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Abstract—This letter focuses on the millimeter wave
(mmWave) wideband directional channel estimation problem for
a channel sounding system based on massive multiple-input
multiple-output (MIMO). The received signals of the wideband
pilot sequence are concatenated into a low-rank third-order
tensor. By leveraging the Vandermonde structure of the factor
matrices which construct the signal tensor, an algebra-based
CANDECOMP/PARAFAC (CP) decomposition method is used to
reconstruct the factor matrices, from which the channel param-
eters are estimated by a two-dimensional (2-D) correlation-based
search method and refined by the Nelder-Mead simplex (NMS)
algorithm. With the designed Kronecker-structured precoder and
combiner, the 2-D search method can be simplified to a 1-D search
method. A channel path number estimation method by analyzing
the singular values of the expanded signal tensor is also proposed.
Simulation results with the synthesized channel data illustrate
that the proposed algorithm can obtain high estimation accuracy.

Index Terms—MmWave communication, channel estimation,
massive MIMO, tensor decomposition, path number estimation.

I. INTRODUCTION

MMWAVE communication technology has been widely
considered one of the most prospective technologies in

the fifth-generation (5G) and sixth-generation (6G) wireless
communication systems. By exploiting the vast bandwidth,
mmWave communication can achieve a peak rate of 20
Gbps [1]. However, the issues faced by mmWave signals,
such as high path loss and susceptibility to obstructions,
have limited the development and application of mmWave
communication technology. Therefore, massive MIMO is in-
troduced to provide flexible beamforming, enhance the spatial
multiplexing capability, and overcome high path loss [2]. The
orthogonal frequency-division multiplexing (OFDM) technol-
ogy is also adopted to improve spectrum utilization and
overcome frequency selective fading. To reduce hardware costs
effectively, hybrid beamforming (HBF) is applied. However,
the compressed signal structure makes channel estimation
challenging for massive MIMO systems adopting HBF tech-
nology. Accurate channel state information (CSI) is required
for channel sounding and modeling. We expect to use the same
mmWave massive MIMO-OFDM communication front-end
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system as a channel sounder to conduct channel measurements.
Good channel estimation schemes are to be developed for such
channel sounders.

Most existing channel estimation schemes for mmWave
channel sounding consider uniform linear arrays (ULAs) for
both transmitter (Tx) and receiver (Rx). A space-alternating
generalized expectation-maximization (SAGE) based channel
estimation scheme was proposed in [3], where an iterative
cancellation method was used to initialize the channel pa-
rameters. By exploiting the sparsity structure of the mmWave
channel in both time and frequency domains, schemes based
on compressed sensing (CS) theory transformed the mmWave
channel estimation into a sparse recovery problem [4]. As
a powerful mathematical tool, tensors can hold the structure
of signals, and channel parameters can be restored by tensor
decomposition. In [5]–[7], the received signals were converted
into low-rank tensors, and the parameters were extracted by
tensor decomposition. A channel estimation scheme using
an alternating least-squares (ALS) based CP decomposition
was proposed in [5]. However, our simulation found it often
cannot converge to the vicinity of the true value, thus failing
to achieve good performance. Reference [6], [7] considered
channel estimation for 3-D massive MIMO systems equipped
with uniform planar arrays (UPAs), namely, it can estimate
azimuth and elevation angles at both ends. A non-iterative
channel estimation scheme based on tensor decomposition
and rotational invariance techniques for mmWave channel
tensors with Vandermonde factor matrices was proposed in [6].
However, the Vandermonde structure was required for both the
precoder and combiner, which limited the application of this
scheme. Similarly, by leveraging the Vandermonde structure
of the factor matrices, [7] proposed to reconstruct the signal
subspaces using the tensor train (TT) decomposition. Although
the proposed scheme can improve the estimation accuracy, the
computational complexity was also increased.

Our previous work [8] used an algebra-based method to con-
duct CP decomposition, which also utilizes the Vandermonde
structure of the signal tensor. The method has been proven
to increase the stability and accuracy of channel estimation.
This letter extends the approach for channel estimation of
mmWave wideband 3-D massive MIMO-OFDM systems and
improves the angle estimation algorithm. Different from [6]
and [7] converting the received signals into a high-order
tensor, we rearrange the received signals into simpler third-
order tensors and use the Kronecker structure of the factor
matrices to reduce computational complexity. We refine the
initial estimated angles by the NMS algorithm to achieve
higher estimation accuracy. A highly reliable singular value-
based channel path number estimation method is also proposed
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for the case of unknown channel path numbers.
Notations: Bold lowercase letters, bold capital letters, and

Euler script letters denote vectors, matrices, and tensors, re-
spectively. Superscript (·)T ,(·)H ,(·)−1,(·)∗, and (·)† denote the
transpose, conjugate transpose, inverse, conjugate, and pseudo
inverse, respectively. ◦ , �, and ⊗ represent the outer product,
Khatri-Rao product, and Kronecker product, respectively. [X]i
and [X]i:j denote the ith row of X and the submatrix from
the ith to the jth rows of X, respectively. D(x) denotes the
diagonal matrix formed by x. Ix denotes the identity matrix
of size x. | · | and || · ||2 denote the absolute value and 2-norm,
respectively. X̂ represents the estimation of X.

II. SYSTEM MODEL

A. Wideband mmWave 3-D massive MIMO channel
As shown in Fig. 1, we consider a mmWave massive

MIMO-OFDM system with UPA antennas of size M(M =
M1 × M2) and N(N = N1 × N2) equipped at the Tx
and Rx, respectively. Both UPAs are placed face to face
on the yoz plane. The HBF technique is adopted, but only
analog beamforming is utilized for channel sounding here.
We assume that the Rx is configured with NRF RF chains,
and only one RF chain is used at the Tx to avoid inter-
ference. Owing to the sparsity structure of the mmWave
channel, the wideband, i.e., frequency-selective mmWave 3-D
massive MIMO channel, can be described by the geometry-
based stochastic channel model, which is the superposition
of L scattering paths [9]. The channel is considered constant
during the channel sounding. Suppose that K subcarriers are
used for the OFDM pilot transmission, the channel matrix
Hk ∈ CN×M , k = 0, 1, . . . ,K − 1 on the kth subcarrier is

Hk =

L∑
l=1

αle
−j 2πkτl

K aR(θl, φl)a
H
T (ϑl, ϕl) (1)

where αl, τl, θl/φl, and ϑl/ϕl denote the complex path gain,
delay normalized by the sampling interval, azimuth/elevation
angle of arrival (AoA), and azimuth/elevation angle of de-
parture (AoD) of the lth path, respectively. According to the
UPA geometry, we define aRy(θl, φl) = ej2π

d
λ sinθlsinφln1 ,

aRz(φl) = ej2π
d
λ cosφln2 , aTy(ϑl, ϕl) = ej2π

d
λ sinϑlsinϕlm1 ,

and aTz(ϕl) = ej2π
d
λ cosϕlm2 , where n1 = [0, 1, . . . , N1−1]T ,

n2 = [0, 1, . . . , N2 − 1]T , m1 = [0, 1, . . . ,M1 − 1]T , and
m2 = [0, 1, . . . ,M2 − 1]T . λ denotes the carrier wavelength,
and d = λ

2 denotes the antenna spacing. The steering vectors
aR(θl, φl) ∈ CN×1 and aT (ϑl, ϕl) ∈ CM×1 can be written as

aR(θl, φl) = aRy(θl, φl)⊗ aRz(φl)

aT (ϑl, ϕl) = aTy(ϑl, ϕl)⊗ aTz(ϕl).
(2)
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Fig. 1. Wideband mmWave 3-D channel for massive MIMO-OFDM system
with UPAs.

B. Signal model

Assume that a pilot sequence of length NX is sent by Tx
for channel sounding. Each pilot symbol sp, p = 1, 2, . . . , NX
is mapped onto the antennas at the Tx by the precoder fp ∈
CM×1 and modulated by the subcarrier modulation symbol xk
onto kth subcarrier. sp and xk are symbols of pseudo-random
sequences with values of ±1. NRF RF chains are used to
receive the pilot sequence parallelly. NRF OFDM symbols
will be obtained from the NRF RF chains in a single time
slot for each transmitted OFDM symbol. A combiner Wt ∈
CN×NRF , t = 1, 2, . . . .T is employed to combine the received
signal block in the tth time slot. Varying T = NY

NRF
time

slots, NY OFDM symbols will be received. After removing
the cyclic prefix and FFT operation, the received signal of the
pth pilot symbol in the tth time slot on the kth subcarrier is
written as

ỹk,p,t = WH
t Hkfpxksp + ñk,p,t ∈ CNRF×1 (3)

where ñk,p,t is the additive white Gaussian noise vector. Since
sp and xk are known at the Rx, they can be removed from
Eq.(3). Then we have

yk,p,t = WH
t Hkfp + nk,p,t ∈ CNRF×1 (4)

where yk,p,t = xkspỹk,p,t and nk,p,t = xkspñk,p,t. nk,p,t is
also an additive white Gaussian noise vector as the variance
and independence of noise at different subcarriers, receiving
antennas, and time slots are unchanged. Combining the re-
ceived signals in T time slots, we have

yk,p = WHHkfp + nk,p (5)
where yk,p = [yTk,p,1,y

T
k,p,2, . . . ,y

T
k,p,T ]

T ∈ CNY ×1,
nk,p = [nTk,p,1,n

T
k,p,2, . . . ,n

T
k,p,T ]

T ∈ CNY ×1, and W =

[W1,W2, . . . ,WT ] ∈ CN×NY . The received signals for the
pilot sequence of length NX on the kth subcarrier are given by

Yk = WHHkF +Nk (6)

where Yk = [yk,1,yk,2, . . . ,yk,NX ] ∈ CNY ×NX ,
F = [f1, f2, . . . , fNX ] ∈ CM×NX , and Nk =
[nk,1,nk,2, . . . ,nk,NX ] ∈ CNY ×NX . After stacking Ỹk for all
K subcarriers, we can concatenate the received signals into a
low-rank tensor Y ∈ CNY ×NX×K due to the sparsity structure
of the mmWave channel

Y =

L∑
l=1

ãR(θl, φl) ◦ ãT (ϑl, ϕl) ◦ g (τl) +N (7)

where N ∈ CNY ×NX×K is the noise tensor, ãR(θl, φl) =
αlW

HaR(θl, φl) ∈ CNY ×1, ãT (ϑl, ϕl) = FTa∗T (ϑl, ϕl) ∈
CNX×1, and g (τl) = [1, e−j

2πτl
K , . . . , e−j

2π(K−1)τl
K ]T ∈

CK×1. By CP decomposition, the third-order tensor can be
decomposed as [10]

Y = JA(1),A(2),A(3)K +N = Ỹ +N (8)

where J·K represents the CP decomposition operator, Ỹ
denotes the received noiseless signal tensor, and A(1) ∈
CNY ×L,A(2) ∈ CNX×L, and A(3) ∈ CK×L are factor
matrices of Ỹ , which are formed by

A(1) = [ãR(θ1, φ1), ãR(θ2, φ2), . . . , ãR(θL, φL)]

A(2) = [ãT (ϑ1, ϕ1), ãT (ϑ2, ϕ2), . . . , ãT (ϑL, ϕL)]

A(3) = [g(τ1),g(τ2), . . . ,g(τL)] .

(9)
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Note that A(3) is a Vandermonde matrix that can be generated
by z = [e

−j2πτ1
K , e

−j2πτ2
K , . . . , e

−j2πτL
K ].

We can design F and W to have Kronecker structure as
F = T1 ⊗T2, W = R1 ⊗R2 (10)

where T1 ∈ CM1×J1 , T2 ∈ CM2×J2 , R1 ∈ CN1×I1 ,
and R2 ∈ CN2×I2 with J1 × J2 = NX and I1 × I2 =
NY , each element in T1,T2,R1, and R2 is a uniformly
distributed random value drawn from a unit circle. Define
ãRy(θl, φl) = αlR

H
1 aRy(θl, φl), ãRz(φl) = RH

2 aRz(φl),
ãTy(ϑl, ϕl) = TT

1 a∗Ty(ϑl, ϕl), and ãTz(ϕl) = TT
2 a∗Tz(ϕl),

by combining (2), (10), and (A.1) in Appendix A, we obtain
ãR(θl, φl) = ãRy(θl, φl)⊗ ãRz(φl)

ãT (ϑl, ϕl) = ãTy(ϑl, ϕl)⊗ ãTz(ϕl).
(11)

The Kronecker structure for each column of the factor matrices
A(1) and A(2) can be used to reduce the computational
complexity, which will be discussed in the next section.

III. CHANNEL ESTIMATION METHODS

A. Tensor-based Channel Estimation Algorithm

A fast non-iterative algebra-based method is presented in
[11]. Different from the common ALS-based method, the
CP decomposition is solved by exploiting the Vandermonde
structure of A(3). The noiseless signal tensor Ỹ is used to
develop our channel estimation algorithm that reveals the key
insights. Ỹ should be replaced by Y in the presence of noise.

Spatial smoothing is a technique to overcome the rank
deficient problem, which can improve the estimation accuracy
and uniqueness condition [12]. The Vandermonde structure of
A(3) makes spatial smoothing over A(3) possible. Unfolding
Ỹ in the first dimension as Ỹ(1) = A(1)

(
A(3) �A(2)

)T ∈
CNY ×NXK . Defining a selection matrix Xi, i = 1, 2, . . . , I0
as Xi = [ 0J0×(i−1) IJ0 0J0×(I0−i) ] ∈ CJ0×K , where I0
and J0 subject to I0 + J0 = K + 1. Xi is used to select the
submatrix of A(3), i.e., XiA

(3) = [A(3)]i:i+J0−1. By (A.2),
the spatial smoothing of Ỹ(1) is given by [8], [11], [12]

Ỹs = (A(J0,3) �A(2))(A(I0,3) �A(1))T ∈ CJ0NX×I0NY
(12)

where A(J0,3) and A(I0,3) denote [A(3)]1:J0 and [A(3)]1:I0 ,
respectively. Assuming L is known, we take truncated singular
value decomposition (SVD) over Ỹs and get

Ỹs = UΣVH (13)
where U ∈ CJ0NX×L, Σ ∈ CL×L, and V ∈ CI0NY ×L. Σ is
a diagonal matrix with the diagonal element being the largest
L singular values of Ỹs, U and V are left and right singular
matrices corresponding to these singular values. There must
exist a nonsingular matrix M ∈ CL×L connecting these two
signal space expressions (12) and (13), which satisfies

UM = (A(J0,3) �A(2))

V∗Σ(M−1)T = (A(I0,3) �A(1)).
(14)

By the Vandermonde structure of A(3) and (A.3), we have

([A(J0,3)]2:J0 �A(2)) = ([A(J0,3)]1:J0−1 �A(2))Z (15)
where Z = D(z). We define U1 = [U]1:(J0−1)NX and U2 =
[U]NX+1:J0NX . From (14) and (15), we can obtain

U†1U2 = MZM−1 , Z̃. (16)

Eq.(16) is a similarity transformation. Therefore, the eigenval-
ue of Z̃ contains the delays {τl}Ll=1. We decompose the Z̃ by
eigenvalue decomposition (EVD) and have

Z̃ = QΓQ−1 (17)
where Γ = D([γ1, γ2, . . . , γL]). Comparing (16) and (17),
there must exist a permutation matrix Π and a diagonal scaling
matrix ∆ linking M, Q, Γ, and Z, i.e., Q = M∆Π, and
[γ1, γ2, . . . , γL] = zΠ. Then the delays are estimated by τ̂l =
−K arg (γl)

2π , where arg(γl) denotes the phase angle of γl. From
the estimated delay, we construct a new factor matrix B(3) =
[g(τ̂1),g(τ̂2), . . . ,g(τ̂L)] following the context below (7). As
τ̂l, l = 1, . . . , L are permutation of the true delay τl, B(3) is the
permutated form of A(3), i.e., B(3) = A(3)Π. Therefore, (14)
can be rewritten as UQΠ−1∆−1 = (B(J0,3)Π−1)�A(2) and
V∗Σ((QΠ−1∆−1)−1)T = (B(I0,3)Π−1) � A(1). By using
(A.3) and (A.4), we obtain

UQ = B(J0,3) �B(2) (18a)

V∗Σ(Q−1)T = B(I0,3) �B(1) (18b)

where B(1) = A(1)∆−1Π and B(2) = A(2)∆Π, respectively.
JB(1),B(2),B(3)K is another form of essential unique CP
solution of Ỹ , which is proven in [8], [11] and, [12].

Next, the factor matrices B(1) and B(2) are reconstructed
column by column. Let b

(2)
l and b

(J0,3)
l denote the lth column

of B(2) and B(J0,3), respectively. Due to b
(3)
l = g(τ̂l), we

have b
(J0,3)H
l b

(J0,3)
l = J0. By (18a), we obtain b

(J0,3)
l ⊗

b
(2)
l = Uql, where ql is the lth column of Q. Therefore,

according to (A.1), b
(2)
l = I1 ⊗ b

(2)
l can be expanded as

b
(2)
l =

(
b
(J0,3)H
l

J0
⊗ INX

)
Uql. (19)

Let b
(1)
l and q

(inv)
l denote the lth column of B(1) and

(Q−1)T , respectively. Similar to (19), by expanding b
(1)
l =

I1 ⊗ b
(1)
l and leveraging (18b), we have

b
(1)
l =

(
b
(I0,3)H
l

I0
⊗ INY

)
V∗Σq

(inv)
l . (20)

The factor matrices B(1),B(2), and B(3) have the same
permutation matrix Π, such unknown permutation ambiguity
only changes the order of reconstruction results. The AoAs
and AoDs can be estimated by a correlation-based method

(θ̂l, φ̂l) = argmax
θl,φl

|b(1)H
l (WHaR(θl, φl))|

‖b(1)
l ‖2‖(WHaR(θl, φl))‖2

(ϑ̂l, ϕ̂l) = argmax
ϑl,ϕl

|b(2)H
l (FTa∗T (ϑi, ϕl))|

‖b(2)
l ‖2‖(FTa∗T (ϑi, ϕl))‖2

(21)

where normalization operations eliminate the scaling ambigu-
ity. A 2-D search method is adopted to find the coarse angles,
and then the results are refined by the NMS algorithm [13].

Till now, the channel parameters {τ̂l, θ̂l, φ̂l, ϑ̂l, ϕ̂l}Ll=1 are
sequentially obtained. We reconstruct the factor matrices as

B̂(1) = WH [aR(θ̂1, φ̂1),aR(θ̂2, φ̂2), . . . ,aR(θ̂L, φ̂L)]

B̂(2) = FT [a∗T (ϑ̂1, ϕ̂1),a
∗
T (ϑ̂2, ϕ̂2), . . . ,a

∗
T (ϑ̂L, ϕ̂L)]

B̂(3) = B(3) = [g (τ̂1) ,g (τ̂2) , . . . ,g (τ̂L)].

(22)

Considering the structure of the noiseless signal tensor Ỹ ,



IEEE WIRELESS COMMUNICATIONS LETTERS 4

we vectorize Ỹ as vec(Ỹ), then the path gains α̂ =
[α̂1, α̂2, . . . , α̂L]

T can be estimated by
α̂ = (B̂(3) � B̂(2) � B̂(1))†vec(Ỹ). (23)

B. Improved Angle Estimation Method

The computational complexity of the 2-D search method in
(21) is too high. If F and W have Kronecker structure, such
structure will exist in columns of A(1), A(2), B(1), and B(2).
For the lth column of B(1) and B(2), we reshape b

(1)
l and b

(2)
l

to matrices by the inverse vectorization operation and obtain
invec(b

(1)
l ) ∈ CI1×I2 and invec(b

(2)
l ) ∈ CJ1×J2 . By using

the rank-1 truncated SVD, we have
invec(b

(1)
l ) = u1,lσ1,lv

H
1,l

invec(b
(2)
l ) = u2,lσ2,lv

H
2,l

(24)

where σ1,l and σ2,l are the largest singular values, u1,l ∈
CI1×1, v1,l ∈ CI2×1, u2,l ∈ CJ1×1, and v2,l ∈ CJ2×1 are
singular vectors corresponding to σ1,l and σ2,l. Again the
scaling ambiguity is removed by normalization operations.
Then solving (21) can be replaced by several 1-D correlation-
based methods as

φ̂l = argmax
φl

|vT1,lãRz(φl)|
‖ãRz(φl)‖2

, θ̂l = argmax
θl

|uH1,lãRy(θl, φ̂l)|
‖ãRy(θl, φ̂l)‖2

,

ϕ̂l = argmax
ϕl

|vT2,lãTz(ϕl)|
‖ãTz(ϕl)‖2

, ϑ̂l = argmax
ϑl

|uH2,lãTy(ϑl, ϕ̂l)|
‖ãTy(ϑl, ϕ̂l)‖2

.

(25)
The 1-D search method will decrease the computational com-
plexity from O(G2) to O(G), where G denotes the number
of angle grids in searching. However, the cumulative errors
caused by the estimated elevation angles to estimate the
azimuth angles also reduce the estimation accuracy. The NMS
algorithm is also used to refine the results.

The proposed tensor-based channel estimation algorithm is
summarized in Algorithm 1.

C. Channel Path Number Estimation

Most channel estimation algorithms suppose prior informa-
tion on the number of paths. The fact is that it is unknown
for the practical system. Considering (A(J0,3) � A(2)) and
(A(I0,3) � A(1)) are of full column rank L generically, the
rank of Ỹs is equal to L [12]. If we know the rank of Ỹs, the
channel path number can be decided correspondingly. Then a
singular value hard thresholding (SVHT) method is proposed
to estimate the channel path number.

Algorithm 1 Tensor-based channel estimation algorithm
1: Input: The received signal tensor Y .
2: Rearrange Y as Ys by spatial smoothing.
3: Calculate the truncated SVD of Ys, choose U1 and U2.
4: Calculate the EVD of Z̃ by (17).
5: Estimate {τ̂l}Ll=1 and reconstruct B(3).
6: Reconstruct B(2) and B(1) by (19) and (20).
7: Estimate the AoAs and AoDs {θ̂l, φ̂l, ϑ̂l, ϕ̂l}Ll=1 by 2-D search

method (21) or improved 1-D search method (25) and refine them
by the NMS algorithm.

8: Estimate the path gains {α̂l}Ll=1 by (23).
9: Output: Channel parameters {α̂l, θ̂l, φ̂l, ϑ̂l, ϕ̂l, τ̂l}Ll=1 and chan-

nel matrices {Ĥk}K−1
k=0 .

By sorting the singular values of Ỹs in descending or-
der, we aim to identify a hard threshold that discrimi-
nates the valid channel path against the noise. For Ỹs, let
β = min(J0NX , I0NY )/max(J0NX , I0NY ), the optimal
hard threshold coefficient is given by [14]

ρ∗(β) =

√
2(β + 1) +

8β

(β + 1) +
√
β2 + 14β + 1

. (26)

Thus the hard threshold is expressed as

δ∗(β, Ỹ
s) =

ρ∗(β)√
µβ

σmed (27)

where σmed is the median of the singular values of Ỹs

and µβ denotes the median of the Marčenko-Pastur distri-
bution. Let β± = (1 ±

√
β)2, µβ is the unique solution to∫ µ

β−

√
(β+−x)(x−β−)

2πβx dx = 1
2 , β− ≤ µ ≤ β+. Then the

number of paths can be estimated by counting the number
of the singular values of Ỹs that are larger than δ∗(β, Ỹs).

IV. SIMULATION RESULTS

In our simulation, a non-line-of-sight (NLoS) condition is
considered. The numbers of Rx antennas, Tx antennas, and
RF chains of Rx are set to N = 64(N1 = 8, N2 = 8),M =
64(M1 = 8,M2 = 8) and NRF = 4, respectively. The lengths
of the pilot sequence at the Tx and Rx are set to NX = 28 and
NY = 28 associated with J1 = 7, J2 = 4 and I1 = 7, I2 = 4.
The channel bandwidth and the number of subcarriers are
assumed to be 100 MHz and K = 64, respectively. The
number of paths is set to L = 5. The channel complex
gain αl follows the i.i.d CN (0, 1). The azimuth angles of the
AoAs and AoDs {θl, ϑl} and the elevation angles of the AoAs
and AoDs {φl, ϕl} are uniformly distributed in (−π2 ,

π
2 ) and

(0, π). Each path’s normalized delay τl is uniformly chosen
from [0,20], corresponding to a range of 0∼0.2µs.

We first evaluate the probability of correct path estimation
of three methods, i.e., the SVHT method, the minimum
description length (MDL) method, and the generalized N-D
MDL method [15]. Fig. 2 and Fig. 3 show that the SVHT
method performs much better than the other two methods
at low SNRs and many paths. The reason is that the SVHT
method fully considers the row-to-column ratio of the signal
matrix and accurately estimates the noise level. With the
SNR increasing, the SVHT method reaches probability one
of correct estimation faster than the other two methods. When
the number of paths increases, the SVHT method is almost
unaffected, while the other two methods worsen significantly.

Then the performance of the proposed algorithm is inves-
tigated by the normalized mean square error (NMSE), i.e.,

NMSE =
∑K−1
k=0 ‖Hk−Ĥk‖2

F∑K−1
k=0 ‖Hk‖2F

, where Ĥk is constructed by
the estimated channel parameters. As shown in Fig. 4, the
NMSE of the proposed algorithm is always smaller than that
of the SAGE-based algorithm [3], the beamspace ESPRIT
algorithm [6], and the TTVCPD algorithm [7], which is partly
due to the truncated SVD eliminates the impact of noise.
The performances of the improved 1-D search method are
close to that of the 2-D search method. The 1-D search
method can effectively reduce computational complexity with
a slight sacrifice of estimation accuracy. The performances of
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Fig. 2. Probability of correct estimation versus
different SNRs.
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Fig. 3. Probability of correct estimation versus
different numbers of paths (SNR = 10 dB).
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Fig. 4. NMSE versus different SNRs.

the 1-D search followed by the NMS refinement (1-D NMS)
method and 2-D search followed by the NMS refinement
(2-D NMS) method are better than that of the initial 1-D
search method and 2-D search method at both low and high
SNRs. The performance advantages diminish when the SNR
becomes lower because the optimization ability of the NMS
algorithm decreases. When the number of paths is unknown
and estimated by the SVHT method, its NMSE is also shown
in Fig. 4. The performances of the 1-D NMS-SVHT and 2-D
NMS-SVHT methods are the same as those of the 1-D NMS
and 2-D NMS methods with known L at high SNRs. When
the SNR is low, the SVHT method may miss paths with low
signal energy, which leads to estimation errors.

V. CONCLUSIONS

This letter proposes a tensor-based channel parameters
estimation scheme for channel sounding with a mmWave 3-D
massive MIMO-OFDM system with UPA antennas. A simple
algebra-based method has been used to conduct CP decom-
position. The AoAs and AoDs have been estimated by the
2-D search method or the improved 1-D search method, with
the latter capable of effectively reducing the computational
complexity, and then refined by the NMS algorithm. We have
also proposed an SVHT method to estimate the unknown
path numbers, realizing joint estimation of path number and
channel parameters. Simulation results have shown that the
proposed algorithm and the SVHT method can achieve high
estimation accuracy. The effect of the antenna radiation pattern
is essential and has not been considered in this letter. We will
explore and extend the algorithm’s capability in the future.

APPENDIX A
PROPERTIES OF THE KHATRI-RAO PRODUCT AND

KRONECKER PRODUCT

The following properties of the Khatri-Rao product and
Kronecker product are used in this letter:

(A⊗B)(C⊗D) = AC⊗BD (A.1)
(A⊗B)(C�D) = AC�BD (A.2)

(A�B)∆ = A� (B∆) = (A∆)�B (A.3)
(A�B)Π = (AΠ)� (BΠ) (A.4)

where ∆ is a diagonal matrix and Π is a permutation matrix.
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