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Abstract—In this paper, the problem of dynamic spectrum
sensing and aggregation is investigated in a wireless network con-
taining N correlated channels, where these channels are occupied
or vacant following an unknown joint 2-state Markov model. At
each time slot, a single cognitive user with certain bandwidth
requirement either stays idle or selects a segment comprising C
(C < N) continuous channels to sense. Then, the vacant chan-
nels in the selected segment will be aggregated for satisfying
the user requirement. The user receives a binary feedback sig-
nal indicating whether the transmission is successful or not (i.e.,
ACK signal) after each transmission, and makes next decision
based on the sensing channel states. Here, we aim to find a pol-
icy that can maximize the number of successful transmissions
without interrupting the primary users (PUs). The problem can
be considered as a partially observable Markov decision process
(POMDP) due to without full observation of system environment.
We implement a Deep Q-Network (DQN) to address the challenge
of unknown system dynamics and computational expenses. The
performance of DQN, Q-Learning, and the Improvident Policy
with known system dynamics is evaluated through simulations.
The simulation results show that DQN can achieve near-optimal
performance among different system scenarios only based on
partial observations and ACK signals.

Manuscript received September 1, 2019; revised January 8, 2020 and
February 14, 2020; accepted February 14, 2020. Date of publication
March 23, 2020; date of current version June 9, 2020. The authors acknowl-
edge the support from the National Key R&D Program of China under Grant
2018YFB1801101, the National Natural Science Foundation of China (NSFC)
under Grant 61960206006, the Fundamental Research Funds of Shandong
University under Grants 2017JC029 and 2017JC009, the China Scholarship
Council (CSC) under Grant 201806225029, the High Level Innovation and
Entrepreneurial Research Team Program in Jiangsu, the High Level Innovation
and Entrepreneurial Talent Introduction Program in Jiangsu, the Research
Fund of National Mobile Communications Research Laboratory, Southeast
University, under Grant 2020B01, the Fundamental Research Funds for the
Central Universities under Grant 2242019R30001, Taishan Scholar Program
of Shandong Province, the EU H2020 RISE TESTBED2 project under
Grant 872172, and the Shandong Natural Science Foundation under Grant
ZR2019BF040. The associate editor coordinating the review of this article and
approving it for publication was Y. Wu. (Corresponding authors: Wensheng
Zhang; Cheng-Xiang Wang.)

Yunzeng Li, Wensheng Zhang, and Jian Sun are with the School of
Information Science and Engineering, Shandong Provincial Key Laboratory
of Wireless Communication Technologies, Shandong University, Qingdao
266237, China (e-mail: 17865197576@163.com; zhangwsh@sdu.edu.cn;
sunjian@sdu.edu.cn).

Cheng-Xiang Wang is with National Mobile Communications Research
Laboratory, School of Information Science and Engineering, Southeast
University, Nanjing 210096, China, and also with the Pervasive
Communication Research Center, Purple Mountain Laboratories, Nanjing
211111, China (e-mail: chxwang@seu.edu.cn).

Yu Liu is with the School of Microelectronics, Shandong University, Jinan
250101, China (e-mail: yuliu@sdu.edu.cn).

Digital Object Identifier 10.1109/TCCN.2020.2982895

Index Terms—Dynamic spectrum aggregation, dynamic spec-
trum sensing, deep reinforcement learning, deep Q-network,
POMDP.

I. INTRODUCTION

IN WIRELESS networks, the spectrum is assigned to pri-
mary users (PUs) under a static and inflexible spectrum

allocation policy, in which spectrum holes are not utilized in
temporal or frequency domain as shown in Fig. 1. With the
growing spectrum demand and limited spectrum resources, it is
necessary to address the problem of spectrum underutilization
and inefficiency. Cognitive radio [1], [2] has allowed sec-
ondary users (SUs) to sense and leverage the spectrum holes
that are not occupied by PUs to improve spectrum utiliza-
tion and alleviate spectrum scarcity. As shown in Fig. 2, there
are two main parts in cognitive radio: primary network and
cognitive network. PUs in the primary network are licensed
to use spectrum bands, and SUs in the cognitive network
have to access the spectrum holes in an opportunistic man-
ner. The spectrum holes, however, are discrete and usually too
insufficient to meet SUs’ demand. As a solution, spectrum
aggregation [3], [4] has attracted great concerns. Spectrum
aggregation refers to the fact that a user can simultaneously
access multiple discrete spectrum holes through Discontiguous
Orthogonal Frequency Division Multiplexing (D-OFDM) [5]
and aggregate them into a sufficiently wide band for success-
ful transmission. Although the aggregation capacity (i.e., the
range of the aggregated bands) is fixed due to the limitations
of hardware [6], [7], spectrum aggregation will play a critical
and potential role in future cognitive radio networks [8].

A. Existing Spectrum Occupancy Models

Given that the spectrum occupancy activity of PUs leads to
the dynamic and uncertainty of the spectrum environment, a
reasonable spectrum occupancy model is necessary to describe
the channel state transition for utilization of spectrum holes.
The spectrum occupancy model can provide a reliable basis
for the prediction of future spectrum occupancy status for
SUs, thus the conflict between PUs and SUs will be effec-
tively reduced. Many spectrum occupancy models as shown
in Fig. 3 have been discussed to simulate the behavior of PUs
and describe the time-varying spectrum environment precisely.
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Fig. 1. The concept of spectrum holes.

Fig. 2. Structure of a cognitive wireless network.

The usage percentage of these models is shown in
Fig. 4 [9], [10]. These models can be divided into time-
domain, frequency-domain and space-domain model from the
perspective of spectrum measurement, or Markov process,
Queuing theory, ON/OFF model, Time series, Mathematical
distribution model and Miscellaneous model from the basis
of modeling. Different models focus on different characteris-
tics of wireless spectrum environment, and there is no model
completely applicable in various wireless scenarios. Since we
focus on the state transition of the spectrum environment, the
most widely used Markov model is adopted in this paper.

B. Deep Reinforcement Learning and Related Works

In recent years, Machine Learning (ML) has made great
achievements, not only in computer vision and natural lan-
guage processing [11]–[14], but also in wireless communica-
tion [15]–[18], incurring a collection of theoretical researches
on optimization principle [19]–[23]. As an important branch
of ML, Reinforcement Learning (RL) is characterized by
interacting with the changing and uncertain environment
frequently to acquire knowledge, which provides an excel-
lent performance in handling dynamic systems [24]–[26].
Q-Learning implemented in this paper is one of popular RL

methods. Instead of trying to model the dynamic characteris-
tics of Markov decision process, Q-Learning directly estimates
the Q-value of each action in each state. The Q-value estimates
the expected accumulated discounted reward. The policy can
then be executed by selecting the action with the highest Q-
value for each state. Different from RL, Deep Reinforcement
Learning (DRL) combines Deep Learning (DL) with RL, mak-
ing it more capable of dealing with huge state space and
complex computation.

Recently DRL has achieved significant breakthroughs in the
dynamic spectrum allocation problems [27]–[35]. The works
in [27], [28], [29], [30] and [31] studied the multichannel
access problem under the assumption of Markov spectrum
occupancy model. The authors of [27] considered the highly
correlation between channels thus the user can access the
vacant channel by historical partial observations. An actor-
critic DRL based framework was proposed in [28], [29] and
its performance was further improved in [27] especially in
scenarios with a large number of channels. In [30] all chan-
nels are independent so the user is supposed to have fully
observation of the system via wideband spectrum sensing
techniques. The independent channel model is also adopted
in [31], but the authors of [31] considered the presence of
spectrum sensing errors, and the position of each user is spec-
ified in the proposed scenario. Moreover, multi-user scenarios
are also studied in [29] and [31] through distributive learn-
ing. However, in the most of aforementioned works the user
only selects one channel to access with the hope of avoiding
collisions at each time slot. The authors of [29] considered a
scenario where the user can access more than one channel at
a time, but it has nothing to do with the user’s requirement.
In other words, previous works mainly focused on allocating
the single channel to the user without taking into account the
user’s demand of bandwidth.

Our simulation models are pretty different from the previous
ones. What is new in our work is that we consider the
user’s requirement for broadband transmission (i.e., a success-
ful transmission may be not affordable with a single channel)
and provide the user sufficient bandwidth through applying
the spectrum aggregation technology. In this paper, the corre-
lation between channels is also taken into account, and the user
will use this correlation to dispense with the perception of the
whole frequency band. The user only needs to sense a segment
in multiple channels, and the vacant channels in the selected
segment will be aggregated for transmission. Meanwhile, the
next segment to be sensed will be determined according to the
sensing results. The problem can be formulated as a partially
observable Markov decision process (POMDP), where the user
cannot accurately know the current state of the environment
due to incomplete environmental observations.

C. Contributions

We implement Deep Q-Network (DQN) [36], [37] to
approximate the action-value function which can give esti-
mated Q-values of the user’s available actions with the partial
observations of channel states as input. We apply DQN into the
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Fig. 3. Classification of existing spectrum occupancy models.

Fig. 4. Usage percentage of all spectrum occupancy models.

dynamic spectrum sensing and aggregation problem in corre-
lated channels to find a good policy to cope with the uncertain
spectrum environment. The major contributions and novelties
of our work can be summarized as follows:

• The bandwidth requirement of the user is considered in
the correlated multichannel spectrum environment which
is modeled as a Markov chain. The user is given the
spectrum aggregation capability to synthesize reliable
frequency bands for successful transmission based on
partial observations of the spectrum. We describe the
problem as dynamic spectrum sensing and aggregation,
and formulate the problem as a POMDP.

• DQN is adopted for the dynamic spectrum sensing and
aggregation problem to deal with the uncertain spec-
trum environment. The action-value function is given by
DQN through online learning to guide the user decision
with no prior knowledge of system dynamics and low
computational complexity.

• Q-Learning and the Improvident Policy based on full
knowledge of the system is proposed to evaluate the
performance of DQN. Simulations suggest that DQN

can provide a near-optimal performance compared with
Q-Learning and the Improvident Policy.

The rest of the paper is organized as follows. Section II
formulates the dynamic spectrum sensing and aggregation
problem when channels are potentially correlated. Section III
presents the Improvident Policy and the DQN framework to
solve this problem, and Section IV shows through simula-
tions that DQN can achieve near-optimal performance among
different system scenarios. Finally, Section V concludes our
work.

II. PROBLEM FORMULATION

The multichannel access problem has been studied
in [27]–[31] with single user where the state transition
of channels is modeled as a joint Markov chain. The
correlation between channels has been taken into account
in [27]–[29] while an independent channel model has been
used in [30], [31]. The efficiency of spectrum aggregation
and the spectrum assignment problem have been studied
in [6] and [7], respectively. The authors of [6], [7] consid-
ered the bandwidth demand of SUs and the fixed aggregation
capability in multichannel network. Based on above works,
we focus on the dynamic spectrum sensing and aggregation
problem with one single user in several correlated channels.
Furthermore, the user requirement for bandwidth and fixed
aggregation capacity are taken into account in our work. In
this section we formulate the problem in detail.

A. System Model

We consider a wireless network containing N correlated
channels whose states can be either vacant (0) or occupied (1).
The joint state transition of these channels follows a 2N -states
Markov model. Generally, the SU needs to sense the state of
all channels and aggregate the vacant channels among them.
However, due to the limited aggregation capability, only the
vacant channels within the aggregation range can be utilized
by the user, which makes the full-band sensing inefficient.
Some existing works assume the dynamic radio environment
as a simple independent-channel model, while in practice the
external interference results in a high degree of correlation
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between these channels in wireless network [27]. Based on
the correlations between channels, we hope the single SU with
certain bandwidth demand d can only select a segment com-
prising C channels to sense and aggregate the vacant channels
for transmission, or just stay idle at the beginning of each
time slot. The segment length is also the user’s aggregation
capability C which is determined by the hardware limitations,
thus all sensed vacant channels in the selected segment can
be aggregated. If the number of the vacant channels in the
selected segment is larger (smaller) than d, the transmission
is successful (failed), which can be presented by ACK sig-
nal. ACK signal is the control character sent by the receiving
station to the sending station through control channel, which
indicates that the data has been received successfully. If the
transmitter has obtained the ACK signal, it transmits the next
block of data, otherwise it repeats the current block of data.
Based on the sensing of the selected segment, the user decides
what action to take in the next time slot. The goal is to achieve
successful transmission as much as possible over time.

As the user can only sense the selected segment and has no
full observations of the system, the problem can be formulated
as a POMDP, where the user’s environmental observation is
incomplete at each time slot. Consequently, the user cannot
even accurately know the current state of the system, and the
prediction of the next state would be more difficult. Without
the knowledge of the system dynamics, partial observations
lead to larger state space and higher computational complexity.
The user is supposed to deduce the current state from partial
observations based on channel correlations, and infer the next
state through learning from the Markov process.

B. State Space

Consider a wireless network with N correlated channels
divided from a shared bandwidth. Given that each channel
has two possible states: occupied (1) or vacant (0), the whole
system can be described as a 2N -states Markov model, and
the state space is denoted as S

S = {s = (s1, . . . , sN )|si ∈ {0, 1}, i ∈ {1, . . . ,N }}. (1)

Let P =

[
p00 p10
p01 p11

]
be the transition matrix of the Markov

chain and the state transition of each channel is shown in
Fig. 5. The dynamic change of the spectrum environment with
time in the whole system is shown in Fig. 6.

C. Action Space and User Observation

A single user with certain bandwidth demand d (i.e., it
requires d vacant channels for broadband transmission) is
able to aggregate vacant channels in the range of aggrega-
tion capacity C (C < N). At the beginning of each time
slot, the user either stays idle and transmits nothing or selects
a length-C segment of the whole channels to sense, and
then there are N − C + 1 segments for selection. The
vacant channels in the selected segment will be aggregated
for transmission. Let A = {0, 1, . . . ,N − C + 1} present
the action space and the user will choose the i th segment
at the beginning of time slot t if at = i(i ∈ A, i �= 0)

Fig. 5. State transition of each channel.

or transmit nothing and sense the state of the first segment
acquiescently if at = 0. The spectrum sensing errors are
not taken into account. What the user observed, denoted as
ot ∈ {(o1t , . . . , oCt )|oit ∈ {0, 1}, i ∈ {1, . . . ,C}}, is the
basis to determine the next action at+1. Since the user only
sense the state of selected segment, namely the whole system
is partially observable to the user, the problem falls into a
general POMDP. However, the user can use the correlation
between channels to infer the current system state based on
its decision and observation, and then deduce the next state
and determine the next decision. If the number of vacant chan-
nels in the selected segment is larger than user demand d, the
transmission is successful, otherwise failed.

D. Reward Design

After action at is taken at time slot t, we assume that the
user can receive a absolutely accurate binary feedback ft indi-
cating whether its packet is successfully delivered (e.g., ACK
signal). Assume ft = 1 if the transmission has succeed, other-
wise ft = 0, and then we define reward function at time slot
t as

rt (st , at ) =

{
0, if at = 0
4ft − 2, if 1 ≤ at ≤ N − C + 1

(2)

where st is system state at time slot t, which is not completely
observable to the user but determines the binary feedback ft
potentially. Our objective is to find a policy π, which is a func-
tion mapping the observation ot to next action at+1 at each
time slot, to maximize the excepted accumulated discounted
reward

Vπ(o) = Eπ

[ ∞∑
t=0

γtrt+1(st+1, π(ot ))|o0 = o

]
(3)

where γ ∈ (0, 1) is a discount factor, π(ot ) is the action under
policy π at time slot t + 1 when current observation is ot .
The optimal policy π∗ can be presented as

π∗ = argmax
π

Vπ(o)

= argmax
π

Eπ

[ ∞∑
t=0

γtrt+1(st+1, π(ot ))|o0 = o

]
. (4)
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Fig. 6. The system spectrum environment.

III. IMPROVIDENT POLICY AND DRL FRAMEWORK

There are two approaches to cope with the dynamic spec-
trum sensing and aggregation problem in correlated channels
formulated in Section II: i) investigate the system transition
matrix and make decisions based on the prior knowledge of
the system dynamics, which is known as model-based plan-
ning; ii) approximate the function mapping observations to
optimal action by interacting with the system directly. In this
section, we propose the Improvident Policy with known full
knowledge of the system dynamics as the first approach to
obtain near-optimal performance. Q-Learning and DQN are
adopted without any prior knowledge of the system dynamics
as the second approach.

A. Improvident Policy

The Improvident Policy aims at maximizing immediate
expected reward, which means that prior knowledge of the
system dynamics is necessary. We assume that the system
transition matrix has been known and the current state can
be deduced precisely through partial observation under the
Improvident Policy, and then the policy can be presented as

π̂ = argmax
a

∑
s′∈S

P
(
s ′|s)r(s ′, a) (5)

where P(s ′|s) is the joint transition possibility from current
state s to next state s ′. Given next possible state s ′ and action
a, the reward r(s ′, a) is obtained by checking if the number of
vacant channels in selected segment satisfies the user demand
d, but not through ACK signal.

Note that the next state is only relevant to current state
and has no business with what action has been taken, so the
performance of the Improvident Policy with known system
dynamics is near-optimal. The Improvident Policy is primarily
designed to measure the performance of DQN, so we give it
a lot of favorable assumptions. However, it is hard to obtain
the system dynamics and infer the current state according to
partial observation in practice.

B. Q-Learning

RL is an important branch of ML, which mainly includes
four elements: agent, environment state, action and reward.
The agent acts by observing the state of the environment and
obtains rewards. According to the rewards, the agent gradually

acquires the action strategy that adapts to the current environ-
ment. Therefore, RL is very suitable for solving the continuous
decision-making problems in Markov process.

Though the dynamic spectrum sensing and aggregation
problem turns into a POMDP due to partial observability of
the whole system, we can convert the POMDP into a Markov
decision process (MDP) by regarding x as the system state
where x includes two parts: sensing action and corresponding
observation of the sensed segment.

In RL the agent interacts with the environment in discrete
time, receives a reward r corresponding to each state-action
pair (x, a) as shown in Fig. 7. Q-Learning as one of the most
popular RL method aims at finding a sequence of actions
to maximize the expected accumulated discounted reward
through approximating an action-value function. The Q-value
of the action a under the state x, given by the action-value
function, denotes the expected revenue of the state-action pair
(x, a) and the action with the largest Q-value will be chosen at
each time slot. We define Qπ(x , a) as the action-value func-
tion when a sensing action a is taken in environment state x
under policy π. The Q-value of each state-action pair (x, a),
denoted as q(x, a), updates through interacting with the system
environment as follows

q(x t , at+1)← q(x t , at+1)

+ α

[
rt+1 + γ max

a ′∈A
q
(
x t+1, a

′)− q(x t , at+1)

]
(6)

where α ∈ (0, 1] is the learning rate.
The problem of Q-Learning is that the Q-value of each state-

action pair is stored in a look-up table. The large system state
space leads to the scale of Q-value table increases enormously.
As a consequence, the Q-values of some state-action pairs can-
not be sufficiently updated or even seldom updated in limited
iterations.

C. Deep Q-Network

The performance of traditional RL methods is limited by
the scale of the state space and action space of the problem.
However, complex and realistic tasks are characterized by
large state space and continuous action space, which are
intractable with general RL methods. DRL combines DL with
RL to enable the agent to deal with complex states and actions
and DQN is one of the most popular DRL method. In DQN
a deep neural network is adopted to replace the look-up table
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Fig. 7. Interaction between agent and environment in reinforcement learning.

Algorithm 1 DQN Algorithm for Dynamic Spectrum Sensing
and Aggregation
• Input: memory size M, mini-batch size B, discount rate
γ, learning rate α, ε in ε-greedy policy, target
network update frequency F, and the number of
iterations Imax .

• Do Initialize the Q-network Q
(
x t , at+1; θ

)
and its

target network Q̂
(
x t , at+1; θ̂

)
with random

weights. Initialize the starting action a0 and
execute it to get the initial state x0.
Initialize Train=True.

• For t = 1, 2, ... do
If Train Then

Choose at by ε-greedy policy.
Else

at = argmaxa Q
(
x t−1, a; θ

)
.

End If
Execute action at and collect rt and x t .
If Train Then

Store (x t−1, at , rt , x t ) in memory unit.
If t ≥ M Then

Remove the oldest experience tuple in
memory unit.

End If
End If
If Train And t ≥ M Then

Sample random mini-batch of experience tuples
from memory unit.
Compute the loss function L(θ) and update
the weights θ.
If (t −M )mod F = 0 Then

copy the weights θ → θ̂.
If (t −M ) > Imax Then Train=False

End If
• End For
Algorithm End

in Q-Learning to provide the Q-value of each state-action
pair. The neural network enables DQN to tackle the curse of
dimensionality resulting from large system state space which
is intractable with the Q-value table in Q-Learning. The main
process of DQN for dynamic spectrum sensing and aggrega-
tion is detailed in Alg. 1. The structure of DQN is presented
in Fig. 8 and each component is specified as below.

1) Input Layer: The input of DQN is state x t including the
sensing action taken at time slot t and corresponding observa-
tion, i.e., x t = [a t ,ot ], where action vector a t is the one-hot
vector representation of action at by setting the (at + 1)th

element to 1.

Fig. 8. An illustration of DQN.

2) Output Later: The output of DQN is a vector of size
N − C + 2. The estimated Q-value if the user stays idle is
presented in the first entry. The (k + 1)th entry is the estimated
Q-value for transmitting in the k th segment at time slot t + 1,
where 1 ≤ k ≤ N − C + 1.

3) Reward Definition: The reward rt after taking action at
is obtained through ACK signal ft , which has been defined
in (2).

4) Q-Network: The Q-network maps the current state to a
string of action values, denoted as Q(x t , at+1; θ) : x t →
{q(x t , a; θ)|a ∈ A}, where θ is the parameters in the
network. Given a state x, the Q-values obtained from the
Q-network present the estimates of the expected accumu-
lated discounted rewards of all actions. After training process,
the action with the largest Q-value will be taken in each
time slot.

5) Action Selection: In the initial stage of training, the Q-
value of each state-action pair is not correct since the network
has not converged. If we take the action with the largest Q-
value, most of the actions will not be implemented and the cor-
responding Q-values cannot be effectively updated. To get rid
of the local optimum of DQN, ε-greedy policy is adopted for
action selection, where action at+1 = argmaxa Q(x t , a; θ)
with possibility 1− ε while a random action is selected with
possibility ε.

6) Experience Replay: For each time slot t, we refer
to (x t , at+1, rt+1,x t+1) as an experience tuple stored in
a memory unit and a mini-batch of experience tuples will
be sampled in each iteration for training. As a supervised
learning model, deep neural network requires the data to
be independently and uniformly distributed, but the sam-
ples obtained through interaction with the environment are
correlated. Experience Replay breaks the correlation by
storage-sampling.

7) Target Network: We implement the target network,
denoted as Q̂(x t , at+1; θ̂), to generate the target value. The
target network has the same structure with the Q-network,
whose parameters θ̂ are copied from the Q-network at reg-
ular temporal intervals. In other words, the target network
is updated at a lower frequency, which ensures that the tar-
get value received by Q-network in the training process is
relatively stable.

8) Loss Function: The loss function is defined as the mean
square error of the target value and the Q-value, i.e.,

L(θ) = E

[(
yj −Q

(
x j , aj+1; θ

))2] (7)
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Algorithm 2: Re-Training of DQN
• Do Train the DQN and find a good policy as in Alg. 1.
• For t = 1, 2, ... do

Perform actions according to the trained DQN and
receive rewards.
Calculate the accumulated reward.
If the accumulated reward is less than a given threshold
Then

Re-train DQN as in Alg. 1 to find a new policy.
End If

• End For
Algorithm End

where yj is the target value combining the output of the target
network and the reward

yj = rj+1 + γmax
a∈A

Q̂
(
x j+1, a; θ̂

)
. (8)

As shown in Alg. 1, different from general DL, there is no
training data set or test data set for network training. In the
proposed scheme, the user has to choose a channel segment for
sensing and aggregation according to its bandwidth demand
and aggregation capacity in a dynamic spectrum environment.
Then the user receives a feedback (i.e., ACK signal) indicating
whether the transmission is successful. We implement DRL to
find a good selection strategy in the unknown dynamic envi-
ronment. The user’s selection of channel segments is treated as
an interaction with the environment, and the reward is designed
based on the ACK signal. The user simply interacts with the
environment in a continuous way and learns from the rewards
received in the process. When the learning process is finished,
the user knows which actions should be issued in different
environment states to obtain a greater reward. Therefore, it
does not need to provide a special training set and test set, but
only needs an interactive environment and accurate feedback.
This is the reason why the training set is not required in the
proposed scheme. During the learning process, the results of
the user’s interaction with the environment in the past period
of time are stored in the memory unit as experience tuples,
which will be taken out in batches for network training. The
process in RL is called Experience Replay. Due to the expe-
rience tuples in the memory unit changes over time, it cannot
be considered as a data set.

Note that the ACK signal can not only provide rewards
during training process, but also serve as monitoring during
DQN implementation. The performance degradation caused
by the change of system environment will be reflected in the
ACK signal, so that DQN can be reminded to enter the training
process again. In other words, DQN can use ACK signal to
adjust itself in time to better adapt to the dynamic spectrum
environment. The whole process is shown in Alg. 2.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section we compare DQN with other three poli-
cies: the Improvident Policy, Q-Learning, and the Random
Policy. We assume that under the Improvident Policy the user
can deduce the current states of the whole system channels
precisely based on partial observation and the system transi-
tion pattern is also known, even though it is hard to achieve

TABLE I
HYPER-PARAMETERS OF DQN

in practice. In the Random Policy, the user randomly selects
one of available segments and aggregates the vacant channels
for transmission at the beginning of each time slot.

A. Details of DQN

The neural network adopted in the DQN has four fully con-
nected layers with each hidden layer containing 50 neurons
and ReLU as activation function. ReLU is the most popular
activation function, which is simple for computing and can
avoid gradient explosion. Adam [38] algorithm is applied to
implement gradient descent during updating the parameters
of the DQN, which is a commonly used optimizer with high
convergence speed. The memory size is selected according
to the number of possible system states and available user
actions to ensure that the experience tuple of each state-action
pair can be included. Mini-batch size is the number of sam-
ples fed into the model at each network training step. 32 is
a commonly used value in DL, which can guarantee the fast
convergence speed of the network and avoid the huge memory
occupation. The ε in ε-greedy policy is initially set as 0.9, and
decreases to 0 in 10000 iterations. At the beginning of train-
ing, the network has not converged, so we encourage the user
to explore the rewards brought by different actions. When the
training is over, the network has converged, and the user can
choose the action according to the given Q-value. Therefore,
ε is supposed to gradually decrease from a value close to 1
during training. The discount rate (usually close to 1) is set
to 0.9 so that the user will focus on rewards in the immediate
future, because paying more attention to the long-term reward
will make the training process slower and more difficult due
to the uncertainty of long-term reward. Details of the DQN
hyper-parameters are summarized in Table I. The simulation
is implemented in Tensorflow with GPU.

B. Performance Evaluation

We consider the system containing N = 24 channels which
are highly correlated, where several independent channels fol-
low the same 2-state Markov chain with transition matrix P,
while the state of any other channel is the same (the corre-
lation coefficient ρ = 1) or opposite (ρ = −1) to that of an
independent channel. Note that which channels are interrelated
is randomly determined.

As discussed in Section II, the user can stay idle (a = 0)
or select one of available segments (a = i, i > 0) to sense,
and then there are four possible situations after an action is
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Fig. 9. Decision accuracy of four policies in 10 different scenarios when
C = 8 and d = 4.

taken: i) a = 0 and none of the segments in the system envi-
ronment could satisfy the user’s transmission demand, i.e., a
successful transmission is impossible in current system state;
ii) a = 0 but there exists available segments in which the num-
ber of vacant channels could afford a successful transmission;
iii) a = i, i > 0 and the transmission succeeds; iv) a = i, i > 0
but the transmission fails, which means that the PUs are dis-
rupted in a way. However, the user is not able to tell the first
two situations in practice due to partial observation of the
system, but the difference between them is taken into account
in simulations to evaluate the performance. We assume the user
has made the right decision if it achieves a successful trans-
mission or stays idle when the system environment is terrible
and calculate the decision accuracy in 10000 time slots.

1) Decision Accuracy: Fig. 9 shows the decision accuracy
of four policies: DQN, Improvident Policy, Q-Learning, and
Random Policy. We assume there are 4, 5, or 6 independent
channels in the system and change the transition matrix P to
get 10 different dynamic system scenarios with the correlation
coefficient ρ = −1 in the first six scenarios and ρ = 1 in
the last four scenarios. Specifically, there are 4 independent
channels in scenario 1, 2, 7, and 8, 5 independent channels in
scenario 3, 4, and 9, and 6 independent channels in scenario 5,
6, and 10. Moreover, four different transfer matrices are used
in these ten scenarios. As shown in Fig. 9, the Improvident
Policy, which is assumed having full knowledge of the system
dynamics, as well as DQN, performs better than Q-Learning.
In spite of the scarcity of the system prior knowledge, DQN
achieves a performance very close to the Improvident Policy
in most scenarios, which indicates the strong learning ability
of DQN in dynamic environment. Q-Learning works worse
than DQN due to incapable of dealing with large state space.

Additionally, the performance curves of the three policies
above has a larger fluctuation among all scenarios than the
Random Policy, which indicates that the state transitions in
different scenarios have different randomness, making the
achievable performance limited even if the system dynamics is
fully known. If the randomness of the state transition of each
channel were very small (i.e., the probability of state transi-
tion is too large or too small), it would be easy for the user

Fig. 10. Accumulated discounted reward of four policies in scenario 1 when
C = 8 and d = 4.

to predict the next state of the system environment, so as to
achieve a high decision accuracy such as 100% in scenario 1.
If the randomness of the state transition of each channel were
very large, the achievable optimal decision accuracy would be
limited under any policies. Therefore in scenario 7 the deci-
sion accuracy of DQN, Improvident Policy, and Q-Learning
is about 60%. Different scenarios are independent with each
other in our simulations. In different scenarios, there are dif-
ferent number of states, different probability of state transition
and different sets of relevant channels. So even under the same
policy, the achievable optimal performance is diverse in differ-
ent scenarios due to the limitation of environmental conditions.
Therefore, the performance curve fluctuates with the scenario.
However, as shown in the figure, the proposed DQN has close
performances with the near-optimal Improvident Policy in var-
ious scenarios, indicating that the proposed algorithm can
achieve near-optimal performance regardless of the spectrum
environment.

Fig. 10 shows the accumulated discounted reward over time
of four policies in scenario 1. It can be seen that except for
the Random Policy, the accumulated discounted rewards of
other policies increase gradually with time and finally stabilize.
The curves of DQN and Improvident Policy are coincident
and stable at the highest value, indicating that DQN achieves
extremely close performance to Improvident Policy even in
the absence of system dynamics information.

In addition, we give the change of maximum Q-value over
time to show the learning process of DQN. The maximum
Q-value for all actions in a given state represents the estimate
of the maximum expected cumulative discount reward. We cal-
culated the average maximum Q-value in each iteration from
ten different initial states of the first five scenarios. As shown
in the Fig. 11, the average maximum Q-value in all scenarios
increases and remains stable, indicating that DQN gradually
learns a good policy and maintains it.

Previous works [27]–[30] tended to adopt obtained reward
for performance evaluation. In our work, we defined different
performance evaluation parameters for four different situations
as discussed above. It is necessary to distinguish situation
i) and ii) accurately in performance evaluation because staying
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Fig. 11. Average maximum Q-values of DQN in training process when
C = 8 and d = 4.

idle when the spectrum environment is in good condition is
not the correct decision, but still better than a failed transmis-
sion, because transmission failure will lead to the interference
to the PUs. However, these two situations cannot be differen-
tiated through reward because staying idle means the obtained
reward is 0. So we treat situation i) and iii) as the right deci-
sion, situation ii) as the conservative decision, situation iv) as
the wrong decision, and assign different weights to them in
the definition of the modified decision accuracy. We define the
modified decision accuracy as

modified decision accuracy

=
#success + β ×#conservative

#timeslots
(9)

where #success is the number of times the user takes the cor-
rect decision, #conservative is the number of times the user
stays idle while the system environment is in good condition,
β is the measurement weight of such conservative choices,
which is set as 0.5 in this paper, and #timeslots is the total
number of time slots.

In the definition of modified decision accuracy, the weights
of the correct decision and the failed transmission can be
viewed as 1 and 0, respectively. So the weight of #conser-
vative is supposed to be between 0 and 1, which depend on
how much we approve of this conservative action. We regard
the conservative action as half-correct decision so the weight
of #conservative is set to the middle value. The result is shown
in Fig. 12.

Compared with Fig. 9, the modified decision accuracy of
DQN is higher than the decision accuracy in the last three
scenarios, but in the other policies the change is little, which
means that at some time slots the user of DQN stays idle
and avoids transmission failure, consequently reduces the
interference to PUs.

We can compare the interference directly of four policies
resulting from transmission failure, and the interference is
defined as

interference =
#failure

#timeslots
(10)

where #failure is the number of failed transmission.

Fig. 12. Modified decision accuracy of four policies in 10 different scenarios
when C = 8 and d = 4.

Fig. 13. Interference of four policies in 10 different scenarios when C = 8
and d = 4.

Fig. 13 shows that compared with the Improvident Policy,
the interference of DQN is similar or even lower, that is why
the modified decision accuracy of DQN is better than that of
the Improvident Policy in the last three scenarios.

The proposed DQN can be theoretically extended for cases
with any user demand and aggregation capacity. However,
the aggregation capacity and the user demand jointly deter-
mine the problem complexity of the dynamic spectrum sensing
and aggregation. If the aggregation capability were strong
enough and the user requirement were small, it would be easy
to achieve successful transmissions under any policy. If the
aggregation capability were weak and the user requirement
were large, a successful transmission tends to be impossible.
So we assume the aggregation capacity as 1/3 of the full-
band and the user demand as 1/2 of the aggregation capacity
to make the problem more reasonable and practical. We also
compare the performance of four policies with different values
of adjusted user demand and aggregation capacity to indicate
that the proposed algorithm can perform well regardless of the
value of user demand and aggregation capacity.

The robustness of DQN with different aggregation capacity
C and user demand d is verified and the results are shown in
Fig. 14–17. We found that in most scenarios DQN performs
closely to the Improvident Policy even without any knowledge
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Fig. 14. Modified decision accuracy of four policies in 10 different scenarios
when C = 8 and d = 3.

Fig. 15. Modified decision accuracy of four policies in 10 different scenarios
when C = 8 and d = 5.

Fig. 16. Modified decision accuracy of four policies in 10 different scenarios
when C = 7 and d = 4.

of the system dynamics. In some special scenarios DQN per-
forms best, which mainly because DQN tends to stay idle to
avoid transmission failure at some intractable time slots. In a
very few scenarios, the performance of DQN is significantly
worse than that of the Improvident Policy, but it is still better
than that of Q-Learning.

2) Computational Complexity: From the perspective of
temporal complexity, DQN and Q-Learning have an obvious

Fig. 17. Modified decision accuracy of four policies in 10 different scenarios
when C = 9 and d = 4.

Fig. 18. Average processing time of three policies in 10 different scenarios.

advantage because the mapping from state to action has been
learned through training process, while the Improvident Policy
needs to apply the knowledge of the system dynamics in each
time slot. The Improvident Policy has to compute the tran-
sition possibilities from the current state to the next possible
states, as well as the reward for each action in each of the next
possible states. So the temporal complexity of the Improvident
Policy can be presented as O(2i +2i × (N −C +2)), where i
is the number of independent channels, 2i denotes the number
of the next possible states, and N − C + 2 is the number of
actions. Both DQN and Q-Learning have temporal complexity
of O(1) since there is no recurrent computation.

In Fig. 18 we show the average processing time of three
policies for 10000 time slots in our device to verify the
aforementioned discussions. The Improvident Policy has sig-
nificantly lower time efficiency than the other two strategies.
What is worse is that the curve of the Improvident Policy
varies greatly in different scenarios, because each additional
independent channel doubles the number of the next possi-
ble state, and thus the processing time. Q-Learning definitely
has the least processing time in that it uses table lookup
instead of computation. DQN provides a performance very
close to Q-Learning in temporal complexity. Although DQN
and Q-Learning require extra training time compared with
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the Improvident Policy, they have greater advantages in the
long run. By the way, Q-Learning with the lowest tempo-
ral complexity also has the highest spatial complexity due
to the huge size of look-up table. Another advantage of
DQN and Q-Learning over the Improvident Policy is that
their curves barely fluctuate in different scenarios, which
reflects the robustness of their performance in different system
environment.

In terms of spatial complexity, since DQN has its fixed
network structure, no matter how large the environment state
space and action space are, the storage space of the algo-
rithm cannot be affected. So the spatial complexity of DQN
is O(1). The Improvident Policy needs to traverse all possible
next states to obtain the expected reward of each action, so
its spatial complexity is proportional to the number of states,
which can be formulated as O(2i ). Although Q-Learning has
the highest temporal efficiency than the other policies, it counts
on a huge spatial complexity of O(2i × (N −C +2)) because
Q-Learning has to store the Q-value corresponding to each
action in each state. As discussed above, only the spatial com-
plexity of DQN does not increase with the size of the problem.
While the spatial complexity of Improvident Policy is affected
by the state space, the spatial complexity of Q-Learning is
affected by both the state space and the action space.

V. CONCLUSION

In this paper, we have considered the correlation between
channels in wireless networks and modeled the dynamic spec-
trum environment as a joint Markov chain. We have assumed
that the SU with certain bandwidth demand has the fixed
aggregation capacity to access multiple vacant channels simul-
taneously for successful transmission. At each time slot, the
SU either stays idle or selects a segment of the spectrum to
sense. The segment length is determined by the aggregation
capacity so that the SU can aggregate the vacant channels in
the selected segment. The next user decision will be made
based on the sensed state of the selected segment. We have
formulated the dynamic spectrum sensing and aggregation
problem as a POMDP and proposed a DQN framework to
address it. We have compared the performance of three differ-
ent policies: DQN, Q-Learning, and the Improvident Policy
with known the system dynamics. Simulations have shown
that the DQN can achieve a near-optimal decision accuracy in
most system scenarios even without the prior knowledge of
the system dynamics. The performance is also robust among
different aggregation capacities and different user demands
for bandwidth. Moreover, DQN has the lowest computational
complexity in both time and space, and the temporal and spa-
tial complexity of DQN is not affected by the expansion of
the state space or action space of the problem.
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