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Abstract—In this paper, a novel adaptive detection scheme
for the case of Multiple-Input Multiple-Output (MIMO) Ricean
channels with two transmit and receive antenna elements is
presented. Our prime aim is to reduce the extensive complexity of
Maximum-Likelihood (ML) detectors by developing an adaptive
scheme which switches between a ML and a much simpler Zero-
Forcing (ZF) detector depending on the instantaneous spatial
conditions. The kernel of the adaptive detector (AD) is a hard-
decision criterion based on the condition number of the MIMO
correlation matrix. It is demonstrated that the proposed scheme
offers a remarkable reduction in terms of complexity along with
a satisfactory performance when specifically designed antenna
arrays are employed.

I. INTRODUCTION

The use of MIMO technology has become the new hot topic
in wireless communications since the breakthrough works of
Telatar [1] and Foschini [2] revealed the great advantages of
employing multiple antennas at both the transmitter (Tx) and
receiver (Rx). This technology can potentially enhance the
reliability and speed of current and future wireless systems
such as wireless local area networks (WLANs) or fourth
generation cellular systems (4G). However, when it comes
down to the feasibility of MIMO systems, a number of
practical issues arises with the most prominent being the
overall implementation complexity and cost.

Undoubtedly, the detection stage may be regarded as one of
the most significant aspects in real-time applications. At this
point, we recall that the optimal detector for spatial multiplex-
ing (SM) MIMO systems is the ML detector which minimizes
the error probability when all data vectors are equally likely
but, at the same time, it is computationally prohibitive [3]. One
way to alleviate this excessive complexity is to settle for sphere
decoding techniques, such as the Finke-Post algorithm pro-
posed in [4], whose complexity, under certain assumptions, is
polynomial in the problem size. In [5], it was shown that when
the Signal-to-Noise ratio (SNR) is high, the expected number
of operations required by the sphere decoder is roughly cubic
in the number of transmit antennas for a small problem size.
However, the authors in [6] proved that for any arbitrarily
fixed SNR, the overall complexity of sphere decoders does

not grow as a polynomial function of the problem size but
as an exponential function instead. What’s more, when ill-
conditioned channels occur, the computational complexity of
sphere decoding schemes increases to a significant extent [7].
On the other hand, different suboptimal techniques exist which
span from the linear ZF detector to nonlinear techniques such
as Ordered Successive Interference Cancellation (OSIC) [8];
the former is the simplest detection technique but causes a
systematic performance degradation and further is unable to
exploit all of the available diversity. Its main disadvantage lies
in its poor performance when channels with large condition
numbers occur.

The previous discussion implies that an AD which could
switch between a ML and a ZF scheme, depending on the
instantaneous channel conditions, is of paramount interest
since it will allow the efficient development of MIMO systems.
In this paper, an AD is devised for the general case of
Ricean MIMO channels where a dominant Line-of-Sight (LoS)
component or a specular wavefront impinges on the receive
array; we are particularly interested in the practical case of
dual1 Ricean MIMO systems. A similar concept of adaptive
MIMO transmission has been investigated by various research
groups during recent years (the interested readers are referred
to [9]–[11] among others) and essentially goes back to the
fundamental diversity-multiplexing tradeoff [12]. To the best
of the authors’ knowledge, the first MIMO adaptive scheme
for the receive side was recently presented in [13]. The
authors therein, however, considered only the common case of
Rayleigh channels and hence the formulation of a generalized
framework is infeasible; the proposed scheme relaxes the
constraint of Rayleigh fading to account for the commonly
experienced Ricean propagation and, consequently, it includes
the model of [13] as a special case.

The hard-decision criterion for the adaptive switching relies
on the condition number distribution whose exact determina-
tion requires knowledge of the theory of non-central complex

1Throughout the paper, the term dual will stand for MIMO systems with
two transmit and two receive antenna elements.
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Wishart matrices. On these grounds, we firstly derive a novel
closed-form formula for the cumulative distribution function
(CDF) of the MIMO condition number which is validated
via Monte-Carlo simulations. It will also be shown that the
AD preserves the robustness of the ML detector as well as
the simplicity of the ZF detector and therefore can be easily
implemented within most MIMO testbeds.

The remainder of the paper is organized as follows: In
Section II, the preliminaries of the theory of Wishart matrices
are outlined and a closed-form expression for the condition
number CDF distribution is derived. In Section III, the un-
derlying MIMO Ricean channel model used throughout the
paper is presented. In Section IV, we briefly address the main
characteristics of ZF and ML detections and subsequently
those of the proposed adaptive scheme. In Section V, the
validity of the analytical formula is tested and at a next stage
we assess the performance of the AD for two different LoS
geometrical configurations. Finally, Section VI concludes the
paper and summarizes the key findings.

A note on notation: We use upper and lower case boldface to
denote matrices and vectors, respectively while the symbol C

denote the set of complex-valued numbers. The nomenclature
∼ CN (X,Y) stands for a complex normally distributed
matrix with mean X and covariance Y. An (n × n) identity
matrix is expressed as In while the all-zeros (n×m) matrix as
0n×m. The symbols (·)H and (·)−1 correspond to Hermitian
transposition and matrix inversion, respectively whereas ⊗ is
the Kronecker product. Finally, det(·) returns the determinant
of a matrix.

II. NON-CENTRAL WISHART MATRICES AND CONDITION

NUMBER DISTRIBUTION

As was previously mentioned, we are particularly interested
in dual non-central Wishart matrices. In such a case, a (2×2)
complex normal random matrix H is considered which is
distributed according to H ∼ CN (M,Σ ⊗ I2). In general,
M �= 02×2 whereas Σ = σ2I2 is the correlation matrix
containing the variances σ2 of the entries of H on its main
diagonal. The so-called MIMO correlation matrix is defined
as W = HHH and is said to follow the complex non-
central Wishart distribution with two degrees of freedom and
non-centrality matrix Ω = Σ−1MMH , commonly denoted
as W ∼ CW2(2,Σ,Ω). It should be emphasized that if
M = 02×2, so that Ω = 02×2, a complex central Wishart
matrix is eventually obtained, i.e. W ∼ CW2(2,Σ).

We now consider a scaled version of W, that is W̃ =
Σ−1W. Since W̃ is a (2 × 2) Hermitian matrix, it has two
real ordered eigenvalues (w1 > w2 > 0) where w1 is the
largest and w2 the smallest eigenvalue, respectively; the joint
eigenvalue PDF f(w1, w2) is given by [14]

f(w1, w2) = exp

[
−

2∑
i=1

(λi + wi)

]
0F̃1 (2;λ,w) (w1 − w2)2

(1)
where λ = (λ1, λ2) contains the distinct real ordered eigenval-
ues of Ω and, in turn, w = (w1, w2); furthermore, 0F̃1(.; ., .) is

the complex hypergeometric function of two matrix arguments.
A convenient version of 0F̃1 (2;λ,w) for the dual case was
given by Gross and Richards [15] as

0F̃1 (2;λ,w) =
det (0F1 (1;wiλj))
(λ1 − λ2)(w1 − w2)

(2)

with Iq(·) denoting the q-th order modified Bessel function
of the first kind and 0F1(s + 1;x) is the hypergeometric
function [16]

0F1(s + 1;x) = s!x−s/2Is

(
2
√

x
)
. (3)

From a mathematical point of view, the condition number z
is defined as the ratio of the largest to the smallest eigenvalue
and therefore

z =
w1

w2
≥ 1. (4)

In [17], the authors showed that the probability density
function (PDF) of z, fz(z), can be written as a weighted
summation of polynomials according to (5), shown at the top
of the next page. In (5), Γ(n) denotes the Gamma function
which, for the case of an integer index, can be rewritten as
Γ(n) = (n−1)!. The corresponding CDF of z is then directly
written as

Fz(x) =
∫ x

1

fz(z)dz (6)

or, equivalently

Fz(x) =
∫ x

0

fz(z)dz −
∫ 1

0

fz(z)dz. (7)

By substituting (5) into (7) and taking into account the
Dominated Convergence Theorem which suggests that the
differentiation and integration can be interchanged we readily
obtain (8). For the integrals involved in (8), a closed-form
solution is available as [16, Eq. (3.194)]∫ u

0

tμ

(1 + bt)ν
dt =

uμ+1

μ + 12F1(ν, μ + 1;μ + 2;−bu) (10)

where 2F1(α, β; γ;u) is the classical Gaussian hypergeometric
function defined in [16, Eq. (9.14)]. We can finally write the
CDF of the condition number according to (9), where

Ik,n
1 (x) =

(
xk+2

k + 2

)
2F1(k + n + 3, k + 2; k + 3;−x)

−
(

1
k + 2

)
2F1 (k + n + 3, k + 2; k + 3;−1) (11)

and

Ik,n
2 (x) =

(
xk+1

k + 1

)
2F1(k + n + 3, k + 1; k + 2;−x)

−
(

1
k + 1

)
2F1(k + n + 3, k + 1; k + 2;−1). (12)

Clearly, we have expressed the condition number distribu-
tion as a weighted summation of Gaussian hypergeometric
functions which can be efficiently evaluated and easily pro-
grammed.
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fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

[
λk

1λn
2 − λk

2λn
1

]
(5)

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)
(k!n!)2

[
λk

1λn
2 − λk

2λn
1

]
×

{∫ x

0

zk+1

(z + 1)k+n+3
−

∫ 1

0

zk+1

(z + 1)k+n+3
−

∫ x

0

zk

(z + 1)k+n+3
+

∫ 1

0

zk

(z + 1)k+n+3

}
(8)

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)
(k!n!)2

[
λk

1λn
2 − λk

2λn
1

] {
Ik,n
1 (x) − Ik,n

2 (x)
}

(9)

III. MIMO CHANNEL MODEL

In this section, the underlying MIMO channel model is
discussed for the case of LoS propagation. We consider a
memoryless, flat-fading MIMO system equipped with two
elements at both the Tx and the Rx. The complex input-output
relationship can be written for the discrete case as

y = Hx + n (13)

where x ∈ C
2×1 is the transmitted signal vector, y ∈ C

2×1 is
the noise-corrupted received signal and n ∈ C

2×1 corresponds
to the additive noise plus interference term. Moreover, the term
H ∈ C

2×2 is referred to as the channel transfer function matrix
and contains the complex responses between all antenna pairs.

In the case of Ricean fading, the channel matrix consists of a
spatially deterministic specular component HL and a randomly
distributed component HW which accounts for the scattered
signals. Then, the channel model reads as [18]

H =

√
K

K + 1
HL +

√
1

K + 1
HW (14)

where K denotes the Ricean K-factor expressing the ratio
of the free-space signal power to the power of the scattered
waves. The entries of HW are assumed to be independent
and identically distributed (i.i.d.) circular symmetric complex
Gaussian variables with zero mean and unity variance so that
their amplitudes follow the well-known Rayleigh distribution.
As far as the LoS component HL is concerned, when the
distance between the Tx and the Rx is small or the array
size is large, its entries represent spherical wavefronts in
the near-field region. Without loss of generality, we assume
isotropic radiators and the complex responses are of the
form e−jkdm,n/dm,n, where k = 2π/λ is the wavenumber
corresponding to the carrier wavelength λ and dm,n is the
distance between a receive element m ∈ {1, 2} and a transmit
element n ∈ {1, 2}.

Regarding the statistical characteristics of H, it can be

inferred that M =
√

K
K+1HL while Σ = 1

K+1I2. Then, it

is trivial to show that the Wishart matrix W = HHH follows

the distribution W ∼ CW2

(
2, 1

K+1I2,KHLHH
L

)
and in turn

the associated LoS version of interest W̃ = (K + 1)W.

IV. DETECTION SCHEMES FOR SM SYSTEMS

In this section we review the two reference detection
schemes, namely ZF and ML detectors, and explore the con-
cept of the novel adaptive detection strategy. All the following
investigations are based on a SM-MIMO transmission scheme,
such as the widely employed V-BLAST [8], in which the data
is divided into a number of Nt blocks (equal to the number of
transmit elements) that are then simultaneously emitted. At the
Rx, the main goal is to differentiate the data blocks originating
from each of the transmit elements so that the transmitted
signals are efficiently recovered.

A. ZF detection

The simplest linear MIMO detector is the ZF receiver,
where the received signal vector y is multiplied by the Moore-
Penrose pseudoinverse H† of the channel matrix H to obtain
an estimated transmit signal vector x̂ZF as follows

x̂ZF = H†Hx + H†n. (15)

The computational complexity of ZF includes an exhaustive
search through the Q symbols in the constellation of the
modulation technique for Nt times and thus it is of the order
of O(QNt). However, the low complexity of the ZF receiver
comes at the expense of noise amplification which induces
irreducible errors. In fact, as the number of transmit and
receive antennas grows with no bound, the noise amplification
tends to infinity [19].

B. ML detection

On the other end, the optimal ML detector resides which
remains robust and yields the best performance among all
detection techniques [3]. Assuming equally likely, temporally
uncoded transmit symbols, this receiver chooses the vector t
that solves the following expression

x̂ML = arg min
t

‖y − Ht‖2
F . (16)
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The optimization is performed through an exhaustive search
over all possible vector symbols. This implies that the com-
plexity of the ML detector grows exponentially with the
number of transmit antennas i.e. O(QNt), making the scheme
infeasible for large antenna setups and constellation sizes.

C. Adaptive detection

Given the deficiencies of both detection strategies, we herein
propose a novel detector which can adaptively switch between
them in order to enhance the error performance and minimize
the computational cost. The AD uses ZF when the condition
number is below a predefined threshold defined and ML
detection otherwise. The key notion is to employ the ZF
detector only for well-conditioned channels (low condition
numbers) and let the ML deal with the ill-conditioned channels
(high condition numbers). We can then write

x̂AD =
{

x̂ZF if z ≤ κ
x̂ML if z > κ.

(17)

The threshold κ affects the complexity of the proposed
scheme; for κ = 1 we get x̂AD = x̂ML and complexity
equals that of ML detection whereas for κ → ∞ we have
x̂AD = x̂ZF. In general, the probability of ZF calls is
Prob {z ≤ κ} ≡ Fz(κ) = pκ and therefore the average AD
complexity g becomes

g = pκQNt︸ ︷︷ ︸
ZF calls

+ (1 − pκ)QNt︸ ︷︷ ︸
ML calls

, 0 ≤ pκ ≤ 1. (18)

The percentage of complexity reduction, compared to that of
the ML detector, is

QNt − g

QNt
= pκ

(
1 − Nt

QNt−1

)
. (19)

Evidently, the reduction is more pronounced for greater sizes
of the symbol alphabet and a higher number of ZF calls.

V. SIMULATION RESULTS

In this section, the theoretical analysis presented in Sec-
tion II is validated through a set of simulations and subse-
quently the link-level performance of the AD is assessed in
terms of complexity and bit-error-rate (BER). In order to get
a deeper insight, we explore two different geometrical models
for the LoS component.

In particular, the first model belongs in the family of high-
rank (HR) configurations which, contrary to the common
belief, can deliver high MIMO capacities in the presence of
strong LoS components (large K-factors). This is achieved by
appropriate positioning of the antenna elements at both ends so
that subchannel orthogonality is attained, or, the eigenvalues
of Ω become equal. In such a case though, the (λ1 − λ2)
term in the denominator of (2) becomes zero making the
analysis invalid (division by zero). In this light, we consider
a suboptimum HR LoS channel model in order to guarantee
that λ1 �= λ2; the LoS matrix component then reads [17]

HL =
[

0.8384 + j0.5451 0.9411 + j0.3380
−0.5123 − j0.8588 0.8384 + j0.5451

]
(20)

Assuming a Ricean-K factor of 5 dB, the eigenvalues of Ω can
be easily computed and thereafter concatenated into the vector
λ = (7.0336, 5.6155). The second model is a conventional
architecture whose deterministic matrix reads

H′
L =

[
0.8384 + j0.5451 0.9411 + j0.3380
−0.5123 − j0.8588 0.8384 + j0.5451

]
(21)

and, likewise, λ′ = (12.649, 0.0001). For both geometrical
models under investigation, 50,000 random Monte-Carlo re-
alizations of the channel matrix H were generated according
to (14). In Fig. 1, the simulated CDF curves of the condition
number are overlaid with the analytical results returned by (9).
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Fig. 1. Simulated and analytical CDFs of the condition number z of two
Ricean MIMO channel models (K = 5 dB).

The match between the simulated and theoretical results
is excellent in both cases, thereby indicating the validity of
the derived formulae. We also point out that for the HR
model a significant percentage of realizations is close to unity
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(well-conditioned channels) while, in contrary, the LR model
systematically yields a rather high condition number.

The next stage of our investigation comprises the assessment
of the AD advantages assuming a 16-QAM modulation type.
In [17], we found that when κ ≤ 6.46 the instantaneous
capacity of the HR channel is greater than the ergodic capacity
of a common (2×2) i.i.d. Rayleigh channel and hence we have
adopted a threshold of κ = 5 as a reasonable indicator of the
channel rank and multipath richness. In Fig. 2, the BER curves
are depicted for three different detection schemes, namely
ZF, ML and the proposed AD. As anticipated, higher K-
factors lead to significant performance enhancement for arrays
designed following the suboptimum HR model. On the other
hand, for low values of K-factor (below 0 dB) the channel
approaches the i.i.d. Rayleigh channel characteristics which
corresponds to a rich-scattering environment; in this region,
the BER curves are approximately identical in both systems
and the benefits of LoS-optimized arrays are minimized. In
the limit (K → ∞ dB) the LoS component vanishes and we
end up with a pure i.i.d Rayleigh channel where all multipath
components have equal amplitudes.

In order to get a better understanding, the main AD per-
formance characteristics are tabulated in Table I where the
radically different trends of the two configurations are readily
observable. More specifically, the application of the detection
scheme has a noticeable impact on the HR channel; in fact,
a significant percentage of ZF calls occur for all values of
the K-factor with a consequent complexity reduction of up to
83.35%. We also observe a steady increase of pκ as K gets
higher since the channel becomes full rank and delivers two
approximately equal eigenvalues. In the LR case pκ is always
below 29.43% and further is inversely proportional to the K-
factor. This phenomenon can be attributed to the ill-condition
of conventional architectures which degenerate eventually into
a rank-one channel due to the linear dependence of the LoS
rays’ phases (higher spatial correlation). Consequently, for
K ≥ 5 dB the number of ZF calls is too low to exploit the
adaptivity benefits and a complexity identical to that of a ML
detector inevitably takes place.

VI. CONCLUSION

In the present contribution, the potential of developing an
AD relying on the condition number of the MIMO correlation
matrix, has been investigated. On this basis, we firstly derived
a closed-form formula for the CDF of the condition number
of dual non-central complex Wishart matrices as a weighted
summation of Gaussian hypergeometric functions. The ana-
lytical CDF expression was firstly validated through extensive
Monte-Carlo simulations where it was clearly demonstrated
that the match between theory and simulation is very good.
At a next stage, the distribution of the condition number was
used to construct the hard-decision criterion of the proposed
AD which is appealing not only from a theoretical but also
from a practical perspective; most importantly, the dramatic
decrease in terms of complexity, compared to the sophisticated
ML detector, makes the model applicable to the majority of
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Fig. 2. BER curves for three different detection strategies based on a 16-
QAM modulation.

modern practical receivers. Further, when the antenna elements
are positioned in such a way to guarantee subchannel orthog-
onality, the attained performance was shown to be reasonably
good, especially for high values of the K-factor. On the
contrary, the scheme advantages diminish when it is applied to
a conventional antenna configuration since the channel matrix
is inherently rank deficient and therefore yields a deteriorating
performance with the increasing Ricean K-factor.
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TABLE I
AD PERFORMANCE CHARACTERISTICS FOR TWO DIFFERENT LOS CHANNEL MODELS AS A FUNCTION OF THE K-FACTOR.

Suboptimum HR LoS channel model LR LoS channel model

K–factor Analyt. pκ Simul. pκ Compl. reduction Analyt. pκ Simul. pκ Compl. reduction

K = −10 dB 0.2992 0.3150 26.18% 0.2943 0.3132 25.75%

K = −5 dB 0.3203 0.3380 28.02% 0.2801 0.3002 24.51%

K = 0 dB 0.4372 0.4403 38.25% 0.2052 0.2241 17.95%

K = 5 dB 0.7499 0.7501 65.61% 0.0536 0.064 4.69%

K = 10 dB 0.9526 0.9620 83.35% - - -
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