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Abstract— In order to evaluate the performance of wireless
communication protocols and design good error control schemes
for bursty channels, it is important to develop accurate and
simple generative models. In this paper, a novel generative deter-
ministic model (GDM) is proposed for the simulation of bursty
error sequences encountered in digital mobile fading channels.
The proposed GDM is simply a properly parameterized and
sampled deterministic process followed by a threshold detector
and two parallel mappers. Simulation results show that this
generative model enables us to match very closely any given
error-free run distribution (EFRD), gap distribution (GD), and
error cluster distribution (ECD) of the underlying descriptive
model.

I. INTRODUCTION

Digital mobile fading channels often exhibit statistical de-
pendencies among errors. This results in the fact that errors are
grouped together in clusters or bursts. The study of the under-
lying bursty error process is a prerequisite for the design and
performance evaluation of wireless communication protocols
as well as coding systems [1]. Error models for characterizing
bursty error sequences have therefore been developed, based
on either a descriptive approach [2] or a generative approach
[3]. A descriptive modeling approach consists of describing
the structure of target error sequences by various statistics.
A generative modeling approach involves the specification
of an underlying mechanism that generates error sequences
similar to the modeled sequences [3]. One generative model
is preferred to another if it better fits the important statistics
of target error sequences.

In the literature, a number of generative models have been
presented based on finite [3–5] or infinite [3] state Markov
chains or hidden Markov chains [6–8]. Gilbert [9] originally
proposed a two-state Markov model. It generates in one state
(good state) an error-free sequence and in the other one (bad
state) a sequence of errors. Elliot [10] modified Gilbert’s
model in such a way that errors can also occur with a small
probability in the good state. The disadvantage of a two-state
Markov model is its limited capability to reproduce the desired
burst error statistics. Frichman [4] proposed a class of Markov
models having a finite number K of states, which are then
partitioned into two groups. The first group consists of j error-
free states, while the second group is formed by K − j error
states. Simplified Frichman’s models (SFMs) with only one
error state have received wide applications [11–13]. Moreover,

bipartite models were proposed in [5]. The Markov chain
used in a bipartite model forms a bipartite graph. Another
class of generative models are hidden Markov models [6–8],
which lack a direct intuition between the channel behavior
and the underlying Markov chain. A higher state Markov
model enhances the parametrization problems and makes
the subsequent performance analysis of high layer protocols
increasingly difficult.

Recently, generative models based on alternative error gen-
eration mechanisms, other than Markov chains, were proposed.
For instance, chaos equations [14] and context-free grammars
[15] were applied to model error sequences in bursty channels.
An initial attempt was carried out in [16] to utilize determin-
istic processes [17], [18], which originally go back to Rice’s
sum of sinusoids [19], [20], for the development of generative
models in digital Rayleigh fading channels. The deterministic
process based generative model (DPBGM) [16] was shown to
be a promising alternative to Markov models. However, the
fittings to the desired error-free run distribution (EFRD) and
gap distribution (GD) by using the DPBGM are not as good
as the results obtained from a SFM with 6 states [16]. In this
paper, an improved DPBGM is proposed which enables us to
nearly perfectly match any given EFRD, GD, and error cluster
distribution (ECD) of the underlying descriptive model.

The paper is organized as follows. Section II briefly reviews
the interested descriptive statistics. A novel generative deter-
ministic model (GDM) is proposed in Section III. Section IV
compares the burst error statistics of the underlying descriptive
model, the proposed generative model, and a SFM. Finally, the
conclusions are drawn in Section V.

II. DESCRIPTIVE STATISTICS

An error sequence is represented by a binary sequence of
ones and zeros, where “1” and “0” denote error bits and correct
bits, respectively. Following [12], a gap is defined as a string
of consecutive zeros between two ones, having a length equal
to the number of zeros. An error cluster is a region where
the errors occur consecutively without correct bits in between.
The length of an error cluster equals the number of ones. In
this paper, only the following three burst error statistics are to
be considered for brevity of presentation. The first frequently
employed statistic is the EFRD P (0m0/1), which is defined as
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the probability that an error is followed by at least m0 error-
free bits. Note that P (0m0/1) is a monotonically decreasing
function of m0 such that P (00/1) = 1 and P (0m0/1) → 0
as m0 → ∞. The second one is the GD G(mg), which is
defined as the cumulative distribution of gap lengths mg . It
should be observed that the GD can be calculated from the
EFRD [11]. The third one is the ECD P (1mc/0). The ECD
is the probability that, given a correct bit has occurred, it will
be followed by mc or more consecutive bits in error [4].

To avoid a bit-by-bit analysis of an error sequence, a
sensible way of recording error data is to list the successive
gap lengths and error cluster lengths. From such records, the
inference of the EFRD, the GD, and the ECD is straight-
forward. Consequently, a gap recorder Grec and an error
cluster recorder Crec are obtained. Here, Grec is a vector
which keeps a record of successive gap lengths, while Crec

records successive error cluster lengths. Let us denote the
minimum value and the maximum value in Grec as mG1

and mG2, respectively. This means that the gap lengths mg

satisfy mG1 ≤ mg ≤ mG2. By analogy, we conclude that
mC1 ≤ mc ≤ mC2 holds for all entries in Crec. For
the derivation of the generative model in Section III, it is
convenient to further define the following quantities:

1) Nt: the total length of the target error sequence.
2) NG : the total number of gaps, which equals the number

of entries in Grec.
3) NC : the total number of error clusters, which equals the

number of entries in Crec. Clearly, NC = NG + 1 holds.
4) NG(mg): the number of gaps of length mg in Grec.

Apparently,
∑mG2

mg=mG1
NG(mg) = NG holds.

5) NC(mc): the number of error clusters of length mc in
Crec. Similarly,

∑mC2
mc=mC1

NC(mc) = NC holds.
6) R: the ratio of the mean value Mc of error clusters to

the mean value Mg of gaps, i.e., R = Mc/Mg .

III. THE GENERATIVE DETERMINISTIC MODEL

It is well known that the statistics of burst errors can be
estimated from the level-crossing statistics of fading envelope
processes. This suggests the possibility that generative models
can be developed from fading processes.

The idea of the proposed generative model is to derive
directly from a deterministic envelope process a gap length
generator and an error cluster length generator. First of all,
the employed deterministic process ζ̃(t) must be properly
parameterized and sampled with a certain sampling interval
TA. The sampled deterministic process ζ̃(kTA), where k is a
nonnegative integer, is then followed by a threshold detector.
During the simulation, the level of the deterministic process
will be from time to time below and above the given threshold
depending on the value of the threshold as well as the chosen
parameters. Error clusters are produced at the model’s output
if the level of ζ̃(kTA) falls below a given threshold rth. The
lengths of the generated error clusters equal the numbers of
samples in the corresponding fading intervals of ζ̃(kTA). On
the other hand, gaps are generated at the model’s output if
the level of ζ̃(kTA) is above rth. The gap lengths equal the

numbers of samples in the corresponding inter-fade intervals
of ζ̃(kTA). Consequently, an error cluster length generator
C̃rec and a gap length generator G̃rec are obtained. For the
generative model, we use similar notations to those presented
in Section II by simply putting the tilde sign on all affected
symbols, i.e., we write m̃C1, ÑC , ÑG(mg), etc.

A. The Parametrization of the Sampled Deterministic Process

The parameters of the sampled deterministic process are
determined as follows. The level-crossing rate (LCR) Ñζ(rth)
at the chosen threshold rth is fitted to the desired occurrence
rate RC = NC/Tt of error clusters. Here, Tt denotes the total
transmission time of the reference transmission system, from
which the target error sequence of length Nt is obtained. Also,
the ratio R̃ of the average duration of fades (ADF) T̃ζ−(rth) at
rth to the average duration of inter-fades (ADIF) T̃ζ+(rth) at
rth is adapted to the ratio R = Mc/Mg . Moreover, in order
to detect most of the level crossings and fading intervals at
deep levels, i.e., rth � 1, we must ensure that the sampling
interval TA is chosen sufficiently small. Let us first consider
the following continuous-time deterministic process [18]

ζ̃(t) = |µ̃1(t) + jµ̃2(t)| (1)

where

µ̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , i = 1, 2 . (2)

In (2), Ni defines the number of sinusoids, ci,n, fi,n, and θi,n

are called the gains, the discrete frequencies, and the phases,
respectively. By using the method of exact Doppler spread
(MEDS) [18], the phases θi,n are equated with the realizations
of a random generator uniformly distributed over (0, 2π], while
ci,n and fi,n are given by

ci,n = σ0

√
2
Ni

(3)

fi,n = fmax sin
[

π

2Ni
(n − 1

2
)
]

(4)

respectively. Here, σ0 is the square root of the mean power of
µ̃i(t) and fmax represents the maximum Doppler frequency.

When using the MEDS with Ni ≥ 7, it has been shown
in [18] that the LCR Ñζ(r) of ζ̃(t) is very close to the LCR
Nζ(r) of a Rayleigh process, which is given by

Nζ(r) =

√
β

2π
pζ(r) , r ≥ 0 (5)

where
β = 2(πσ0fmax)2 (6)

and

pζ(r) =
r

σ2
0

exp(− r2

2σ2
0

) , r ≥ 0 (7)

denotes the Rayleigh distribution. It can also be shown that the
ADF T̃ζ−(r) and the ADIF T̃ζ+(r) of ζ̃(t) approximate very
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well the desired quantities Tζ−(r) and Tζ+(r), respectively, of
a Rayleigh process. They can be expressed as

Tζ−(r) =
√

2π

β

σ2
0

r

[
exp(

r2

2σ2
0

) − 1
]

, r ≥ 0 (8)

Tζ+(r) =
√

2π

β

σ2
0

r
, r ≥ 0 . (9)

Consequently, the ratio R̃ can be determined as follows

R̃ =
T̃ζ−(rth)

T̃ζ+(rth)
≈ Tζ−(rth)

Tζ+(rth)
= exp(

r2
th

2σ2
0

) − 1 . (10)

Now, the task at hand is to find a proper parameter vector
Ψ = (N1, N2, rth, σ0, fmax, TA) in order to fulfill the follow-

ing conditions: RC = Nζ(rth) and R =
Tζ− (rth)

Tζ+ (rth) . To solve
this problem, we first choose reasonable values for N1, N2,
and rth, e.g., N1 = 9, N2 = 10, and rth = 0.01. Then,

performing R =
Tζ− (rth)

Tζ+ (rth) , σ0 can be calculated according to
the following expression

σ0 =
rth√

2 ln(1 + R)
. (11)

With the help of the relation RC = Nζ(rth), fmax is given
by

fmax =
NC√

πσ0Ttpζ(rth)
(12)

which can finally be simplified as

fmax =
NC(1 + R)

Tt

√
2π ln(1 + R)

. (13)

It is clear that fmax is completely determined by NC , R, and
Tt, but not influenced by rth and σ0. As suggested in [21],
the sampling interval TA for small values of rth can suitably
be chosen as follows

TA ≈ 4√
5π

Tζ−(rth)
√
−1 +

√
1 + 10qs/3 (14)

where qs is a very small quantity determining the maximum
measurement error of the LCR. This implies that the proba-
bility of undetectable level crossings at rth is not larger than
qs. The substitution of (8) into (14) results in the following
explicit expression

TA ≈
4σ0[exp( r2

th

2σ2
0
) − 1]

√
5πrthfmax

√
−1 +

√
1 + 10qs/3 . (15)

By using the obtained parameter vector Ψ, a sampled
deterministic process ζ̃(kTA) is generated within the neces-
sary simulation time interval [0, T̃t], i.e., kTA ≤ T̃t. Here,
T̃t = TtÑt/Nt with Ñt denoting the required length of the
generated error sequence. The total numbers of the generated
error clusters ÑC and gaps ÑG can be estimated from ÑC =
� Ñt

Nt
NC	 and ÑG = � Ñt

Nt
NG	, respectively. Here, �x	 stands

for the nearest integer to x towards minus infinity. In this
manner, an error cluster length recorder C̃rec with ÑC entries
and an gap length recorder G̃rec with ÑG entries are derived.

B. The Mappers

In general, the numbers of samples located in successive
fading intervals and inter-fade intervals of ζ̃(kTA) are not
suitable to directly generate an acceptable ECD and EFRD,
respectively. Two mappers are therefore introduced, which
map the lengths of the generated error clusters and gaps to
the desired lengths, as explained subsequently. The idea of
the mappers is to modify G̃rec and C̃rec in such a way
that ÑG(mg) = NGM (mg) and ÑC(mc) = NCM (mc) hold,
respectively, where

NGM (mg) =




�NGR(mg)	 ,
if NGR(mg) − �NGR(mg)	 < µg

�NGR(mg)	 + 1 ,

if NGR(mg) − �NGR(mg)	 ≥ µg

(16)

and

NCM (mc) =




�NCR(mc)	 ,
if NCR(mc) − �NCR(mc)	 < µc

�NCR(mc)	 + 1 ,
if NCR(mc) − �NCR(mc)	 ≥ µc .

(17)

Here, NGR(mg) = Ñt

Nt
NG(mg), NCR(mc) = Ñt

Nt
NC(mc),

µg and µc are real numbers located in the interval (0, 1),
which have to be chosen properly in order to fulfill∑mG2

mg=mG1
NGM (mg) = ÑG and

∑mC2
mc=mC1

NCM (mg) =
ÑC , respectively. Note that the resulting EFRD P̃ (0m0/1)
will be close to the desired EFRD P (0m0/1), since ÑG(mg)
is almost proportional to NG(mg). Also, the resulting ECD
P̃ (1mc/0) will match well the desired one P (1mc/0).

Next, we will only concentrate on the procedure of properly
modifying C̃rec. The same procedure applies also to G̃rec.
For each error cluster length value mc (mC1 ≤ mc ≤ mC2),
we first find the corresponding values �1mc

and �2mc
(m̃C1 ≤

�1mc
, �2mc

≤ m̃C2) in C̃rec to satisfy the following conditions

�2mc
−1∑

n=�1mc

ÑC(n) < NCM (mc) (18)

�2mc∑
n=�1mc

ÑC(n) ≥ NCM (mc) . (19)

Let us define

N�2mc
= NCM (mc) −

�2mc
−1∑

n=�1mc

ÑC(n) . (20)

Clearly,
∑�2mc

−1

n=�1mc

ÑC(n) + N�2mc
= NCM (mc) holds. This

indicates that if we map all error cluster lengths between �1mc

and �2mc
− 1, while only N�2mc

error cluster lengths of �2mc

in C̃rec to mc, then ÑC(mc) = NCM (mc) will be satisfied.
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Therefore, we find the entries between �1mc
and �2mc

− 1 in
C̃rec, and then replace them by mc. Also, find the entries
with the value �2mc

in C̃rec, but replace only N�2mc
of them

by mc. Note that �1mC1
= m̃C1 and �2mC2

= m̃C2 hold.
In summary, the mapper for the error cluster length gen-

erator works as follows: if n (�1mc
≤ n < �2mc

− 1) samples
of the deterministic process are observed in a fading interval,
then a mapping n → mc is first performed and afterwards an
error cluster with length mc is generated. The resulting error
sequence is simply the combination of consecutively generated
gaps and error clusters. The block diagram of the obtained
generative model is depicted in Fig. 1.

Due to the fact that the proposed error generation mech-
anism does not require any random generators, the obtained
generative model is completely deterministic. This motivates
us to call it GDM. We stress that, although the simulation
set-up phase (determining the parameter vector and designing
the mappers) of the GDM requires a relatively long time, the
simulation run phase (generation of error sequences) is fast.
Therefore, the proposed GDM can be considered as a fast error
process simulator, since it determines directly gap and cluster
lengths instead of bit sequences.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the novel GDM is
investigated by applying the mechanism to an experimental
error sequence. The adopted reference transmission system is
a coherent QPSK system with a Rayleigh fading channel [16].
The transmission rate was set to be Fs = 144 kb/s, which is
the same as specified for vehicular users in UMTS systems.
The underlying Rayleigh fading channel was again modeled
by the deterministic process in (1). Its parameters ci,n, fi,n,
and θi,n were determined by using the MEDS. The mean
power was given by σ2

0 = 1/2 and the maximum Doppler
frequency was chosen as fmax = 74 Hz, which corresponds
to a carrier frequency of 2 GHz and a vehicle velocity of
40 km/h. The numbers of sinusoids were chosen as N1 = 9
and N2 = 10. The average bit error probability (BEP) of
the whole transmission system was obtained by evaluating
Nt = 8 × 106 transmission bits. The total transmission time
is therefore Tt ≈ 55.6 s. Fig. 2 depicts the simulated BEP
together with the theoretical BEP given in [22] versus the
average signal-to-noise ratio (SNR). A SNR of 15 dB was
selected for the generation of the target error sequence. This
corresponds to a BEP of 7.5341 × 10−3. The relevant burst
error statistics were obtained from the resulting error sequence.
Altogether NC = 49379 error clusters and NG = 49378 gaps
were obtained. The lengths of the error clusters range from
mC1 = 1 to mC2 = 10, while the lengths of the gaps range
from mG1 = 1 to mG2 = 29099. The ratio R equals 0.0076.

The procedure described in Section III is applied here for
obtaining the GDM. The chosen parameter vector for the de-
terministic process was Ψ = (9, 10, 0.01, 0.0813, 4107.7 Hz,
1.0961 µs). Other quantities were determined as follows:
Ñt = 10 × 106, T̃t = 69.4444 s, qs = 0.01, µg = 0.25745,
and µc = 0.751. The average BEP, the EFRD, the GD,

� � � � � � � � 	 
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 � � � � �
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� 
 � � � 
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� � 	 � � 	 � �
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� � 	 � � � � � � � 	 � �
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Fig. 1. The block diagram of the proposed generative
deterministic model.
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Fig. 2. The BEP for coherent QPSK systems by using the
MEDS (σ2

0 = 1/2, fmax = 74 Hz, N1 = 9, N2 = 10).

and the ECD calculated from the generated error sequence
were compared to those of the target error sequence. Also,
the relevant results of a SFM were presented for comparison
purposes. The parameters of a SFM with K states are obtained
by fitting the weighted sum of K−1 exponentials to the EFRD
P (0m/1) [4]. In this paper, a SFM with 6 states was employed.
Our experiments on SFMs with different states have shown
that no better fitting can be obtained by using more than 6
states.

The average BEPs obtained from the GDM and the SFM
equal 7.5341×10−3 and 7.4323×10−3, respectively. Figs. 3–
5 show the EFRDs, the GDs, and the ECDs of both generative
models and the descriptive model, respectively. As expected,
the near perfect match is observed in all three curves for the
GDM. The SFM enables a very good approximation to the
EFRD and the GD of the descriptive model. This comes no
surprise since this model is based on the fitting of the EFRD.
However, the SFM fails to capture the feature of the ECD
with good accuracy. Both generative models require relatively
long time in the simulation set-up phase, but the simulation
run phase of the GDM is approximately 4 times faster than
that of the SFM.

V. CONCLUSION

This paper has proposed a novel generative model. The
design procedure runs as follows. In the first step, the burst
error statistics are calculated from the target error sequence,
which is supplied here by the simulation of a coherent QPSK
transmission system with a Rayleigh fading channel. In the
second step, the reference transmission system is replaced
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simply by a properly parameterized and sampled deterministic
process followed by a threshold detector and two parallel map-
pers. During the simulation, if the level of the deterministic
process is below (above) the given threshold, an error cluster
(a gap) occurs at the model’s output. Then, two mappers are
introduced to map the lengths of the generated error clusters
and gaps to the desired lengths. The error sequence is obtained
by combining consecutively generated error clusters and gaps.
The merit of the proposed GDM lies on the fast generation of
error sequences and its ability to fit nearly perfectly any given
EFRD, GD, and ECD of the underlying descriptive model.
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