex{λSFMLSFM+λGANLGAN + λMSELMSE},

(8)

Fig. 6. The framework of the mask-based progressive compression algorithm.
The rectangle orange block is a mask-generation module, which uses LCM
and SIM information to generate a binary mask according to a target rate.
The circle orange block means applying the binary mask to the latent vector.

where λSFM, λGAN, and λMSE are weights of SFM loss, MSE
loss, and GANs’ generator loss, respectively.

To adopt the GAN framework for encoding, additional
treatments are required for relative rate estimation and quan-
tization. The element of an image’s latent representation is
denoted as zl

i,j , where i ∈ {1, . . . , H
K }, j ∈ {1, . . . , W

K }
and l ∈ {1, . . . , C} are the height, width, and channel index,
respectively. Given i and j, we represent the empirical variance
of the latent vector along the channel dimension as

vi,j = C−1
∑

l

(zl
i,j − C−1

∑
l

zl
i,j)

2. (9)

As the channel variance v measures the complexity of the
corresponding latent vector, we will use it to determine the
rate of ẑ. To do so, we use the L1-norm of v, which also acts
as a regularizer, as in [16].

In order to solve the non-differentiable problem caused by
quantization in an end-to-end DNN training, we adopt a slight
modification of the approach in [59]. Given quantization value
centers C = {q1, . . . qL} ⊂ R, and n ∈ {1, . . . , L}, we use the
nearest neighbor assignments to compute ẑ as

ẑ = Q(z) := argminn‖z− qn‖. (10)

To be able to compute gradients in the backward pass,
we approximate (10) by the so-called soft-quantization

ẑ =
L∑

n=1

exp(−σ‖z − qn‖)∑L
h=1 exp(−σ‖z − qh‖)

qn, (11)

where σ > 0 is a parameter used to control the degree of
approximation.

B. Implementation of MPGC

This subsection introduces two basic MPGC schemes that
adopt the spatial-mask approach for progressive encoding. The
framework of MPGC is illustrated in Fig. 6, which further
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elaborates the modules in Fig. 3 and shows the dataflows
for training and compression. We now explain the details
of the adaptive bit allocation algorithm and network training
procedure.

1) Mask-Based Variable-Rate Bit Allocation: A bit alloca-
tion strategy is used to assign bits to the latent representation
according to a mask that blends SIM and LCM. The LCM is
the variance vector v of the latent vector along the channel
dimension. The variance vector is defined in (9). Its elements
vi,j estimates the entropy in position (i, j) of the latent vector.
A greater value of vi,j indicates a pixel-wise more complex
spatial area that demands more bits for encoding.

Different strategies can be designed to blend the SIM
and the LCM. A simple and trivial blending policy is to
calculate the weighted sum between SIM and LCM. Such a
strategy, however, cannot maintain the integrity of semantic
importance, which means the order of semantic importance
will be interfered with by LCM. This may result in loss of
semantic information at low rates. To overcome this, we pro-
pose a novel hierarchical blending strategy that maintains the
original importance order. The rationale of our strategy is to
first divide the latent vector space into two parts: semantic
salient regions and non-salient regions. This binary partition
is achieved by applying the OSTU method [60] on the SIM
vector to obtain a binary vector B, with entries ‘1’ indicating
semantically-salient positions and ‘0’ indicating otherwise
semantically unimportant positions. The salient regions are
then assigned with importance values ranging from 1 to
2 by adding a constant 1. On the other hand, non-salient
regions take values from a normalized LCM vector ranging
from 0 to 1. In this way, the original order of SIM and
LCM are preserved in the semantic salient regions and the
remaining regions, respectively. The SIM is denoted as e
and the LCM is the variance vector v of the latent vector
along the channel dimension. Mathematically, the proposed
blending strategy yields a final importance map I given
by

I = (1 + e)B + sigmoid(v)(1 − B). (12)

Given a target rate and the importance map, the binary mask
M can be obtained as

Mi,j =

{
1, if Ii,j>T

0, otherwise,
(13)

where T is an adaptive threshold according to the target
rate. Elements of M and I are denoted as Mi,j and Ii,j ,
respectively. Once the binary mask is obtained, the latent
vector z can be transformed into z̃ as

z̃l
i,j =

{
zl

i,j , if Mi,j = 1
C−1

∑
l z

l
i,j , otherwise,

(14)

where z̃l
i,j is the element of z̃. Therefore, a quantized latent

vector ẑ = Q(z̃) can be obtained. For the first channel of
ẑ, all values are extracted. For other channels, only values
at positions where Mi,j = 1 are extracted. These extracted
values are assembled into a vector. The mask and the vector
extracted from ẑ are further compressed by lossless adaptive

Fig. 7. The network structure of MPGC-1 model. Conv |7 × 7 × 60| S1
indicates a convolution layer using a kernel of size 7 × 7, 60 output channels,
and stride of 1 (in the decoder, Conv indicates transposed convolution). Res-
block (240) × 5 indicates 5 residual blocks with 240 output channels. And
after every convolution, the instance normalization is adopted here.

arithmetic coding (AAC) before being transmitted to the
receiver. Finally, the receiver recovers the latent vector z̃ and
uses it to reconstruct the image.

Based on the above scheme, the rates after compression are
determined by the number of 1’s in the mask M. Letting P
and S be the number of all elements and 1’s in the mask M,
respectively, and r be the target rate measured by bits per pixel
(bpp), we have

AAC(M) + S
AAC(o)

P
+ (P − S)

AAC(u)
P

≤ r, (15)

where AAC(·) denotes the computation of calculating the bpp
of the input vector using AAC, and o and u are vectors
extracted from ẑ when all elements of M are 1 and 0,
respectively. (15) can be rewritten as

S ≤ P
r − AAC(u) − AAC(M)

AAC(o) − AAC(u)
, (16)

where P , AAC(o), and AAC(u) are fixed. Because AAC(M)
is negligible compared to r and AAC(u), it follows that S can
be approximated by

S � �P r − AAC(u)
AAC(o) − AAC(u)

�. (17)

Thus, given a desired rate r, (17) gives us the number of
elements S to select in the importance map I, from which we
can compute the threshold T in (17). That is, we select the S
largest elements in I.

2) Network Structure and End-to-End Training: The train-
ing procedure of a DNN affects not only the convergence
speed but also the quality of the latent representation. The
training algorithm is also coupled with the network structure.
Depending on whether the mask is used as side information
in training, we distinguish two kinds of training procedures:

a) DNN training without mask information (MPGC-1):
The network structure is shown in Fig. 7. During the training
phase, the decoder obtains the latent vector and generates
the reconstructed image. After training, mask-based multi-
rate compression is adopted. The loss functions LD and
LG are alternatively optimized, as described in Section IV-
A. The loss term LD is defined in (4), and LG is given
by

LG = min
E,G

Ex{λSFMLSFM + λGANLGAN

+λMSELMSE + λR‖v‖1}. (18)
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Fig. 8. Network structure of the MPGC-2 model. The vectors B and 1 are
separate inputs as conditional vectors during training.

b) DNN training with mask information (MPGC-2):
In MPGC-1, the representation learning phase and the bit
allocation phase are essentially separated. The encoder does
not learn to distinguish the semantic salient regions from
the non-salient regions. As a consequence, the classification
accuracy of the reconstructed image significantly deteriorates
at low rates. To overcome this, we propose to use conditional
GANs to compress the input image using the mask as a
conditioned priori information. In this way, the network can
learn how to use different regions of the received latent vector
for image reconstruction. The network structure is shown in
Fig. 8 and condition GANs’ loss terms are as follows

LD(U) = min
D1,D2,D3

Ex{
3∑

k=1

[(Dk(U,x) − 1)2

+(Dk(U, G(U, Q(z̃))))2]}, (19)

LGAN(U) =
3∑

k=1

(Dk(U, G(U, Q(z̃))) − 1)2, (20)

LSFM(U) =
1

HξWξCξ

Hξ∑
i=1

Wξ∑
j=1

Cξ∑
k=1

‖ ξ(x)i,j,k

− ξ(G(U, Q(z̃)))i,j,k ‖2 , (21)

LMSE(U) =
1

3HW

H∑
i=1

W∑
j=1

3∑
k=1

‖ xi,j,k

−G(U, Q(z̃))i,j,k ‖2 , (22)

where U is the condition vector. The multi-scale discriminator
loss Dk is calculated by Dk(U,x), and the concatenation of
U and x is fed into the discriminator. The reconstructed image
is calculated by G(U, Q(z̃)), and the input of decoder is the
concatenation of U and Q(z̃).

Depending on what data is fed for DNN training, two kinds
of methods can be distinguished. The first is to train the DNN
with the entire image (i.e., no mask). This policy is optimized
for image reconstruction. The second strategy is to train the
DNN with SIM-masked data. This approach encourages the
DIC to learn to better encode semantic salient areas, and
is thus optimized for image classification. To serve hybrid
context applications, we can strike a balance between the two
objectives by applying different masks (U = 1 and U = B)
on the training data. The new loss functions can be given as
the numerical average given by

LD2 = (LD(B) + LD(1))/2, (23)

LG2 = min
E,G

Ex{λSFM(LSFM(B) + LSFM(1))/2

Fig. 9. The framework of the RMPGC algorithm. The rectangle orange block
represents the mask-based bits allocation module, which generates a binary
mask according to the target rate, Cb, LCM, and SIM.

+λR‖v‖1 + λGAN(LGAN(B) + LGAN(1))/2
+λMSE(LMSE(B) + LMSE(1))/2}. (24)

C. Implementation of RMPGC

We now describe the proposed RMPGC scheme. As shown
in Fig. 9, we adopt the multi-scale decomposition (MSD) [10]
based on residual to decompose the latent vector into multi-
layers. At the receiver end, the inverse multi-scale decom-
position (IMSD) is used to integrate different layers into a
latent vector. During image compression, the layers partition
module divides layers into the base layers and enhance layers
according to the target rates and context goal. The base
layers are given the highest priority to guarantee a minimal
quality of reconstruction and overall semantics, while the
mask-based progressive compression is utilized to allocate
additional bits when available. This structure exploits the fact
that minimum-rate image reconstruction is in line with protect-
ing the overall semantics, which benefits image classification
as well.

1) Variable-Rate Bit Allocation: As shown in Fig. 9, the bit
allocation procedure of RMPGC is as follows.

Step 1: Bits are first assigned to the base layers. The base
layers and enhance layers of the latent vector are denoted as
α and β, respectively. The rate of the base layers is AAC(α),
whereas the rate of the enhance layers is

r′ = r − AAC(α). (25)

Step 2: The importance map I of the latent vector is
generated based on SIM and LCM, according to (12).

Step 3: The bit allocation mask M, which is used to assign
bits to the enhance layers, can be obtained by (13).

Step 4: The latent vector z̃ is generated by

z̃ = concat(α, βM), (26)

where concat(·) means concatenating the input vectors.
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Fig. 10. Network structure of the RMPGC model. The vectors B, 0, and 1
are separate inputs as conditional vectors during training.

Step 5: The latent vector z̃ is quantized to ẑ. Then M and
ẑ are packed into a code stream, which is further compressed
by adaptive arithmetic coding and sent to the decoder.

The threshold T , which is used to generate M, is determined
by the target rate, base layers and the allocation strategy.
We have

AAC(M) + AAC(α) + S
AAC(β)

P
≤ r. (27)

The equation can be rearranged as

S ≤ P
r − AAC(α) − AAC(M)

AAC(β)
, (28)

where P , AAC(α), and AAC(β) are fixed values. Even though
AAC(M) changes with different M, it is negligible compared
to r and AAC(β). Therefore, S can be approximated by

S � �P r − AAC(α)
AAC(β)

�. (29)

The Sth greatest value of the importance map I is chosen to
be the threshold T to get the corresponding binary mask for
the given r.

2) Network Structure and End-to-End Training: We realized
a compression model whose base layers number is 2 and the
model’s network structure is shown in Fig. 10. Only the base
layers are delivered at the lowest rate in the RMPGC. As the
rate increases, the enhance layers are subject to a masking
operation with M. Our RMPGC implementation is based on
MPGC-2, which uses conditional GANs. The loss terms are
given by

LD(U) = min
D1,D2,D3

Ex{
3∑

k=1

[(Dk(U,x) − 1)2

+(Dk(U, G(U, Q(α, βM))))2]}, (30)

LGAN(U) =
3∑

k=1

(Dk(U, G(U, α, βM)) − 1)2, (31)

LSFM(U) =
1

HξWξCξ

Hξ∑
i=1

Wξ∑
j=1

Cξ∑
k=1

‖ ξ(x)i,j,k

− ξ(G(U, Q(α, βM)))i,j,k ‖2 , (32)

LMSE(U) =
1

3HW

H∑
i=1

W∑
j=1

3∑
k=1

‖ xi,j,k

−G(U, Q(α, βM))i,j,k ‖2 . (33)

Similar to MPGC-2, to achieve a balanced performance,
three different conditions are utilized and trained at the same
time. We set U = 0, U = 1, and U = B. These
settings correspond to the situation that the decoder gets the
base layers only, the complete latent vector, and the base
layers plus masked enhance layers, respectively. The final
loss functions are averaged over these conditions and given
by

LD3 = (LD(0) + LD(B) + LD(1))/3, (34)

LG3 = min
E,G

Ex{λSFM(LSFM(0) + LSFM(B)

+LSFM(1))/3 + λGAN(LGAN(0)
+LGAN(B) + LGAN(1))/3
+λMSE(LMSE(0) + LMSE(B)
+LMSE(1))/3 + λR‖v‖1}. (35)

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Throughout our experiments, all DIC models are trained
using the ImageNet [61] dataset, and tested on the ImageNet,
DogvsCat [62], and Kodak [63] datasets. For ImageNet,
we randomly select 20,000 images from the validation set
for training, and 5,000 for testing. Also, 8,000 images from
the DogvsCat dataset and 24 images from the Kodak dataset
are applied to evaluate how well the models trained using
ImageNet can be generalized to different datasets. All input
images are resized to 256 × 256, and compressed by the
encoder by a factor of 8. The number of channels of the latent
vector is C = 8, while the number of base layers is set to
Cb = 2. The quantization level L is set to 5 with centers at
{−2,−1, 0, 1, 2}.

In our experiments, the encoding rate of the proposed
models is set to cover the full range from the lowest bpp
to the largest bpp by changing the spatial mask from 0 to 1.
The feature extraction section of VGG16 [64] is used as the
CNN feature extractor in our semantics analysis module and
classification network. Throughout the paper, we adopt the
pre-trained VGG16 network parameters as published on the
Tensorflow official website. The VGG16 feature extraction
network (i.e., excluding the last fully-connected layer) is fixed
throughout the paper, such that it can be seen as a task-
related, predefined semantic feature extraction module. The
last fully connected layer is fine-tuned for different datasets.
Once trained, the final layer is also frozen when integrating
with all DIC models under test. When calculating the SFM loss
during training, we first compute each SFM loss of features
before four max pool layers, and then the weighted sum of
those losses is taken as the final SFM loss. The weighs of
each SFM loss are set as 1/32,1/16,1/8,and 1/4, respectively.
GradCAM++ is adopted in the semantics analysis module
to generate SIM. We use the Adam optimizer [65] with a
learning rate of 2e-4 for both the generator and discriminator.
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During training, all the loss terms are regularized by their own
historical means to the same scale of magnitude.

B. Performance Metrics

The performance of the proposed DIC and other base-
line models are evaluated with a diverse range of metrics,
including classification accuracy, peak signal to noise ratio
(PSNR), structure similarity index measure (SSIM), feature
similarity index measure (FSIM) [66], learned perceptual
image patch similarity (LPIPS) [67], and natural image quality
evaluator (NIQE) [68]. Classification accuracy and PSNR
are well-established metrics for classification and distortion,
respectively. We discuss the meaning of the other metrics
below to shed light on how they are related to the RDCP
trade-off problem.

SSIM, FSIM, LPIPS, and NIQE were all proposed as
perceptual metrics, but they have a different nature. SSIM,
FSIM, and LPIPS evaluate the subjective perceptual simi-
larity between two images (e.g., original and reconstructed
images). SSIM measures the distortion regarding three image
features: luminance, contrast, and structure. FSIM focuses on
perceptually-sensitive local features such as phase congruency
and gradient magnitude, while LPIPS focuses on higher level
“deep features”. Interestingly, it has been shown that LPIPS
and semantic tasks (such as classification) attend to similar
features [67]. In essence, SSIM, FSIM, and LPIPS all measure
distortions in a particular feature domain. In contrast, NIQE
is a non-referential metric that evaluates how much a recon-
structed image’s statistics deviate from natural image statistics.
Recall that in the theoretical formulation of the DCP trade-
off, perceptual quality is defined as the divergence between
image distributions. Minimizing such a divergence is also
the motivation of using GAN in the proposed DIC. In this
paper, we follow the DCP trade-off framework [28] to define
perceptual quality as statistical divergence. As a result, SSIM,
FSIM, and LPIPS will be interpreted as distortion metrics,
while NIQE will be interpreted as a perception metric. Finally,
we note that the smaller the values of the LPIPS and NIQE
metrics, the better; for the other metrics, the larger their values,
the better the performance.

C. Impact of SFM and GAN Losses

The loss function used for training the DNN has a global
and implicit impact on the RDPC trade-off. Particularly,
we investigate how the DPC metrics vary with changing ratios
of the three loss terms: λSFM, λGAN, and λMSE. Without loss
of generality, we set λMSE and λR to be 1. The following six
cases are then investigated:

(A) λSFM = 0, λGAN = 0;
(B) λSFM = 0, λGAN = 1;
(C) λSFM = 1, λGAN = 1;
(D) λSFM = 10, λGAN = 1;
(E) λSFM = 60, λGAN = 1;
(F) λSFM = 1, λGAN = 60.
In our experiments, we use the RMPGC model and ran-

domly select 100 categories of images from the ImageNet test
set.

Fig. 11. Classification accuracy, PSNR, and NIQE as functions of bpp with
varying weighting parameters λSFM and λGAN. The dashed lines mark the
classification accuracy using original images as inputs. A smaller value of
NIQE means better performance.

Fig. 11 compares the performance of all the six cases in
terms of classification accuracy, PSNR, and NIQE. We make
the following key observations. First, Case A sets an upper
bound of the attainable PSNR as the DIC is solely optimized
for reconstruction. This PSNR upper bound is largely deter-
mined by the DNN backbone we used. Second, Cases A,
B, and F together show that increasing the dominance of
GAN loss will improve NIQE at the cost of sacrificing other
metrics. Such a DCP performance trade-off is well-expected.
Third, a more interesting DCP trade-off behavior is observed
when we look at Cases B, C, D, and E. In these cases, the
GAN and MSE loss are kept to be 1, while the SFM loss
increases from 0 to 60. We can see that the classification
performance improves with diminishing returns as expected,
but not at the cost of other metrics. More specifically, the
PSNR improves when SFM increases from 0 to 10. Similarly,
the NIQE initially improves at higher rates. It appears that
all tested DCP metrics can benefit from increasing the SFM
loss up to a certain limit. Finally, increasing the encoding
rate (bpp) generally leads to improved classification and
PSNR performances. However, this is not always the case for
NIQE. Specifically, in Cases B and F, where the GAN loss
dominates the SFM loss, the NIQE shows no improvement
with increasing rates. This corroborates our previous argument
that the perceptual performance alone (measured as statistical
divergence) is not a function of rate.
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Fig. 12. Visual comparisons of reconstructed images using different bit
allocation strategies.

Our observations above imply that RDPC does not follow a
strict trade-off relationship. More importantly, it appears that
the SFM loss plays an important role in exploiting the synergy
among DCP performances. On one hand, SFM loss can
potentially improve the distortion performance by encouraging
alignments at the feature domain; on the other hand, SFM loss
could help to improve the perception metrics LIPIS because
both metrics focus on shareable high-level features.

D. Comparison of Mask-Based Bit Allocation Policies

The second mechanism we introduced to facilitate transi-
tions between the two contextual goals is mask-based adaptive
bit allocation, as explained in Section III-D.2. To demonstrate
the effectiveness of this mechanism, we run the MPGC-1
scheme, which gives intuitively understandable semantic fea-
tures. Taking a typical image as an example, Fig. 12 shows
the visual effect of reconstructed images under three bit allo-
cation policies: SIM-based, LCM-based, and the hybrid policy
denoted as SIM&LCM. We can see that as the rates decrease,
the SIM-based policy better protects the semantic regions
related to animal features, while the LCM-based policy better
protects the background with complex pixel-level variations.
The blended policy is able to strike a balance and preserve
both the semantic salient features and the complex background
features.

Fig. 13 shows the average classification accuracy and PSNR
with different masking policies. We use RMPGC and set the
loss weights to be λSFM = 10, λGAN = λMSE = λR = 1.
As expected, SIM-based and LCM-based policies are biased
towards classification and reconstruction, respectively. The
hybrid policy shows promising performance in having the
merits of both SIM and LCM.

SIM and LCM provide us with another angle to view
the classification-reconstruction trade-off. As illustrated in
Fig. 12, taking an intersection of the SIM and LCM masks
will give us pixels that are important to both classification
and reconstruction. The implication is that there is synergy
between achieving these two goals. To gauge the potential of
such a synergy, we calculate the cosine similarity of SIM and
LCM vectors over 500 images from the ImageNet dataset. The
outcome fits a bell-shape distribution in the [0.2, 0.7] interval.
This implies the universality of such a synergy in practical
image datasets.

Fig. 13. Classification accuracy and PSNR as a function of bpp with different
mask-based bit allocation policies.

TABLE II

CLASSIFICATION ACCURACY AND PSNR OF COMPRESSED

IMAGES USING DIFFERENT CAM SCHEMES

E. Comparison of Different CAM Schemes

In the proposed DIC, CAM [46] is a key component in
the semantics analysis module to get the SIM. Many CAM
techniques have been proposed in the literature [46], [47],
[48], [49], [50]. Among them, GradCAM++ is known to have
precise object positioning performance [49]. Here, we compare
GradCAM++ with two other latest variants of CAM schemes:
XGradCAM [49] and LayerCAM [50]. Table II demonstrates
that GradCAM++ achieves the best overall performance in
terms of classification accuracy and PSNR. We hence use
GradCAM++ in our experiments.

F. Performance Evaluation and Comparison

This subsection aims to evaluate the performance of the
proposed DICs via quantitative metrics. We set λMSE =
λGAN = λR = 1, λSFM = 10, and use the hybrid SIM &
LCM bit allocation strategy. Performance evaluations on the
ImageNet and DogvsCat dataset are shown in Figs. 14 and 15,
respectively. As a performance benchmark, the Top-1 and
Top-5 classification accuracy of original images from the
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Fig. 14. Classification, perception, and distortion performances as functions of bpp for different DIC schemes using the ImageNet dataset.

ImageNet test set are 64% and 85%, respectively. The Top-1
classification accuracy on the DogvsCat test set is 96%.

1) Ablation Analysis: Three specific implementations of
progressive DIC algorithms were proposed in Section IV:
MPGC-1, MPGC-2, and RMPGC. Our implementations share
the same generative DNN model used in VRGC2020 [16].
We briefly recall that MPGC-1 improves upon VRGC by
adding semantic analysis modules, MPGC-2 refines MPGC-1
with a new training method, and RMPGC improves upon
MPGC-2 via residual-based layering. These four models are
used for an ablation analysis.

MPGC-1 is shown to outperform VRGC in classification,
but is worse in other metrics. MPGC-2 outperforms VRGC
in all metrics apart from NIQE. Compared to MPGC-2 and
RMPGC, MPGC-1 performs worse on both datasets, espe-
cially at low rates. RMPGC is shown to outperform both
MPGCs in all metrics, except for a small degradation of clas-
sification accuracy at high bpps. Finally, RMPGC is shown to
outperform VRGC in all metrics. Taking the ImageNet dataset
results in Figs. 14 for example, RMPGC outperforms VRGC
by increasing the top-1 and top-5 classification accuracy by
23% and 27%, respectively. Moreover, the PSNR is increased
by 0.73 dB. For SSIM, FSIM, LPIPS, and NIQE, the relative
performance enhancements (calculated as the performance
difference divided by the VRGC performance) are 8%, 4%,
34%, and 6%, respectively. The above ablation studies clearly
demonstrate the effectiveness of the various methods proposed
in this paper and suggest that these methods are transferable
techniques that can be applied to different DNN backbones.

2) RDCP Trade-Off Performances: So far, we have
established the proposed RMPGC as the best-performing

GAN-based DIC. We will subsequently compare RMPGC
with other DIC schemes. Four representative DIC schemes
are chosen from the literature, including three fixed-rate DICs
BMSHJ2018 [29], MTB2018 [30], and CHENG2020 [31],
and an encoder-based variable-rate DIC QMAP2021 [8]. The
three fixed rate DICs are single-context DICs optimized for
reconstruction, while the QMAP2021 is a hybrid context DIC
jointly optimized for reconstruction and classification. Apart
from these DICs, the classic image codec BPG [69] will also
be used for comparison.

For classification accuracy, the proposed RMPGC consis-
tently outperforms BPG and other DIC schemes at varying
rates. An average improvement of about 10% is observed
for both top-1 and top-5 classification accuracy. Such an
improvement is due to the inclusion of SFM loss and the use of
a hybrid bit rate allocation approach, such that information of
semantically-salient areas is better preserved at varying rates.
The classification accuracy as a function of rate is shown to
be a monotonically increasing function, but with diminishing
returns as the rate increases.

For distortion performance, BPG and non-GAN-based DIC
schemes significantly outperform RMPGC in PSNR by a
minimum of 5 dB. There are two underlying reasons for this.
First, applying the GAN loss in RMPGC tends to optimize
for the overall approximation of pixel distribution rather than
pixel-by-pixel fidelity. Second, the LS-GAN DNN backbone
implemented in RMPGC constrains the PSNR performance,
as previously discussed in Fig. 11.

For perceptual metrics, RMPGC yields unsatisfactory per-
formance in SSIM and FSIM, both of which focus on the
distortion of low-level features. However, RMPGC yields the
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Fig. 15. Classification, perception, and distortion performances as functions
of bpp for different DIC schemes using the DogvsCatdataset.

best performance in LIPIS. This means that RMPGC is able
to encode perceptually-salient high-level features with priority.
Finally, for the perception metric NIQE, RMPGC consistently
outperforms other models in both datasets. This validates the
key advantage of GAN-based generative DIC models.

3) Transferability of DIC Models: As above mentioned,
all proposed models are trained using the ImageNet dataset.
In Fig. 15, our models are tested for a different DogvsCat
dataset with a predefined classifier. We can see that our models
yield consistent performance gains when extended to the
DogvsCat dataset. A possible explanation for this transferabil-
ity is that the underlying techniques used in our model, such as
SFM loss and LCM masking, attends to universally important
information in image datasets. This suggests the feasibility
of training a wide-purpose DIC codec using a representative
dataset.

G. Comparison of Visual Effects

Fig. 16 shows the visual comparisons of proposed algo-
rithms trained on the ImageNet dataset. Compared to BPG,

Fig. 16. Visual comparisons of different DIC algorithms.

Fig. 17. Visual comparisons of different algorithms on the Kodak dataset.

reconstructed images generated by RMPGC and MGPC-2
always have a better overall perception, while MPGC-1 and
VRGC perform worse at low rates. When the rates decrease,
it can be observed that the BPG images get blurry and less
recognizable due to the gradual loss of semantic informa-
tion. The phenomenon of semantic information loss is even
worse in VRGC’s progressive DIC scheme because misguided
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Fig. 18. Classification, perception, and distortion performances as functions of bpp for new RMPCs using the ImageNet dataset. RMPGC-A, RMPGC-B,
and RMPGC-C mean training RMPGC uses case (A), case (B), and case (C), respectively.

protection is placed on the background region with complex
features. In contrast, the proposed schemes exhibit a desirable
progressive behavior that better protects semantically relevant
regions. However, because MPGC-1 does not learn to use less
information to generate background, the overall perception
seriously decreases when the rate is low. Because the mask
is used as prior information in the MPGC-2 and RMPGC
training processes, models learn how to reconstruct images
using information from different regions. Therefore, a good
overall perception is maintained at all rates.

Finally, Fig. 17 compares the visual effects of different
compression schemes using the Kodak dataset. We show that
the proposed DIC models trained on the ImageNet dataset can
generalize well to the Kodak dataset. For example, semantic
salient regions such as parrots’ eyes are better protected com-
pared with other algorithms. In addition, RMPGC is shown
to outperform all other schemes in terms of overall visual
perception.

H. Transferability to Different DNN Backbones

The proposed latent-based progressive DIC techniques are
not limited to the LS-GAN backbone, but are also applicable to
different DNN backbones and different datasets. The LS-GAN
backbone was used solely for benchmarking. This back-
bone, however, yields unsatisfactory performance regarding
distortion-related metrics. To demonstrate the transferability of
the proposed techniques and also to obtain better performance,
we report results on using the DNN backbone in MTB2018
[30]. Apart from the proposed structural changes required
to build a RMPGC codec, the following modifications were
made to the original backbone during implementation. First,
the multi-scale decomposition (MSD) and inverse multi-scale

decomposition (IMSD) [10] were added to generate the base
layers and enhance layers. Second, the autoregressive mask
convolution, which is applied to predict the latent vector’s
entropy parameters, was removed. Third, two independent
Gaussian entropy models were adopted to estimate the entropy
of the latent vectors of the base layers and enhance layers.
We note that the use of Gaussian entropy models means that
the rate control mechanism is slightly different from the one
in LS-GAN. The input images were down-sampled by a factor
of 16, and the output channel numbers of the base layers and
enhance layers were both set to be 96.

To investigate the performance trade-off of the new RMPGC
codec, we conducted experiments using the following cases for
the hyperparameters (or regularization parameters):

(A) λSFM = 0, λGAN = 0;
(B) λSFM = 1, λGAN = 0;
(C) λSFM = 1, λGAN = 0.5.
Case (A) means the codec is solely optimized for the

MSE loss (or distortion). Case (B) considers, besides dis-
tortion, a semantic SFM loss (for classification). Case (C),
in turn, further takes into account the GAN loss for per-
ception. We note that training in case (C) is performed by
fine-tuning the model obtained in case (B) by freezing the
encoder and adding the additional GAN loss. We found that
this progressive training strategy yields good performance
in practice. In all cases, we set λR to 1, λMSE to 5e-4
for reconstruction with only base layers, and λMSE to 7e-3
for reconstruction with full latent vector. In all these cases,
we used the Adam algorithm with a learning rate of 1e-4.
Furthermore, to test the model transferability between different
datasets, we used the COCO dataset [70] for training our
RMPGC models, and the ImageNet dataset for testing.
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The performance of the above three RMPGC codecs with
a new DNN backbone were shown in Fig. 18 and com-
pared with BPG, BMSHJ2018 [29], MTB2018 [30], and
CHENG2020 [31]. We make the following observations.

(1) Case (A) yields similar performance to BPG in all the
metrics evaluated. This confirms that the new DNN backbone
allows achieving a performance better than the one achieved
by the LS-GAN backbone.

(2) By adding an SFM loss to Case (A), the codec in case
(B) outperforms the codec in Case (A) in all metrics. This con-
firms our observations from Fig. 11, which showed that a prop-
erly weighted SFM loss can improve the distortion, perception,
and classification performance simultaneously. Compared with
BPG, the codec in case (B) improves the Top-1 classification
accuracy, Top-5 classification accuracy, NIQE, LPIPS, and
PSNR by 15%, 8%, 20%, 8%, and 2%, respectively. The FSIM
and SSIM metrics, however, are almost identical.

(3) The codec in case (C) demonstrates a performance
trade-off between distortion and perception once the GAN loss
is further introduced. Specifically, when going from case (B) to
case (C), the NIQE, LPIPS, and FSIM metrics improve by
17%, 35%, and 0.7%, while the SSIM and PSNR metrics are
degraded by 2.5% and 2.6%, respectively. The classification
performance remains almost the same.

In summary, the proposed latent-based progressive coding
design is a general framework that can be applied to different
DNN backbones to yield RMPGC codecs that are practically
competitive.

VI. CONCLUSION AND FUTURE WORK

We proposed a variable-rate DIC framework that shows
structured progressive behavior from the lower-rate encoding
of semantically-salient information to higher-rate encoding
for full image fidelity. A generative DNN backbone is used
to counterbalance rate-deficient distortions with statistical
approximation. Three independent mechanisms have been
introduced to yield a richly structured latent representation
that supports parameterized control over the RDCP perfor-
mance trade-off. Ablation studies show that the three proposed
mechanisms are effective in securing performance gains in all
tested metrics, including classification accuracy, PSNR, SSIM,
FSIM, LPIPI, and NIQE. Relative performance gains ranging
from 4% to 90% are observed in these metrics when averaged
over the feasible data rate range. Comparisons with the classic
image codec BGP and other existing DIC methods show that
the proposed DIC schemes can effectively trade the overall
PSNR for better semantic awareness and perceptual quality.
By designing versatile adaptability into the latent space, the
proposed DIC scheme is better suited for image compres-
sion in wireless communications, multi-user broadcasting, and
multi-tasking applications.

In this paper, we are restricted to the problem of image
source coding. For future work, it is worth exploring
latent-exploration techniques such as contrastive learning [71]
or distillation [72]. Moreover, a structured latent space
makes it easier for our scheme to be extended for joint
source-and-channel coding (see, e.g., the multiple description

problem [53], [73]), which can inject further progressive
capability to cope with opportunistic communication channels.
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