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Abstract—In this paper, study of the second order statistics of
the Nakagami-Hoyt fading channel model (Nakagami-q model) is
considered. Expressions for the level crossing rate (LCR) as well
as the average duration of fades (ADF) are derived. It is shown
that the obtained analytical quantities best fit the corresponding
measurement data for an equivalent mobile satellite channel in the
case of an environment with heavy shadowing. This leads to the
conclusion that the Nakagami-q model is applicable to realistic
mobile communication channels. A simple and efficient determin-
istic simulation model based on the Rice’s sum of sinusoids, which
enables the emulation of the fading envelope of the Nakagami-q
model with the desired statistics, is also described. A very good
agreement is obtained between the simulated, analytical, and ex-
perimental statistics.

Index Terms—Deterministic channel modeling, fading channels,
Nakagami-Hoyt channel, Nakagami-q model, second order statis-
tics.

I. INTRODUCTION

I T IS well known that in mobile communications, a profound
understanding and accurate modeling of propagation chan-

nels are of great importance for both effective system design
and related performance analysis. Over the years of wireless
communications, and depending on system operating environ-
ments, a great number of channel models have been proposed to
describe the statistics of the amplitude and phase of multipath
fading signals [1]–[3]. The Nakagami-q model is one of the pro-
posed models. This model was introduced by Nakagami [4] as
an approximation for the Nakagami-m fading distribution in the
range of fading that extends from the one sided Gaussian model
to the Rayleigh model. The Nakagami-q distribution is the dis-
tribution of the modulus of a complex Gaussian random variable
whose components are uncorrelated with zero mean and unequal
variances. We should add that this distribution was investigated
independently by Hoyt [5], and is sometimes referred to as the
Nakagami-Hoyt distribution [6].

Recently, the model is being used more frequently in per-
formance analysis and other studies related to mobile radio
communications. For example, Simon et al. [2] considered the
Nakagami-q model in a study on error rate performance evalua-
tion of digital communication over generalized fading channels.
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Similarly, Annamalai et al. [7] used the model in outage anal-
ysis in cellular mobile radio systems. Also, in [8], the model
has been combined with the Rice process for the modeling of
a two state mobile satellite propagation channel. More recently,
the crossing statistics of phase processes and random FM noise
of the Nakagami-q channel have been studied [9]. To the best of
the authors’ knowledge, however, analytical expressions for the
second order statistics; i.e., the level-crossing rate (LCR) and the
average duration of fades (ADF) in the case of the Nakagami-q
model, as well as corresponding experimental verification, have
not yet been investigated.

In the present paper, closed form expressions for the second
order statistics of the Nakagami-q process are derived. The de-
rived quantities are useful, together with those corresponding to
the Rice process [10], for the study of the second order statis-
tics of the combination fading model proposed in [8]. Further-
more, an efficient deterministic simulation model with which
the Nakagami-q model can be implemented on a computer is
presented. Finally, a comparison of the obtained analytical quan-
tities against measurement data demonstrates the ability of the
Nakagami-q model to describe the statistics of real world mobile
radio channels.

The paper is organized as follows. In Section II, we briefly
review the first order statistics of the envelope and phase pro-
cesses of the Nakagami-q fading channel model. In Section III,
we derive the second order statistics (LCR and ADF) of the
model. Section IV deals with the deterministic simulation of
the Nakagami-q model. A comparison of the derived statistical
quantities with both real-world measurement data and simulated
data is discussed in Section V. Finally, in Section VI, we come
to the conclusion of the paper.

II. REVIEW OF THE FIRST ORDER STATISTICS OF THE

NAKAGAMI-q FADING MODEL

In this section, we present a review of the first order statistics
of the Nakagami-q fading process which have been investigated
in [5]. The instantaneous amplitude, R(t), of this fading pro-
cess is obtained as the modulus of a complex Gaussian process
µ(t) = µ1(t) + jµ2(t). That is,

R(t) = |µ1(t) + jµ2(t)| =
√

µ2
1(t) + µ2

2(t) (1)

where µ1(t) and µ2(t) are uncorrelated zero mean low pass
Gaussian processes of variances σ2

1 and σ2
2 , respectively. The

autocorrelation functions of µi(t) (i = 1, 2) will be denoted by
rµi µi

(τ). In the Nakagami-q model, the autocorrelation func-
tions rµ1µ1(τ) and rµ2µ2(τ) can have different shapes. Hence,
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since σ2
i = rµi µi

(0), it follows that σ2
1 and σ2

2 can be differ-
ent. The probability density function (PDF) of the Nakagami-q
process R(t), pR(z), is given by [5]

pR(z) =
z

σ1σ2
exp

(
−z2

4

(
1
σ2

1

+
1
σ2

2

))

× I0

(
z2

4

(
1
σ2

2

− 1
σ2

1

))
, z ≥ 0 (2)

where I0( · ) designates the zeroth-order modified Bessel func-
tion of the first kind. Note that under the restriction that σ1 = σ2,
the PDF of the process R(t) reduces to the Rayleigh distribu-
tion [11]. Also, the PDF (2) contains the one-sided Gaussian
density as a special case [5]. This can be shown by writing the
PDF pR(z) in the following form [5]

pR(z) =
2√

2π(σ2
1 − σ2

2)

× exp
(
− z2

2σ2
1

)√
2πX exp(−X)I0(X) (3)

where X = (z2/4)((1/σ2
2)− (1/σ2

1)). Then, in the limit σ2
2 →

0(σ2
1 �= 0); i.e., X → ∞, we have

√
2πX exp(−X)I0(X) →

1, and thus the PDF (3) leads to the one-sided Gaussian density
given by pR(z) = (2/(

√
2πσ1)) exp(−(z2)/(2σ2

1)), z ≥ 0. On
the other hand, the Nakagami-q model allows also the approx-
imation of the Nakagami-m fading channel in the range of the
parameter m, given by 0.5 ≤ m ≤ 1, by the following choice
of parameters [4]

Ω =
σ2

1 + σ2
2

2
(4)

and

m =

(
σ2

1 + σ2
2

)2
(σ2

1 + σ2
2)

2 + (σ2
1 − σ2

2)
2 (5)

where Ω = E(R2) and m = {E(R2)}2/Var(R2) are the two
parameters describing the Nakagami-m process R(t), the PDF
of which is given in [4]. Here, E( · ) denotes statistical average,
while Var( · ) stands for the variance. The influence of ρ =
σ2

2/σ
2
1 on the PDF pR(z) is shown in Fig. 1.

Concerning the phase process, ϑ(t) = arctan(µ2(t)/µ1(t)),
encountered in the Nakagami-q fading model, its PDF is given
by [5]

pϑ(θ) =
σ1σ2

2π
(
σ2

2 cos2(θ) + σ2
1 sin

2(θ)
) , −π ≤ θ < π. (6)

Note that the case σ2
1 = σ2

2 yields a uniformly distributed phase
process in the interval [−π, π). In the limit σ2

1 → 0, pϑ(θ) be-
comes

pϑ(θ) =
1
2
(δ(θ − π/2) + δ(θ + π/2)) (7)

while the case σ2
2 → 0 yields the following PDF:

pϑ(θ) =
1
2
(δ(θ) + δ(θ + π)). (8)

Fig. 1. The PDF pR(z) as a function of ρ.

Fig. 2. The PDF pϑ(θ) as a function of ρ: (a) ρ ≤ 1 and (b) ρ ≥ 1.
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The influence of the parameter ρ = σ2
2/σ

2
1 on the phase PDF

pϑ(θ) is shown in Fig. 2.
Since the Nakagami-m distribution approximates the

Nakagami-q distribution and vice versa, it is worthwhile to
present a brief comparison between the two models. It is well
known that while the Nakagami-m model offers features of
analytical convenience with respect to the Nakagami-q model,
it does not address the phase term statistics which is of great
importance in coherent communications. Concerning the sim-
ulation, the Nakagami-q model can be simulated accurately by
using the classical filter method or the concept of deterministic
channel modeling [12], since the underlying model is derived
directly from uncorrelated Gaussian processes. However, cor-
related Nakagami-m fading processes cannot, in general, be
simulated directly by applying these methods. Therefore, in
recent years, several works have addressed the topic of sim-
ulating correlated Nakagami-m processes using different ap-
proaches [13]–[16]. Here, we mention that a simulation model
for the Nakagami-q process can be considered as an approxi-
mated simulation model for the Nakagami-m process, the pa-
rameters of which are obtained from the relationships given by
(4) and (5). In this case, the autocorrelation function of the ap-
proximated squared envelope of the Nakagami-m fading chan-
nel is the same as that corresponding to the Nakagami-q model;
i.e., rR2R2(τ) = σ4

1 + σ4
2 + 2σ2

1σ
2
2 + 2(r2

µ1µ1
(τ) + r2

µ2µ2
(τ)).

As was pointed out in [17], so far there is no analytical model,
proposed on a physical basis, for the temporal autocorrelation
function of the Nakagami-m channel. We add that the impor-
tance and usefulness of the equivalence between channel models
were also addressed in [3].

III. SECOND ORDER STATISTICS

In this section, we consider the derivation of the LCR and the
ADF of the Nakagami-q fading process. These quantities are
also called second order statistics because they take into con-
sideration the time dimension. In addition to their importance
in providing statistical information on the error bursts [18],
[19], these quantities are also useful for computing transition
probabilities in Markov modeling of fading channels [20], and
in velocity estimation of mobile units [21]. Using the traditional
PDF-based approach, an analytical expression for the LCR of
the process R(t), denoted by NR(r), can be obtained by solving
the following integral [10]

NR(r) =
∫ ∞

0

żpRṘ(r, ż) dż (9)

where pRṘ(r, ż) is the joint PDF (JPDF) of R(t) and its
time derivative Ṙ(t) at the same time and at the level z = r.
The characteristic function based approach, proposed in [22],
can also be used for the derivation of NR(r). For obtaining
NR(r) from (9), it is necessary to first calculate an expression
for pRṘ(z, ż). This can be done by deriving the JPDF,
pRṘϑϑ̇(z, ż, θ, θ̇), of the processes R(t), Ṙ(t), ϑ(t) and ϑ̇(t),
based on the multivariate Gaussian distribution, pµ1µ2µ̇1µ̇2 (x1,
x2, ẋ1, ẋ2) of the processes µ1(t), µ̇1(t), µ2(t), µ̇2(t), and the
transformation of the Cartesian coordinates (x1, x2) to polar

coordinates (z, θ). This results in pRṘϑϑ̇(z, ż, θ, θ̇) = |J |−1

pµ1µ2µ̇1µ̇2 (z cos(θ), z sin(θ), ż cos(θ)− zθ̇ sin(θ), ż sin(θ)+
zθ̇ cos(θ)), where J = −1/z2 is the Jacobian of the transfor-
mation. For a symmetrical Doppler power spectral density,
where µi(t) and µ̇i(t) (i = 1, 2) are in pairs uncorre-
lated, it can be shown that pµ1µ2µ̇1µ̇2(x1, x2, ẋ1, ẋ2) =
(4π2σ1σ2

√
β1β2)−1 exp(−1/2(x2

1/σ
2
1 + x2

2/σ
2
2 + ẋ2

1/β1 +
ẋ2

2/β2)), where βi is the variance of the process µ̇i(t)
(i = 1, 2). The application of that transformation then results
in the following expression for the JPDF pRṘϑϑ̇(z, ż, θ, θ̇)

pRṘϑϑ̇(z, ż, θ, θ̇)

=
z2

4π2σ1σ2

√
β1β2

exp
(
−
[
z2 cos2(θ)

2σ2
1

+
z2 sin2(θ)

2σ2
2

+
ż2 cos2(θ)

2β1

+
ż2 sin2(θ)

2β2
+
(
z2 cos2(θ)

2β2
+

z2 sin2(θ)
2β1

)
θ̇2

+ zż sin(θ) cos(θ)
(

1
β2

− 1
β1

)
θ̇

])
(10)

where 0 ≤ z < ∞,−∞ < ż < ∞,−π ≤ θ < π, and −∞ <
θ̇ < ∞. The quantity βi (i = 1, 2) can be expressed as βi =
−r̈µi µi

(0), i.e., βi represents the negative curvature of the auto-
correlation function rµi µi

(τ) at τ = 0. The JPDF pRṘ(z, ż) of
the processes R(t) and Ṙ(t) is then computed as

pRṘ(z, ż)

=
∫ ∞

−∞

∫ 2π

0

pRṘϑϑ̇(z, ż, θ, θ̇) dθ dθ̇

=
z

(2π)3/2σ1σ2

×
∫ 2π

0

exp
[
− z2

2σ2
1σ

2
2

(
σ2

2 cos
2(θ) + σ2

1 sin
2(θ)

)]

× exp
[
− ż2

2(β2 + (β1 − β2) cos2(θ))

]

× 1√
(β2 + (β1 − β2) cos2(θ))

dθ. (11)

Note that pRṘ(z, ż) �= pR(z) · pṘ(ż), leading to the conclusion
that R(t) and Ṙ(t) are not statistically independent. This result
is different from that obtained for the corresponding cases of
Rayleigh [11], Rice [10], and Nakagami-m [23] fading mod-
els, where R(t) and Ṙ(t) have been shown to be statistically
independent. Moreover, for these three models, Ṙ(t) has been
shown to be Gaussian distributed. For the Nakagami-q model,
the PDF of Ṙ(t) is obtained from (11) as

pṘ(ż) =
∫ 2π

0

2√
2π(β2 + (β1 − β2) cos2(θ))

× exp
(
− ż2

2(β2 + (β1 − β2) cos2(θ))

)
pϑ(θ)dθ (12)

where pϑ(θ) is given by (6).
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Fig. 3. Structure of the deterministic simulation system.

Now, the LCR NR(r) of the Nakagami-q process follows
immediately from (9), and can be expressed by

NR(r) =
r

(2π)3/2σ1σ2

×
∫ 2π

0

exp
[
− r2

2σ2
1σ

2
2

(
σ2

2 cos
2(θ) + σ2

1 sin
2(θ)

)]

×
√
(β2 + (β1 − β2) cos2(θ)) dθ. (13)

In case of σ2
1 = σ2

2 = σ2 (β1 = β2 = β), it is easy to show
that (13) reduces to the well known expression of the LCR
corresponding to the Rayleigh fading channel ( [11], (1.3.35)).

Another statistical quantity that helps to quantify the char-
acteristics of correlated fading channels is the ADF. The ADF
TR−(r) is the expected value for the length of time intervals
over which the signal envelope R(t) is below a specified level
r. In general, the ADF TR−(r) is defined by [11]

TR−(r) =
PR−(r)
NR(r)

(14)

where PR−(r) indicates the probability that the process R(t)
is found below the level r. An expression for PR−(r) can be
derived from (2) according to

PR−(r) =
∫ r

0

pR(z) dz

=
∫ r

0

z

σ1σ2
exp

(
−z2

4

(
1
σ2

1

+
1
σ2

2

))

× I0

(
z2

4

(
1
σ2

2

− 1
σ2

1

))
dz. (15)

By substituting (13) and (15) into (14), the ADF TR−(r) of the
Nakagami-q process R(t) can be evaluated.

IV. SIMULATION SYSTEM

We propose, in this paper, to simulate the Nakagami-q process
by using the concept of deterministic channel modeling based
on Rice’s sum of sinusoids. According to that principle, the
simulation system of the Nakagami-q process has the structure
shown in Fig. 3, where the Gaussian processes µi(t) (i = 1, 2)

are approximated by

µ̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt+ θi,n). (16)

The quantities ci,n, fi,n, and θi,n in (16) are called the gains,
discrete Doppler frequencies, and phases, respectively, and Ni

denotes the number of sinusoids used for the generation of
µ̃i(t). All these parameters have to be determined such that the
process given by (16) has the desired statistics. For the compu-
tation of these quantities, several methods have been proposed
in [12]. Here, we use the so-called Method of Exact Doppler
Spread (MEDS). The MEDS is discussed in [12], and its use
is restricted to the Jakes Doppler power spectral density [11].
In this case, the corresponding autocorrelation function of the
Gaussian processes µi(t) (i = 1, 2) is given by

rµi µi
(τ) = σ2

i J0 (2πfmaxi
τ) (17)

where J0( · ) is the zeroth-order Bessel function of the first
kind and fmaxi

denotes the maximum Doppler frequency of
the process µi(t). The quantity βi (i = 1, 2) can be obtained
from (17) as βi = −r̈µi µi

(0) = 2(πσifmaxi
)2. According to

the MEDS [12], the corresponding formulas for the determina-
tion of ci,n and fi,n are given by ci,n = σi

√
2/Ni and fi,n =

fmaxi
sin[(π/(2Ni))(n− (1/2))] respectively, while the phases

θi,n are realizations of a random variable that is uniformly dis-
tributed in the interval [0, 2π). Here, we should add that the
values of the maximum Doppler frequencies, fmaxi

(i = 1, 2),
can be obtained according to the relation

fmax2 =
σ1

σ2

√
β2

β1
fmax (18)

where fmax = fmax1 . This simulation procedure which allows,
as will be shown in the following, to simulate the Nakagami-
q process with high precision, can also be useful for the
approximation of correlated Nakagami-m fading envelopes,
0.5 ≤ m ≤ 1. The parameters characterizing the correspond-
ing simulated Nakagami-m channel are given by (4) and (5). In
comparison with the method proposed in [13] for the simula-
tion of Nakagami-m processes, 0.5 ≤ m ≤ 1, we can say that
the present method is much simpler in terms of computational
complexity, and the simulated autocorrelation function offers
a better match to the exact analytical one. However, concern-
ing the PDF of the Nakagami-m model, we have verified that
the approximation is quite good only for large values of en-
velope levels, and the method proposed in [13] yields a better
approximation of the Nakagami-m PDF. For completeness, we
mention that the filter method can also be used for the simulation
of Nakagami-q processes.

V. ADAPTATION TO MEASUREMENT DATA

To demonstrate the validation of the Nakagami-q channel
model for describing the statistics of real-world mobile fading
channels, an adaptation of the complementary cumulative distri-
bution function (CDF), LCR, and ADF to measurement results
is performed. The measurement results of the complementary
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TABLE I
OPTIMIZED PARAMETERS OF THE ANALYTICAL NAKAGAMI-Q MODEL FOR

RURAL AREAS WITH HEAVY SHADOWING

Fig. 4. Complementary CDF PR+ (r) for heavy shadowing.

CDF P ∗
R+

(r), LCR N ∗
R(r), and ADF T ∗

R−
(r) considered as

object functions for the optimization of the parameters of the
Nakagami-q channel model are adopted from [24]. An appro-
priate error norm for our purpose which provides us with a
measure of the difference between the analytical quantities and
the measured ones is given by

E2(Ψ) :=

(
M∑

m=1

{W1(rm) · [PR+(rm)− P ∗
R+(rm)]}2

)1/2

+
1

fmax

(
M∑

m=1

{W2(rm) · [NR(rm)−N ∗
R(rm)]}2

)1/2

(19)

where Ψ denotes the parameter vector Ψ = (σ1, σ2, β1, β2),M
is the number of measurement values, and W1( · ) and W2( · )
are appropriate weighting functions which are defined here, for
simplicity, by scaled versions of the reciprocals of P ∗

R+( · ) and
N ∗

R( · ), respectively. Observe that we only consider NR(rm)
and PR+(rm) = 1− PR−(rm) in the above error function, and
we ignore TR−(rm) because TR−(rm) is completely defined
by PR−(rm) and NR(rm)—see (14). The minimization of the
error norm E2(Ψ) can be performed by applying any elabo-
rate numerical optimization procedure. Here, we have used the
so-called quasi-Newton algorithm [25], [26]. The result of the
minimization of (19) is shown in Table I, where the optimized
parameters of the Nakagami-q model are listed for the equiv-
alent mobile satellite channel. Following [3], the Nakagami-m
channel parameters corresponding to the set of measurement
data employed in this paper can directly be estimated from the
optimized parameters of the Nakagami-q channel using (4) and

Fig. 5. Normalized level-crossing rate NR(r)/fmax for heavy shadowing.

(5). This results in the values m = 0.77 and Ω = 0.067. It is in-
teresting to note that the value of m is approximately the same
as that obtained for the model proposed in [3, Table III] for the
heavy shadowing environment.

The results of the fitted, simulated, and measured comple-
mentary CDF are compared in Fig. 4. The simulation results
shown are obtained by using the optimized parameters given
in Table I, and the values of N1 and N2 are selected to be
10 and 11, respectively. We see that the fitted complementary
CDF PR+(r) is in remarkable good agreement with the under-
lying measured and simulated results. For further comparison,
the fitted complementary CDF of the Rayleigh model is also
plotted; thus we can observe that the Nakagami-q model is in
a better coincidence with measurement data than the Rayleigh
model. Similarly, the normalized measured LCR N ∗

R(r)/fmax

and the normalized measured ADF T ∗
R(r) · fmax are shown in

Figs. 5 and 6, respectively. In these figures, the resulting nor-
malized LCR and ADF of the analytical Nakagami-q model
and the simulation model are also plotted for the purpose of
comparison. All the integrals involved in the analytical expres-
sions of the LCR and ADF are computed by using the trape-
zoidal method [27]. The corresponding values of the maximum
Doppler frequencies, deduced from the parameters given in Ta-
ble I, are fmax = fmax1 = 23.19 Hz, and fmax2 = 42.58 Hz.
Although the assumption that the Gaussian processes µ1(t) and
µ2(t) may have different maximum Doppler frequencies lacks
a clear physical basis, it increases the flexibility of the model
and enables better fitting of measurement data. The results show
that the analytical Nakagami-q model and the simulation results
are in good agreement with the measurement data. In particular,
it is interesting to observe from Fig. 6, that the analytical ADF
of the Nakagami-q model fits clearly better the measured ADF
than does the ADF of the Rayleigh channel, especially when
the threshold r is between −5 dB and 0 dB. This allows us
to conclude that the advantage of the Nakagami-q model over
the Rayleigh model, for this realistic mobile satellite channel,
appears mainly in terms of the ADF. By comparison with the
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Fig. 6. Normalized average duration of fades TR−(r) · fmax for heavy shad-
owing.

Fig. 7. A waveform example of the simulated deterministic process R̃(t).

results reported in [28] for the heavy shadowing case, it is noted
that the difference between the measured LCR, and the corre-
sponding results obtained from both the analytical model and the
simulation model is large. As for the results reported in [3], [29],
and [30], it was shown therein that the models proposed can be
used for the description of the statistics of the equivalent mobile
satellite channel for an environment with heavy shadowing. The
strength of the Nakagami-q model, with respect to these models,
lies in the simplicity of its simulation. Namely, the Nakagami-q
model simulator is just a slight modification of the Rayleigh
fading channel simulator. This advantage is of great practical
importance for the simulation and performance analysis of re-
lated mobile communication systems, such as the computation
of the bit error probability.

Finally, a waveform example of the simulated envelope pro-
cess, R̃(t) = |µ̃1(t) + jµ̃2(t)|, using the parameters given in

Table I, is plotted in Fig. 7. The values of the number of sinusoids
N1 and N2 have been selected to be 10 and 11, respectively.

VI. CONCLUSION

In this paper, the second order statistics of the Nakagami-
Hoyt (Nakagami-q) fading channel is considered. Closed-form
expressions for the LCR and ADF have been derived. The fit-
ting of the derived expressions to the corresponding measured
quantities demonstrates the ability of the Nakagami-q model
to describe the statistical behavior of real world mobile fading
channels. A deterministic simulation model for the considered
channel has also been presented. The validity of the simulator
has been demonstrated by comparing the simulated complemen-
tary CDF and the second order statistics (LCR and ADF) against
the corresponding analytical and measurement results.
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