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Abstract—In this paper, we revisit the idea of using deep
neural network for channel equalization to account for nonlinear
channel distortions as well as temporal variations of radio signals.
Our insight is leveraging the the shift-invariant properties of
the convolutional neural network (CNN) to learn matched filters
analogous to the tap weights of conventional equalizer. Then
we feed the learned filters into a subsequent recurrent neural
network (RNN) with long-short-term-memory (LSTM) cells for
temporal modeling of the channel. We train our proposed CNN-
RNN (CRNN) equalizer based on real testbed collected data and
enlarge the generalization ability of the learned network model
as much as we can to adapt to different channel conditions.
Experimental results show that the SER performance for our
designated single-input single-output (SISO) system which utilises
quadrature phase shift keying (QPSK) modulation scheme with
the proposed CRNN-based channel equalizer outperforms that
of other equalizers by average 2 to 5 dB at low signal-to-noise
ratio (SNR).

I. INTRODUCTION

In digital wireless communication systems, binary symbols

are transmitted via a dispersive channel causing the symbols to

spread in time and produce ISI [1]. The presence of ISI hinders

the efficient use of frequency bandwidth and performance

improvement. Basically, the channel can be represented by

a complex-valued finite impulse response (FIR) filter and the

channel output is the linear combinations of the taps weights

and is corrupted by noise. The problem of equalization is

to reconstruct the transmitted sequences and counteract the

effects of ISI and noise based on the channel observations.

Typically, the transmission channel can be affected by both lin-

ear and nonlinear distortion. Conventional linear equalization

algorithms such as least mean squares (LMS) [2] algorithm,

recursive least squares (RLS) [3] algorithm, are not adequate

to account for nonlinear equalization tasks due to the presence

of nonlinear devices.

Recently artificial neural networks (NN) have attracted

much attention on channel equalization due to its capability

of nonlinear mapping between input and output spaces [4].

Besides, equalization can be considered as a classification

problem in which the NN approach is well justified. In [5]-[7],

Patra et al. have shown that NN-based nonlinear equalizers

can provide better system performance in terms of bit error

rate (BER) than conventional linear equalizer for signals

under either pulse amplitude modulation (PAM) or quadrature

amplitude modulation (QAM). As a consequence, a variety

of NN-based equalizers with different structures are applied

in the channel equalization task. In [8], Adali and Sonmez

formulate the adaptive channel equalization as a conditional

probability distribution learning problem in an information-

theoretic approach. Then they parametrize the conditional

probability density function of the transmitted signal given

the received signal by a sigmoidal perceptron and learn by

a stochastic estimator. In [9], Chang et al. introduce an

adaptive decision feedback equalizer using multilayer percep-

tron (MLP) structure accounting for a satellite radio channel.

Moreover, a modified back-propagation algorithm with better

convergence properties is derived on the basis of delta-bar-

delta rule. Since the radio signals are complex-valued, Huang

et al. propose a complex-valued multilayer neural network

based on the Kalman filter for channel equalization in digital

communication systems [10].

Radio signals are time series data, however, none of the

above researches takes temporal variations of data into con-

sideration. In this paper, we propose a CRNN-based channel

equalizer which addresses the problem of temporal variations

of data as well as nonlinear channel distortions. Our insight

is leveraging the the shift-invariant properties of the convo-

lutional neural network (CNN) [11] to learn matched filters

analogous to the tap weights of conventional equalizer. Then

we feed the learned filters into a subsequent recurrent neural

network (RNN) [12] with long-short-term-memory (LSTM)

[13] cells for temporal modeling and then classify the received

symbols. In addition, we validate the proposed CRNN algo-

rithm with datasets collected by our 8 × 8 parallel multiple-

input-multiple-output (MIMO) channel sounder working on

3.5GHz. To the best of our knowledge, this is the first work

that applies CRNN algorithm in a channel equalization task.

The key contributions of this paper are summarized as follows.
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• We propose an analytical formulation of channel equal-

ization as a conditional probability distribution learning

problem, which can be solved by a neural network model.

The formulation is inspired by the illuminating work in

[8].

• Based on the formulation, a CRNN-based channel equal-

izer is proposed to cope with the problem of temporal

variations of data as well as nonlinear channel distortions.

We compared the SER performance of CRNN with other

approaches such as conventional method like RLS, multilayer

perceptron (MLP) [14]. Extensive experimental results show

the SER performance for QPSK symbols of CRNN-based

equalizer outperforms the other two equalizers by average 2

to 5 dB at low SNR.

The rest of this paper is organized as follows. Section

II gives the formulation of channel equalization as neural

network model. In section III, we propose CRNN and illustrate

its architecture. Then we show how we collect the training and

testing data for our proposed CRNN as well as visualize the

collected data in IV. After that, we train and test our proposed

CRNN together with the other two equalizers, RLS and MLP

on the same training and testing dataset in V. Finally, the

conclusion is drawn in section VI.

II. PROBLEM FORMULATION

In this section, we seek to show how an adaptive channel

equalization problem can be formulated as a conditional

probability distribution learning problem, which can be solved

by a neural network.

Consider the channel equalization problem shown in Fig.1.

We assume S is the symbol alphabet for transmitting, and

the size of S is denoted as K. The probability that the

transmitted symbol x(i) = k from the symbol alphabet S is to

be determined from a training sequence, given the finite past

of the received signal

y(i) = [y(i), y(i−1), . . . , y(i−N+1)]T , (1)

where N is the number of channel taps. Thus the equalization

problem is equivalent to learn the conditional probability

distribution, which is defined as

pX|Y=y = P (X = x|Y = y), (2)

and make the classification decision by the maximum condi-

tional probability. Then the NN as a function parametrizes the

conditional probability distribution in the following manner:

fw : RN → RK ∈ [1, 2, . . . ,K], (3)

which is defined as

fw(y
(i)) ≡ P (X|Y,w)

= g(wT y(i)), (4)

where the N ×K parameter matrix w = (w1, w2, . . . , wK)T

controls the probability distribution, and g(·) is defined as

Fig. 1. Illustration of Adaptive Channel Equalization by Conditional Proba-
bility Learning.

the softmax activation function in NN terminology. A suitable

function is

g(x) =
ex
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entiable nonlinearity such that g′(x) > 0. Therefore the

conditional probability distribution of the K-class transmitted
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y(n)

normalizes the distribution,

thus the K conditional probabilities sum to 1.

In this sense, we introduce the cross-entropy loss function

which measures the error of prediction that a given set of

parameters w can result in. The function is given by

E(w) = − 1

m

⎡
⎣
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1
{
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}
log

ew
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l y(i)

⎤
⎦ ,

(7)

where m is the total number of the training data (y(i), x(i)) and

1{·} is the indicator function, which means if the hypothesis

made in the curly braces is correct, it returns 1, otherwise it

returns 0. In an instance of the training data, x(i) is defined

as the label of y(i), which means the ground truth class of the

symbol alphabet for y(i).
Now that we can train a NN with an algorithm automatically

tuning the parameters w to minimize the above error function.

III. THE PROPOSED CRNN-BASED EQUALIZER

The proposed CRNN is a pipelined neural network, which

the first part is a CNN and the subsequent part is a RNN.

The theory of neural networks is comprehensively described



Fig. 2. Architecture of the proposed CRNN.

in [15], thus we will not discuss too much details of neural

networks due to the space limit.

Fig.2 depicts our proposed CRNN, which is a 5-layer

neural network. The inputs are windowed raw received symbol

sequences which every symbol is constructed by the In-Phase

and Quadrature (IQ) parts. We assume the window size to be

N thus the input is a 2×N 2-Dimension (2D) vector which

is suitable for 2D convolution operation. The first four layers

form the CNN part, where the two Conv layers are used to

learn matched filters, the dropout [16] layer is used to avoid

overfitting the training data, and the Max− pooling layer is

used to downsample the output of the previous layer.

The Conv layers consist of a rectangular grid of neurons,

where each neuron takes inputs from a rectangular section

of the previous layer. The weights for this rectangular grid

are the same for each neuron in the Conv layer, moreover,

they specify the convoltion filter. The size of a Conv layer

is determined by both the size and the number of 2D con-

volution filters that the Conv layer uses, which is denoted

as Width×Height×Number. After the first Conv layer, a

dropout layer is concatenated to control the number of neurons

of the previous layer pass to the next layer. The Max−pooling
layer takes small rectangular blocks from the previous Conv
layer and downsamples it to extract the maximum from that

block.

The intuition of applying CNN as the first part of the whole

NN-based channel equalizer is that many recovery processes

in radio communications systems can be thought of in terms of

invariance to linear mixing, rotation, time shifting, scaling, and

convolution through random filters (with well characterized

probabilistic envelopes and coherence times) [17]. This is

analogous to similar learning invariance which is significantly

addressed in vision domain learning where matched filters for

specific items or features in the image may undergo scaling,

shifting, rotation, occlusion, lighting variation, and other forms

of noise. Thus we leverage the shift-invariant properties of the

convolutional neural network to learn matched filters reducing

temporal variations that recover the transmitted signals.

We feed the learned filters into a subsequent layer for

temporal modeling by utilizing LSTM cells, which specify the

RNN part. The layer which consists of LSTM cells is called

LSTM layer. Basically, the LSTM layer learns temporal

dependency by memorizing the previous internal state and

adding it to the current state at every single time step, and

this is what recurrent means. Note weight parameters of the

LSTM layer are shared across the time steps. Finally, we use

Softmax activation function to derive the outputs for the last

layer.

In this sense, CRNN is trained to solve a K-class decision

problem given tremendous (y(i), x(i)) instances known as

training dataset. We omit the details of how to train the

proposed CRNN and do the back-propagation of errors since

they could easily be done with freely available open-source

machine learning libraries, such as Tensorflow [18], Theano

[19], etc.. We use Keras [20] as a convenient high-level

abstraction front-end for Tensorflow. It helps to implement and

train complex NN models on fast concurrent GPU architec-

tures. For reproducible research, we have made parts of the

source code of this paper available [21].

IV. DATA PREPARATION

A. Data collection tools and environments

Fig.3 shows our data collecting environment in a typical

indoor office environment with our parallel 8 × 8 MIMO

channel sounder which works on 3.5GHz. For simplicity, we

use only 1×1 antenna pair known as SISO. At the transmitter,

a baseband signal generator sends Pseudorandom Noise (PN)

sequences with good cross-correlation characteristics. At the

receiver, we use a customized Field Programmable Gate Array

(FPGA) board to extract high speed data transferring to disk

arrays for storage, and execute appropriate post-processing.

For the measurement campaign, the length of QPSK PN

sequence is 4096 and IQ chip rate is 100M/s. Each snapshot

collected 100 cycles, and a total time length is 10ns×4096×



Fig. 3. Data Collecting Equipments and Environment.
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Fig. 4. The scatter diagram of the received symbols under different SNR.

100× 2 = 8.192ms. The data is stored with a Technical Data

Management Streaming (TDMS) file format which can easily

be processed. The data is collected uniformly distributing in

SNR from 0dB to 20dB and tagged so that we can evaluate the

performance of channel equalization algorithms on designated

subsets. Specially, we collected 110,000 samples under each

SNR, where we use 100,000 of the total samples for training

and the rest for testing purpose.

B. Data visualization

Fig.4 shows two scatter diagrams of parts of the received

symbols under different SNR. It is obvious that the received

symbols under high SNR are more noisy that that of low

SNR. Thus to achieve an acceptable SER performance, much

more effort is needed to account for the low SNR case. An

algorithm is deemed to be more efficient that other algorithms

when achieving lower SER under same SNR. Except for

our proposed CRNN-based channel equalizer, several other

algorithms are also evaluated our with the collected dataset in

the next section.

V. EXPERIMENTAL RESULTS

In this section, we train our proposed CRNN with previously

obtained data, and then we evaluate the trained CRNN with

testing dataset by comparing the SER performance with other

techniques. Our training environment is a DELL graphical

work station running Ubuntu 16.04 with NVIDIA GeForce

GTX 1080 graphical card drived by CUDA 8.0 [22].

A. Hyperparameter optimization

Recall the NN channel equalization algorithm is to tune

the weight parameters w that result in perfect prediction for

the unseen signal samples. The parameters except weight

parameters of the NN, such as the number of hidden layers,

the size of hidden layers and others are defined as hyperparam-

eters. Thus hyperparameter optimization is to choose a set of

hyperparameters that optimally suits the NN in both inference

and generalization.

We use grid search to perform hyperparameter optimization,

which is simply an exhaustive searching through a manually

specified subset of the hyperparameter space. Before that,

some of the network hyperparameters should be manually

determined to avoid a timeless searching. The designated

hyperparameters are given in Table I. We introduce Batch

TABLE I
CRNNE PARAMETERS

Input layer size 2× 12
Conv1 layer size 2× 4× 64
Conv2 layer size 2× 4× 32
Max-pooling size 2× 2
LSTM layer size 100

Output layer size 4

Batch size 1024

SNR 15 dB

size except for other hyperparameters in the table that have

been specified in previous section, which defines the size of

a subset of the whole training samples we used to train the

network for every iteration of the learning algorithm. The

hyperparameters for optimization are listed as follows

Learning rate : γ ∈ {1.0× 10−1, 1.0× 10−2, 1.0× 10−3}
Dropout : δ ∈ {0.0, 0.2, 0.6, 0.9}, (8)

Training epochs : σ ∈ {10, 20, 30, 40, 50, 60}
where γ denotes the learning step size, δ stands for the dropout

percentage of the previou layer and σ indicates how many

times the whole training batches are used. Note we choose the

above three hyperparameters as an example of hyperparameter

optimization due to space limit, we have to use grid search for

all hyperpameters in the real world. Luckily, we find that γ
is easy to determine. Fig.5 shows the cross-entropy loss of

CRNN with regard to the iterations under different learning

rate. When γ = 1.0 × 10−1 and whatever the other two

hyperparameters are, the cross-entropy loss fails to decrease,
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which indicates that the learning rate is too aggressive for the

network to learn a proper direction that minimizes the loss.

When γ = 1.0×10−2 or γ = 1.0×10−3, the cross-entropy loss

decreases and converges after 1,000 iterations. It is not explict

but the cross-entropy loss with γ = 1.0 × 10−3 converges

to a lower value than that with γ = 1.0 × 10−2. Thus the

learning rate for CRNN is determined to be 1.0× 10−3. We

divide the training dataset into two disjoint subsets, training

set and a validation set. Thus the validation accuracy evaluates

the ability of generalization since the network is evaluated

with samples that never appear in training set. Fig.6 shows

the training accuracy and validation accuracy that the network

can achieve with different dropout values. It seems there is no

need to apply dropout in our network since δ = 0.0 has the

highest validation accuracy, which means our network does

not overfit the data.
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Fig. 7. Influence of the training epochs on the validation error of our proposed
CRNN with learning rate γ = 1.0× 10−3 and δ = 0.0.
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Fig. 8. SER performance of our proposed CRNN versus RLS and MLP under
different SNR.

We use validation error to inversely reflect the validation

accuracy since there are minor differences when applying

different training epochs. Fig.7 indicates training epochs has

upper bounds for accuracy gains. Thus we have to search for

the least upper bound to aviod over training. Fortunately, we

can use early stopping [23] to stop the training process when

accuracy gains vanish. As shown in Fig.7, we choose training

epochs σ = 40 with the lowest validation error.

Up to now, we have optimized the hyperparameters and

finally chosen learning rate γ = 1.0× 10−3, dropout δ = 0.0
and training epochs σ = 40. Then we can use these hyperpa-

rameters to retrain our network and obtain the best model.

B. SER Performance

We use SER perfomance to evaluate CRNN-based equal-

izerf since it is a significant metric of channel equalizers.

We also implemented a RLS-based equalizer and a MLP



equalizer in comparision with our method. We omit the details

of implementing RLS-based and MLP-based equalizers due to

space limit. All the three equalizers are trained with the same

training dataset.

Fig.8 shows the SER performance of the three equalizers

with regard to different SNR conditions from -10dB to 20dB.

It is clear to see that all the three equalizers cannot perform

proper symbol recovery when the SNR is below 0dB since they

can only learn from noise under this circumstance. When SNR

ranges from 0dB to 10dB, CRNN-based equalizer outperforms

the RLS-based equalizer by average 5dB and the MLP-based

equalizer by average 2dB. While SNR is above 10dB, the SER

performance of the MLP-based equalizer is similar with that

of CRNN-based equalizer. However, only when SNR is above

16dB can the RLS-based equalizer obtain an acceptable SER

performance.

Since our training data are time series signals, convolution

layers are utilized to reduce temporal variations in our pro-

posed CRNN architecture. Moreover, we utilize an LSTM

layer for temporal modeling with memory. These features

augment the ability of modeling the time variant channel and

thus render CRNN-based channel equalizer a better channel

equalizer than other NN-based channel equlizers.

VI. CONCLUSIONS

In this paper, we propose an analytical formulation of

channel equalization as a conditional probability distribution

learning problem, which can be solved by a neural network

model. Then we propose a CRNN-based equalizer to account

for nonlinear channel distortions as well as the problem of

temporal variations of time series data. We collect the practical

time series data for training, validation and testing with our

8× 8 parallel channel sounder. We use grid search to find the

best hyperparameters that fit our model. Then we train and

test CRNN-based equalizer together with the other two RLS-

based and MLP-based equalizers. Experimental results show

the SER performance of our proposed CRNN-based equalizer

outperforms the other two equalizers by average 2 to 5 dB

at low SNR. Future investigations will be based on more

sophisticated hyperparameter optimization and more realistic

scenarios such as Multi-user MIMO (MU-MIMO).
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