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Abstract By interpolating between information theory and synergetics, we provide a
bridge to connect the two kinds of subjects. As an application, the capacity formula of
multiple-input multiple-output Gaussian channels based on the Fokker-Planck Equation of
the synergetics is derived. It is in accordance with Telatar’s capacity formula in information
theory and gives a physical explanation (order parameters) of the observed channel charac-
teristics. Moreover, the master equation of the information theory is also derived to obtain
error exponents. Error exponents provide a partial solution to how to get close to channel
capacity by giving an upper bound to the probability of error. These results demonstrate that
the notion of synergetics introduced here can serve as an intuitive tool in information theory.
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1 Introduction

Information theoretic analyses during the mid 1990s [1,2] have demonstrated a potentially
huge gain in capacity of wireless systems by the use of multiple antennas at both the
transmitter and receiver ends. The capacity grows linearly with min(M, N ), when employ-
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ing M transmit antennas and N receive antennas. These initial results were based on simple
multiple-input multiple-output (MIMO) channel models with independent flat fading among
sub-channels [3–5]. In practice, MIMO channels are an abstract and have many different com-
munication environments of diverse physical nature. The real capacity gain by MIMO system
in particular environment strongly depends on its propagation characteristics. The channel
parameters are evaluated by a set of measurements in studied environments, or by simulating
propagation models [6,7]. The measurement approach requires MIMO experimental mea-
surement platforms, and gives access to pertinent information about the radio channel for
both indoor and outdoor wireless communication scenarios. However, this approach presents
difficulties: such as the complicated calibration step and the high cost. Consequently, an ap-
proach based on simulations is sought. There are two families of models: the statistical type
and the deterministic type [4,5]. The statistical type can normally be applied to several envi-
ronmental configurations with reasonable model accuracy and complexity. A deterministic
model is more complex, but also more accurate for a special MIMO environment or sce-
nario. Unfortunately, the complexity of the environment description indicates that dynamic
instabilities exist in MIMO communication systems.

In recent years much effort has been devoted to understanding the origin of dynamic
instabilities [8], induced by time-varying channel, in MIMO communication systems. The
corresponding channel model was used to generate channel matrices whose space-time char-
acteristics closely match those of realistic scenarios, particularly when birth and death of
multipath clusters are considered in the stochastic representation. Meanwhile, numerous
experimental and theoretical studies mainly on channel propagation environment have clearly
demonstrated that instabilities leading to a chaotic behavior can easily be induced in a broad
class of nonlinear systems [9].

The concepts of synergetics can be applied to a general class of nonlinear systems. It
is an interdisciplinary field of macroscopic spatial, temporal and spatio-temporal structures
arising out of chaos [10,11]. Synergetics is a mathematical model representing self-organi-
zation dynamics in a complex system. The state dynamics in synergetics is described with
differential equations including two kinds of parameters called attention parameter and order
parameter. A method for stereo matching problem in computer vision using synergetics was
presented in [12]. The method has the two features: one is flexibility produced by constructing
the parameters, and the other is low computational cost because of the possibility of parallel
computability. Moreover, synergetics was used to study information theory [13], it provides
a powerful tool for probing the fundamental nature of the driving forces of self-organiza-
tion with respect to information storage, data processing, and so on, in living and manmade
systems. Synergetics is established on the foundation of many scientific subject relations
[14] and has achieved important application fruits in many ways (see [15–19] and references
therein). However, very few studies are available in information domain, especially MIMO
mobile communication systems.

In this paper, we provide a bridge to connect the information theory and synergetics. As an
application, the capacity formula of MIMO Gaussian channels based on the Fokker-Planck
Equation of the synergetics is derived. It is in accordance with Telatar’s capacity formula in
view of information theory and gives a physical explanation of the observed channel char-
acteristics. Moreover, the master equation of the information theory is also derived to obtain
error exponents. Error exponents provide a partial solution to how to get close to channel
capacity by giving an upper bound to the probability of error. These results demonstrate
that the notion of synergetics introduced here can serve as an intuitive tool in information
theory.
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The rest of the paper is organized as follows. In Sect. 2, the capacity formula of MIMO
Gaussian channels based on the Fokker-Planck Equation of the synergetics is derived. In
Sect. 3 , the master equation of the information theory is derived to obtain error exponents
and numerical results of error exponents are presented. The paper is finally summarized in
Sect. 4.

Notation: Boldface upper case letters denote matrices, boldface lower case letters denote
column vectors, and italics denote variable quantities. The superscripts(·)∗and(·)+ denote
complex conjugate and Hermitian operations, respectively. det(·)andE[·] denote determi-
nant and expectation of a matrix, respectively.

2 MIMO Gaussian Channel Capacity

For a MIMO system with nT transmit antennas and nR receive antennas over a general linear
vector MIMO Gaussian channel, the received signal vector y can be expressed by [1,20]

y = Hx + n (1)

where all quantities are complex-valued, x is the transmitted signal vector, H is the nR ×
nT matrix, and n is an nR-dimensional zero-mean complex Gaussian noise vector with inde-
pendent, equal variance real and imaginary parts. The noise covariance matrix is

∑

n

= E[(n − E[n])(n − E[n])+] (2)

It is assumed that
∑

n = InR , that is, the noises corrupting the different receivers are inde-
pendent. The transmitter is constrained in its total power toP , i.e.,

E[x+x] ≤ P. (3)

A complex random vector x is said to be Gaussian if the real part of an Hermitian matrix is
symmetric and imaginary part of an Hermitian matrix is anti-symmetric. In this case, a com-
plex Gaussian random vector x is circularly symmetric complex Gaussian random vector. Its
mean value and covariance are given by

E[x] = μ (4)
∑

x

= E[(x − E[x])(x − E[x])+] = Q. (5)

The input probability density function of a circularly symmetric complex Gaussian with μ
and covariance Q is given by

P(x) = det(πQ)−1 exp[−(x − μ)+Q−1(x − μ)]. (6)

The output conditional probability density function corresponding to the linear vector
Gaussian model is written as

Py|x(y) = 1

det
(
π

∑
n
) exp

[
−(y − Hx)+

−1∑

n

(y − Hx)

]
(7)

To find a proper tool for the evaluation of the corresponding probability, we make use of the
equation that it has established in synergetics. The equation is capable of describing both
deterministic and random processes in the motion of the particle and can be expressed as
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d P

dt
= d

dq
(γ q P)+ 1

2
ξ

d2

dq2 P. (8)

This equation is the so-called Fokker-Planck equation that it describes the change of the
probability distribution P of a particle during the course of time t.−γ q is called drift-coeffi-
cient, while ξ is known as diffusion coefficient. The same method can also be exactly applied
to the general case of many variables. Next, our goal is to derive an equation for the output
conditional probability density function of the linear vector Gaussian channel. We make use
of (8) and obtain the corresponding Fokker-Plank equation of the MIMO Gaussian channels
as

d f

dt
= d

dq
(−λ f )+ 1

2
η

d2

dq2 f (9)

f = ln Py|x(y) (10)

where q, λ and η, and denote parameters of channel, conditional coefficient and transfer
coefficient, respectively. In MIMO Gaussian channels, the logarithm of conditional proba-
bility density function is time independent and d f /dt = 0 holds. Therefore, the (9) can be
rewritten as

d

dq
(−λ f )+ 1

2
η

d2

dq2 f = 0. (11)

Without loss of generality, (11) can be integrated with respect to the conditional probability
density function Py|x(y) and is given by

λ
d

dq

∫

R

(−Py|x(y) ln Py|x(y)dy − 1

2
η

∫

R

−
[

d

dq
ln Py|x(y)

]2

Py|x(y)dy = 0. (12)

Let I (Py|x(y)) := − ∫
R (−Py|x(y) ln Py|x(y)dy be the Shannon entropy of the conditional

probability density function, where “:=“ denotes definition. Now, we generate the mathemat-
ical definition of Fisher information [21,22].The Fisher information is a way of measuring
the amount of information that an observable random variable x carries about an unknown
parameter θ upon the likelihood function of θ, L(θ) = f (x; θ), depends. Let {Pq : q ∈ R}
be a family of conditional probability densities (or more generally, likelihood functions)
parameterized by a parameter q . The Fisher information of Pq (with respect to the parameter
q) is defined as

J [Py|x(y)] :=
∫

R

[
d

dq
ln Py|x(y)

]2

Py|x(y)dy. (13)

From (12) and (13), a remarkable relation can be obtained if the valued of the normalized
order parameters equals one, i.e.,

d

dq
I [Py|x(y)] = 1

2
J [Py|x(y)]. (14)

This link between Fisher information and entropy is known as de Bruijn’s identity [23,24].
The application of de Bruijn’s identity to quantum systems is straightforward. The most
direct application is to analyze and understand the sensitivity and robustness of a system to
variations in certain parameters. In the following, we will discuss how to apply de Bruijn’s
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identity to MIMO Gaussian channels. In information theory, the mutual information I (x; y)
is described by

I (x; y) = H(y)− H(y|x) = H(y)− H(n). (15)

Channel capacity can be obtained by maximizing I (x; y). The output conditional probability
density function is given in (7), and the output unconditional probability density function can
be written as P(y) = Ex[Py|x(y)]. The mutual information is given by

I (x; y) = E

[
log

Py|x(y)
Py(y)

]
= − log det

(
πe

∑

n

)
−

∫
Py(y) log Py(y)dy. (16)

For MIMO Gaussian channels an extension of (14) to the gradients information measures
with respect to H is given by

∂

∂H
I (x; Hx + n) = J (Hx + n) (17)

where the definition J (y) := J (Hx + n) is used in Refs. [24], and H is channel matrix with
complex Gaussian distributed entries. For Fisher’s information matrix, J (y) is defined as

J (y) := Ey[∇y log Py(y)∇+
y log Py(y)]. (18)

Now, using

∇y Py(y) = ∇y Ex[Py|x(y)] = Ex[∇y Py|x(y)] = −Py(y)(y − HE[x|y]) (19)

and substituting (19) into (18), we get

J (y) = E[(y − HE[x|y])(y − HE[x|y])+] = E[yx+] − E[HE[x|y]E[x+|y]
= H(E[xx+] − E[E[x|y]E[x+|y]]) = H(E[xx+] − E[E[x|Hx + n]E[x+|Hx + n]])

= H
∑

x

(
InR + H+H

∑

x

)−1

. (20)

Substituting (20) into (17), we obtain

∂

∂H
I (x; Hx + n) = H

∑

x

(
InR + H+H

∑

x

)−1

. (21)

Integrating (21), the maximum mutual information is given by

I (x; y)max = log det

(
InR + H

∑

x

H+
)

= log det(InR + QH+H) (22)

where InR is the nR × nR identity matrix. The equation (22) is in accordance with Telatar’s
capacity formula of MIMO Gaussian Channels [2]. The behavior of MIMO Gaussian chan-
nels may be controlled from the outside by specific control parameters matrix H. They are
also called order parameters in synergetics theory, as the channels can no longer adjust its state
smoothly and one or several collective variables may become unstable. These unstable con-
figurations serve as order parameters. They describe the evolving order and simultaneously
give orders to the subchannels on how to behave so that the ordered state is maintained.
Hence, we are able to generalize the concept of order parameters in such a way that the
Fokker-Planck Equation of the synergetics can systematically be applied to nonlinear sys-
tem in MIMO Gaussian channel. By analyzing order parameters H for MIMO Gaussian
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Channels, it is possible to determine whether a capacity can be obtained using a general
purpose “generic” channel model or a more specific “high-level” channel. At critical values
of the order parameters, the problem becomes unsolvable without the addition of extra prior
knowledge.

3 Error Exponents

Usually, it is not always sufficient that we know the capacity formula of a channel. We must
know how to get close to the channel capacity. Error Exponents provide a partial solution to
the problem by giving an upper bound to the probability of error, it is achieved by block codes
of a given length n and code rateR. The upper bound [2] is known as the random coding
bound and is given by

	(error) ≤ exp (−nEr (R)) (23)

where 	(error) is the probability of error. The random coding exponent Er (R) is given by

Er (R) = max
0≤ρ≤1

E0(ρ)− ρR (24)

where ρ denotes modified coefficient (0 ≤ ρ ≤ 1). In turn, E0(ρ) is given by the supremum
over all input distribution qx satisfying the energy constraint of

E0(ρ, qx ) = − log
∫ [∫

qx (x)Py|x(y)1/(1+ρ)dx

]1+ρ
. (25)

In MIMO Gaussian channels, we substitute (7) into (25) and obtain

Er (R) = ρ log det
(
InR + (1 + ρ)−1HQH+) − ρR. (26)

In this subsequence section, in order to give the compact upper bound of error exponents,
we derive the master equation of information theory to obtain the condition that the param-
eter nEr (R) is satisfied. The probability of signals m at a time t, p(m, t), increases due to
transition from other signals m′ to the signals m under signals decision error. Therefore, we
have the general relation

dp(m, t)

dt
= rate in-rate out. (27)

Since the “rate in” consists of all transitions from initial signals m′ to m, it is composed of
the sum over the initial signals. Each term of it is given by the probability at signals m′,
multiplied by the transition probability w(m,m′) per unit time to pass from m′ to m. Thus,
we obtain

rate in =
∑

m′
w(m,m′)p(m′, t). (28)

In a similar way, we find for the outgoing transitions the relation

rate out = p(m, t)
∑

m′
w(m′,m). (29)

Putting (28) and (29) into (27), we obtain

dp(m, t)

dt
=

∑

m′
w(m,m′)p(m′, t)− p(m, t)

∑

m′
w(m′,m) (30)
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Fig. 1 The relation among normalized parameter k, the code rate R and the maximum value of nEr (R).

which is called the master equation of information theory. The crux to generate the mas-
ter equation of information theory is to determine the transition probability w(m,m′)and
w(m′,m). In information theory, the signal transition probability is actually error probabil-
ity, which is defined as

w(m,m′) = ψ ′(error) = e−kz (31)

where k denotes normalized parameter, and z is defined as nEr (R). The following relation
holds

∑

m

p(m, t) = ε,
∑

m′
p(m′, t) = 1 − ε. (32)

substituting (31) and (32) into (30) and using the Stirling formula for approximation, we have

pst [v(z)] = pst (0) exp[v(z)] (33)

where v(z) = −kz2 + [z ln z + (1 − z) ln(1 − z)].
The extreme value is given by

∂v(z)

∂z
|z=zm = −2kzm + [ln zm − ln(1 − zm)] = 0. (34)

Thus, ln zm
1−zm

= 2kzm , and then zm = tan kzm , where zm denotes the maximum value of
nEr (R). This means when ψ ′(error) has the minimum value, and we obtain the compact
upper bound of error exponents through not considering block codes of a given length n and
rate R.

Fig. 1 illustrates the relation among normalized parameter k, the code rate R and the
maximum value of nEr (R). It is shown that the maximum value of nEr (R) increases as the
code rate R increases for the same normalized parameter k. This is because the code rate
increases the length of signals n that they can bring a rather large probability of error.
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4 Conclusions

A novel notion of synergetics with respect to information theory has introduced. As an
application, the capacity formula of MIMO Gaussian channels based on the Fokker-Planck
Equation has been derived. It is in accordance with Telatar’s capacity formula in view of infor-
mation theory and gives a physical explanation (order parameters) of the observed channel
characteristics. Moreover, the master equation of the information theory is derived to obtain
error exponents. Error exponents provide a partial solution to how to get close to channel
capacity by giving an upper bound to the probability of error, and do not consider respectively
block codes of a given length n and code rate R. These studies have demonstrated that the
notion of synergetics introduced here could serve as an intuitive tool in information theory.

It should be emphasized that we have only worked on the MIMO Gaussian channels.
Although the extension to the others channels, e.g., Rayleigh channels, Ricean channels,
seems straightforward, it is out of the scope of this paper. However, we remark that this
extension is more relevant in applications to information theory and will be our future work.
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