
Higher Layer Synchronization in an ECMA-368 Ultra

Wideband Network

Margaret U. Anyaegbu
1
, Alexander Weir

2
, and Cheng-Xiang Wang

1

1
Joint Research Institute for Signal and Image Processing, School of EPS, Heriot-Watt University, Edinburgh EH14 4AS, UK

2
TES Electronic Solutions, Edinburgh EH28 8LP, UK

Email: mua4@hw.ac.uk, alexander.weir@talk21.com, cheng-xiang.wang@hw.ac.uk

Abstract-An algorithm for implementing higher layer

synchronization in ECMA-368 networks is being developed within
the framework of the EUWB research and development project.
In this paper, we adapt three synchronization algorithms used in
wireless sensor networks to suit an Ultra Wideband (UWB)
network and evaluate their performance in order to determine the
best algorithm for a video streaming application scenario. We
also propose some extensions to the ECMA-368 standard that
would facilitate the implementation of these algorithms. For these
purposes, we have simulated a UWB beacon group in OPNET.
We observe that the algorithms that correct for clock drift are
better suited for implementation in a UWB network.

I. INTRODUCTION

Short-range, high-speed wireless connectivity is an emerging

application in various commercial sectors (including personal

computing, consumer electronics, and mobile communications),

especially for real-time multimedia applications such as video

streaming. In recent years, Ultra Wideband (UWB) has

generated huge interest as the technology of choice for such

applications due to its potential for enabling high data rates,

advanced Quality of Service (QoS), and low cost systems (due

to low complexity) [1]. The high data rate ECMA-368 UWB

standard [2], developed by the WIMEDIA industrial

consortium, is based on a Multi-Band Orthogonal Frequency-

Division Multiplexing (MB-OFDM) physical (PHY) layer and

is capable of supporting data rates up to 480 Mbps for a

distance of up to 3 m. The maximum transmission range is 10

m, but this is only typically achievable at the lowest data rate

of 53.3 Mbps and usually in an ideal operating environment.

Real-time video streaming is an important application for the

EUWB research project [3], in which two scenarios are being

considered: wireless aircraft cabin networks and wireless home

entertainment systems. The generic network model for these

scenarios consists of a video server streaming packets to

multiple end devices over Ethernet and UWB links, via

switches and access points, as illustrated in Fig. 1.

When video packets are transmitted in this way, jitter

inevitably occurs as a result of variation in end-to-end delays

experienced by consecutive packets from the same stream.

This variation, typically caused by factors such as lack of

transmission opportunity, prioritisation of different streams,

packet retransmission or the lack of guaranteed bandwidth in

wireless networks, reduces the QoS of the application at the

receiver. A jitter buffer can be used to minimise the effects of

jitter; however large delay variations require a larger, more

expensive buffer which ultimately results in the introduction of

a larger amount of constant latency at the start of the

application that is unsuitable for real-time streaming.

Synchronization of the application (higher layer) clocks at

the sender and receiver can reduce the amount of jitter, thus

relaxing the size of the jitter buffer and ultimately improving

the QoS for real-time applications. Furthermore, when

streaming applications are multicast to co-located devices (e.g.

multiple loudspeakers in a home entertainment or wireless

cabin network), there is an additional QoS requirement for

synchronized media playback in the entire system. Higher

layer clock synchronization is the only way to achieve this, as

it can take into account the variation in end-to-end packet

delays experienced at the different devices.

The ECMA-368 standard defines an optional higher layer

synchronization mechanism that uses the services provided by

the Medium Access Control (MAC) layer to accurately

synchronize timers located in different devices. It involves the

multicasting of synchronization frames, containing timing

information, to devices requiring synchronization. In addition

the MAC Layer Management Entity (MLME) is required to

alert the higher layer whenever such frames are transmitted or

received in order to achieve synchronization.

Although the synchronization process is described in [2], the

actual implementation of the mechanism is beyond the scope

of the standard. To the best of the authors’ knowledge, no

higher layer synchronization algorithms have been proposed in

the literature for ECMA-368-compliant UWB systems.

There are two key requirements of the synchronization

algorithm for the wireless cabin and home entertainment

application scenarios. The algorithm must be scalable, such

Figure 1. Generic network topology.

Proceedings of 2010 IEEE International Conference on Ultra-Wideband (ICUWB2010)

978-1-4244-5306-1/10/$26.00 ©2010 IEEE

that its application can be extended from a simple beacon

group of devices to the hybrid wired/ wireless network

illustrated in Fig. 1. Secondly, the synchronization accuracy

must not exceed 100 µsec across the entire network. In this

paper, we consider the case of a UWB beacon group.

The rest of the paper is organized as follows. We briefly

describe the key features of the ECMA-368 PHY and MAC

layers in Section II. The synchronization algorithms and the

OPNET simulation model are presented in Sections III and IV,

respectively. Simulation results are discussed in Section V and

the paper concludes in Section VI.

II. AN ECMA-368-COMPLIANT UWB SYSTEM

The 3.1 – 10.6 GHz UWB frequency spectrum is divided

into 14 bands, each 528 MHz wide. This band spacing ensures

that each OFDM symbol fits perfectly within a band. Three

mandatory data rates (53.3, 106.7, and 200 Mbps) and five

optional data rates (80, 160, 320, 400, and 480 Mbps) are

specified in the ECMA-368 standard. Time and/ or frequency

spreading techniques combined with convolutional Forward

Error Correction (FEC) coding are used to vary the data rates

and provide a robust signal at low transmitter power levels.

The MAC layer has a fully distributed architecture that

supports ad-hoc, peer-to-peer networking. The channel time is

divided into periodic intervals, called superframes. Each

superframe is further divided into 256 Medium Access Slots

(MAS), each of 256 µsec duration. The superframe is also

split into a beacon period (BP) in which beacon frames are

transmitted for the purpose of establishing and maintaining the

network, and a data transfer period. During the data transfer

period, devices may transmit their data, using either the

Distributed Reservation Protocol (DRP) or the Prioritized

Contention Access (PCA) mechanism. The start of a

superframe is the Beacon Period Start Time (BPST) and the set

of devices that share the same BPST and exchange beacon

frames during the BP form a beacon group.

III. CLOCK SYNCHRONIZATION

A. Definition of Terms

A physical clock is a hardware device that periodically

counts the oscillations of a crystal or quartz. After a specified

number of oscillations, the clock register is incremented by one

clock-tick, to represent the passing of time. A software clock

or virtual clock is simply a transformation of the hardware

clock. Hardware clocks do not oscillate at the same frequency

over time. The rate at which the frequency changes is termed

clock drift, and over time it causes the clock reading to

gradually diverge from the “true” time reported by a standard

reference time source such as Coordinated Universal Time

(UTC). Clock offset is the instantaneous difference between

the clock’s reading and true time while skew refers to the

frequency difference between the clock and true time [4]. If a

clock is compared with another clock rather than with a

standard time source, these terms become relative offset and

relative skew, respectively. Two clocks are said to be

synchronized if their relative offset is zero.

B. Classification of Synchronization Algorithms

Synchronization algorithms can be classified in various ways,

including master-slave versus peer-to-peer, clock correction

versus free-running clocks, internal versus external

synchronization, sender-to-receiver versus receiver-to-receiver,

and probabilistic versus deterministic algorithms [5].

In master-slave protocols, slaves synchronize to the clock of

a designated master node, while peer-to-peer protocols allow a

node to synchronize to any other node in the network. Clock

correction protocols adjust the clocks after each

synchronization round whereas in free-running clock protocols

each node simply maintains a table of relative offsets that

relates its local clock to other clocks on the network. Unlike

internal protocols, external protocols have access to a trusted

time reference source such as UTC. Sender-to-receiver

synchronization is the conventional method in which a receiver

achieves synchronization with a sender based on the timing

information it receives from it, while receiver-to-receiver

protocols perform synchronization between receivers by

comparing the time at which they receive the same message.

Lastly, probabilistic protocols provide a guarantee on the

maximum clock offset permitted in the network, together with

a failure probability while deterministic techniques guarantee

an upper bound on the clock offset with certainty.

Due to the hierarchical nature of the generic network

illustrated in Fig. 1 and the fact that direct communication

between devices is not required, a master-slave

synchronization approach with clock correction would be

necessary to ensure that all devices on the network are

synchronized. For the same reasons a sender-to-receiver

protocol is implied, although a receiver-to-receiver protocol

can be implemented provided that the time comparison occurs

between the sender and receiver, as is the case of the

Continuous Clock Synchronization protocol developed in [6].

Furthermore, the algorithm will support internal

synchronization and use a deterministic approach to guarantee

the accuracy of the system.

C. Description of Three Selected Algorithms

Based on the above reasoning, the Delay Measurement Time

Synchronization [7] and Continuous Clock Synchronization [6]

algorithms were selected. We further consider a Linear Rate

Synchronization algorithm based on the notion of a virtual

clock introduced in [6].

The Delay Measurement Time Synchronization algorithm

combines a master’s timestamp with delay measurements, in

order to achieve synchronization of the slaves. Each slave takes

two timestamps: one when it receives the preamble of the

synchronization message, and the other after the message has

been processed. The difference between these timestamps is a

measure of the data transfer time plus the processing delay.

Each slave also estimates the time taken to transmit the

message preamble. Finally, each slave sets its clock to the sum

of the master’s timestamp, the data transfer time plus

processing delay, and the preamble transmission time.

The Continuous Clock Synchronization algorithm, described

in [6], uses an advanced rate-adjustment algorithm to spread

clock correction over a finite interval in order to prevent time

discontinuity caused by instantaneous clock correction. In this

way, the local clock time is corrected by gradually increasing

or decreasing the clock rate. Each node in the network has both

a physical and virtual clock. In this sense, a virtual clock is

simply a transformation function that corrects the skew rate of

a physical clock. For the sake of simplicity, a linear function is

used and clock correction is achieved by changing the

parameters of this function after every synchronization round

so that the slave’s virtual clock matches the master’s physical

clock as closely as possible. The algorithm assumes that

message reception is tight, such that a master node receives its

own broadcast message at approximately the same time as the

slave nodes [8]. Each synchronization frame contains the time

at which the master node received the last synchronization

message sent and by comparing this value with its own

reception time for the same message, a slave is able to achieve

synchronization with the master.

The UWB PCA and DRP data transmission mechanisms do

not permit any node to receive its own broadcast frame, hence

adapting the Continuous Clock algorithm to a UWB network

requires a calculation of the expected reception time at the

master node. We estimate the processing delay between the

synchronization frame being scheduled by the MAC and the

first symbol being received on-air by the remote device and

add this to the master’s transmission timestamp in order to

obtain this value.

Another possible implementation of synchronization is based

on a linear-rate function which relates a slave’s clock to the

master’s clock. The master sends its timestamp to the slaves in

the form of a command frame every synchronization round and

each slave records its local clock time when it receives the

synchronization frame, thus building a table of pair values in

the form [Mn Sn], where Mn is the local clock time at which the

master sent the nth synchronization frame and Sn is the local

time at which the slave received the same frame. After two

rounds the slave can calculate the relative skew ξ and relative

offset σ as follows:

ξ = (Mn - Mn-1)/ (Sn - Sn-1). (1)

σ = Mn –Snξ. (2)

These values are then used to update the parameters of its

virtual clock V which transforms the hardware clock H to

mimic the behaviour of the master’s clock as in (3).

V = ξH + σ. (3)

D. Implementation of Higher Layer Synchronization

The ECMA-368 standard includes three MLME primitives

to support the higher layer synchronization function. The

mlme_hl_sync.request primitive is sent from the higher layer to

the MAC to initiate the synchronization mechanism, the

mlme_hl_sync.confirm returns the result of the request, while

the mlme_hl_sync.indication primitive indicates the

transmission or reception of a sync frame.

Since the goal is to synchronize the clocks of higher layer

protocols which may reside separately from the MAC, it makes

sense for the MAC to be responsible for implementing the

synchronization algorithm. The MAC layer can directly access

the PHY layer clock for the purpose of generating timestamps;

however since the higher layer clock values are required as

parameters in the synchronization algorithm, there is a

requirement for mapping higher layer clock values to PHY

layer clock values. Furthermore, after synchronization is

complete there is an additional requirement for transferring the

clock adjustment to the higher layer. These requirements form

the basis for our proposed modifications to the ECMA-368

standard.

 The means of fulfilling the first requirement depends on

whether the MAC and higher layer protocol reside on the same

entity or on separate entities. If the latter case holds, then the

higher layer clock values can be transferred to the MAC layer

using the timestamp field of an empty Real Time Protocol

(RTP) packet. In this case, the generation of the RTP packet

will be triggered by the receipt of the mlme_hl_sync.confirm

primitive at the higher layer. However if the MAC and higher

layer protocol are on the same entity, then the MAC can

directly access the higher layer clock value by simply reading

the corresponding register. In either case the MAC layer reads

the PHY layer clock value immediately it obtains the higher

layer clock and then calculates the relative offset between the

higher layer and PHY layer clocks. The MAC subsequently

uses this offset to transform a PHY layer clock reading to the

corresponding higher layer value. We also propose that the

receipt of an mlme_hl_sync.indication primitive also triggers

the transfer of the higher layer clock to the MAC via an RTP

packet. On receipt of this, the MAC again reads the PHY clock

and subsequently updates the relative offset. This is

particularly important when a synchronization frame is

received so that the slave node can transform its PHY layer

reception timestamp value before clock adjustment

computations are done.

Finally, we propose a mlme_hl_clock_update.indication

primitive for transferring calculated clock adjustments to the

higher layer. This primitive requires two parameters: offset and

skew, for updating the parameters of the virtual clock.

However the skew parameter is set to the default value of unity

for algorithms such as the Delay Measurement Time algorithm

that do not correct for drift.

IV. NETWORK SIMULATION IN OPNET

An OPNET [9] simulation model of the ECMA-368 standard

has been developed for the purpose of research and

development of UWB algorithms. Each ECMA-368 node

consists of source and sink modules responsible for generating

and consuming packets, respectively, a MAC Interface module

for performing address resolution, and a simplified ECMA-368

MAC module. Each node also contains a higher layer clock

and a PHY layer clock, and both are based on the drifting clock

model presented in [10].

The system is assumed to be operating in an active quiescent

state at the start of each simulation, i.e. operating channels

have been selected, the nodes are initially synchronized, and a

beacon group has been formed. Furthermore, hard DRP

reservations have already been negotiated and the nodes are

ready to send and receive data over these reservations.

V. SIMULATION RESULTS AND DISCUSSIONS

A simple two node scenario (AP and device) was simulated.

The AP acts as the master while the device is the slave, with

clock drift rates of 0ppm and -20ppm respectively. The

synchronization interval is 2.5 sec and the target accuracy is

100 µsec. The simulation was run for a period of 20 sec and

the results are provided in Fig. 2.

As expected, without synchronization the relative clock

offset between master and slave accumulates linearly, at a rate

equal to the difference in their clock drifts. After each

synchronization round, the Delay Measurement Time

algorithm reduces the clock offset to zero but between rounds

the offset starts accumulating again. Since the Continuous

Clock and Linear Rate algorithms correct for clock drift, they

perform better than the Delay Measurement Time algorithm

and are able to maintain synchronization within the target

accuracy for longer periods between synchronization rounds.

To identify the best algorithm for implementation, we

consider the effects of packet loss and temperature variation.

Packet loss results in missed synchronization rounds while the

latter may change the rate of clock drift. In algorithms that do

not correct for clock drift, the effect of packet loss is similar to

the case of no synchronization as the clock offset will

accumulate linearly, beyond the target accuracy level. Such

algorithms would also be least resistant to large changes in

clock drift because they would no longer be able to achieve the

target accuracy using the same synchronization interval. Hence

it is clear that the Linear Rate and Continuous Clock

algorithms are better suited for UWB than the Delay

Measurement Time algorithm.

The Continuous Clock algorithm has a longer convergence

time compared to the Linear Rate algorithm, since its clock

correction procedure is gradual rather than instantaneous.

However once it achieves convergence, it yields a slightly

more accurate synchronization since it incorporates an estimate

of the processing delay.

VI. CONCLUSIONS

In this paper, we have proposed some extensions to the

existing ECMA-368 standard to facilitate the implementation

of the higher layer synchronization mechanism and

demonstrated the performance of three candidate algorithms

through network simulation. Our results show that drift-

correcting algorithms perform better as they are able to

maintain synchronization within the target accuracy for longer

periods between synchronization rounds.

In the next phase of the project, the algorithms would be

implemented on a development platform.

ACKNOWLEDGMENT

The authors gratefully acknowledge the EUWB consortium,

EPSRC, and the Industrial Doctorate Centre in Optics and

Photonics Technologies at Heriot-Watt University for funding

this research. We also thank OPNET for providing the network

simulation software free of charge under the University

License agreement.

REFERENCES

[1] M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wideband Signals and

Systems in Communication Engineering (Second Edition). West Sussex,
UK: John Wiley & Sons, 2007.

[2] ECMA-368 Standard: High Rate Ultra Wideband PHY and MAC
Standard, 2nd ed., Dec 2007.

[3] S. Zeisberg and V. Schreiber, “EUWB - Coexisting Short Radio by
Advanced Ultra-Wideband Radio Technology,” Proc. ICT-Mobile

Summit 2008, Stockholm, Sweden, 2008.
[4] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for IP

Performance Metrics”, RFC 2330, The Internet Society, May 1998.
[5] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock

Synchronization for Wireless Sensor Networks: A Survey”, Ad Hoc

Networks, vol. 3, no. 3, pp. 281–323, May 2005.
[6] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Continuous Clock

Synchronization in Wireless Real-Time Applications,” Proc. SRDS 2000,
Nürnberg, Germany, Oct. 2000, pp. 125.

[7] S. Ping, “Delay Measurement Time Synchronization for Wireless Sensor
Networks,” Intel Research, IRB-TR-03-013, June 2003,

[8] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Clock Synchronization
for Wireless Local Area Networks,” Proc. Euromicro-RTS 2000,
Stockholm, Sweden, June 2000, pp. 183.

[9] OPNET Product Documentation 15.0, www.opnet.com.
[10] Y. Quan and G. Liu, “Drifting Clock Model for Network Simulation in

Time Synchronization,” Proc. 3rd International Conference on Innovative

Computing Information and Control, Liaoning, China, June 2008, pp.
385.

Figure 2. Comparison of synchronization algorithms.

