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Abstract—The standardization process of the fifth generation (5G) wireless communications has recently been accelerated and the

first commercial 5G services would be provided as early as in 2018. The increasing of enormous smartphones, new complex scenarios,

large frequency bands, massive antenna elements, and dense small cells will generate big datasets and bring 5G communications to

the era of big data. This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless

communications and channel modeling. We propose a big data and machine learning enabled wireless channel model framework.

The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial

basis function neural network (RBF-NN). The input parameters are transmitter (Tx) and receiver (Rx) coordinates, Tx–Rx distance,

and carrier frequency, while the output parameters are channel statistical properties, including the received power, root mean square

(RMS) delay spread (DS), and RMS angle spreads (ASs). Datasets used to train and test the ANNs are collected from both real

channel measurements and a geometry based stochastic model (GBSM). Simulation results show good performance and indicate

that machine learning algorithms can be powerful analytical tools for future measurement-based wireless channel modeling.

Index Terms—Big data, wireless communications, machine learning, channel modeling, artificial neural network

Ç

1 INTRODUCTION

WITH the rapid increasing of smartphones and versatile
new applications, the mobile data grows exponen-

tially in recent years. The Cisco visual networking index
(VNI) released the white paper about global mobile data
traffic forecast for 2016–2021 in February 2017 [1]. In sum-
mary, global mobile data traffic grew 18-fold over the last
5 years. It grew 63 percent in 2016 and reached 7.2 exabytes
(EBs) per month at the end of 2016. Mobile devices and

connections grew to 8.0 billion in 2016. The annual mobile
data traffic will exceed half a zettabyte (ZB) by 2021. The
main trends contributing to the growth of mobile data traffic
include evolving towards smarter mobile devices and
advanced cellular networks.

In recent years, the wireless communication network has
dramatical improvements to support the huge mobile data
traffic. The fifth generation (5G) wireless communication
network is expected to greatly improve the data rate by 1000
times, reduce the latency, and achieve higher energy and
cost efficiencies [2], [3]. The standardization process of 5G
systems has recently been accelerated and the first commer-
cial 5G services would be provided as early as in 2018 [4].
5G will be applied in enhanced mobile broadband (eMBB),
massive machine type communication (mMTC), and ultra
reliable and low latency communications (uRLLC) scenarios
[5]. In order to achieve this goal, 5G will be a paradigm
shift that includes very high carrier frequencies with large
bandwidths, unprecedented numbers of antennas, and
extreme high base station and device densities [4], [6]. Milli-
meter wave (mmWave), massive multiple-input multiple-
output (MIMO), and ultra-dense networks (UDNs) have
been seen as “big three” potential key technologies to achieve
the goal of the 5G wireless communication systems [7]. The
increasing of enormous smartphones, new complex scenar-
ios, large frequency bands, massive antenna elements, and
dense small cells will generate big datasets and bring 5G
wireless communications to the era of big data [8], [9].

The term “big data” became popular and widespread as
recently as in 2011. Volume, variety, and velocity have been
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a common framework to describe features of big data in the
early stage [10]. Other dimensions like veracity and value
have been added to describe big data later [11], leading to
the popular five V’s.

Big data analytics have usually been applied to areas
such as text, image, audio, video, social media, and predic-
tive analytics [10]. For a 5G mobile network, as the data
grows rapidly, it will bring lots of challenges and opportu-
nities when acquiring, storing, and processing the wireless
big data [12]. Compared with the big datasets in traditional
areas, wireless big data has some additional properties, and
big data analytics may not be applied to wireless communi-
cations directly. Apart from the aforementioned five V’s,
wireless big data is distinct in its unique multi-dimensional,
personalized, multi-sensory, and real-time features [13],
[14]. The multi-dimensional spatio-temporal data contains
the information of user trajectories. Also, the mobile data is
highly personalized and relevant to the user’s location and
context, and is usually obtained from multiple sensors in
real-time. Wireless data traffic contains strong correlative
and statistical features in various dimensions including
time, location, and the underlying social relationship [8].

Discovering the relationship between big data analytics
and wireless communications has been a challenging task
[15], [16], [17], [18], [19], [20], [21], [22]. Some attempts
have been made to apply big data analytics to the area of
wireless communications. Authors in [20] separated exist-
ing researches in wireless big data into data, transmission,
network, and application layers. Wireless channel model-
ing, which is the foundation of wireless communications, is
related to transmission layer. When signals are transmitted
by the transmitter (Tx), they will undergo serious distor-
tions. The faded signals are then received by the receiver
(Rx) through direct transmission, reflection, scattering,
and diffraction. The signals are characterized by a number
of multipath components (MPCs) with parameters of com-
plex amplitude, delay, Doppler shift, and departure and
arrival angles. The MPC parameters are highly correlated
with the network layout, including Tx and Rx locations,
carrier frequency, and scatterer distributions, etc. Thus,
important channel statistical properties such as the received
power, root mean square (RMS) delay spread (DS), and
RMS angle spread (AS) may have a complicated non-linear
relationship with the network layout.

Inspired by the good learning and prediction perfor-
mance of artificial neural network (ANN) which has been
throughly investigated, we propose an ANN based chan-
nel model framework. Both the feed-forward neural net-
work (FNN) and radial basis function neural network
(RBF-NN) are used to predict important channel statis-
tical properties. Compared with existing deterministic
and stochastic channel modeling approaches, the pro-
posed channel model has a good trade-off among accu-
racy, complexity, and flexibility. Existing channel models
rely on many assumptions, while ANN based channel
model framework is directly learned from the datasets
and can be more accurate. For different network layout
configurations (carrier frequency, Tx/Rx position, etc.),
the existing channel models should be run each time,
which is complicated and time consuming. On contrary,
the channel statistical properties can be directly obtained

in a simple way by the learned machine/function in real-
time. Moreover, different environments should be con-
structed in ray tracing model and different parameter sets
should be obtained in WINNER-like model each time,
while a more general ANN based channel model frame-
work can be learned from datasets collected from various
scenarios. The performance of the proposed ANN based
channel model is fully investigated through extensive
simulations based on real channel measurement data and
geometry based stochastic model (GBSM) generated data.

The remainder of this paper is organized as follows.
Section 2 surveys different machine learning algorithms
and shows an overview of big data analytics in wireless
communications and channel modeling. In Section 3, some
basic knowledge about ANN is given, and the ANN based
channel model framework is proposed. Simulation results
based on real channel measurement data and GBSM gener-
ated data are then analyzed in Section 4, which validates
the ANN based channel model framework, and extensions
and discussions of the proposed channel model are also
given. Finally, conclusions are drawn and some future rese-
arch directions are given in Section 5.

2 OVERVIEW OF BIG DATA ANALYTICS IN

WIRELESS COMMUNICATIONS

Generally, big data analytical tools include stochastic
modeling, data mining, and machine learning [8]. Stoch-
astic modeling uses probabilistic models to capture the
explicit features and dynamics of the data traffic. Data
mining focuses on exploiting the implicit structures in the
mobile dataset. Machine learning can establish a functional
relationship between input data and output actions, thus
achieving auto-processing capability for unseen patterns
of data inputs [8]. Specifically, machine learning algo-
rithms have developed dramatically over the past few
years and have been applied to various areas. We concen-
trate on investigating the applications of machine learning
algorithms in wireless communications and channel
modeling in this paper.

2.1 Different Machine Learning Algorithms

In general, machine learning algorithms can be simply cate-
gorized as supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning aims to learn
the mapping from the input data to the output data.
For unsupervised learning, the goal is to model the underly-
ing structure of the input data. For reinforcement learning,
simple reward feedback is required to automatically deter-
mine the ideal behavior within a specific context to maxi-
mize its performance. Some types of popular machine
learning algorithms include decision tree, Bayesian, cluster-
ing, classification, regression, dimensionality reduction,
ANN, deep learning algorithms, etc. The detailed descrip-
tions and representatives of these algorithms are shown in
Table 1. Note that classification and regression are two main
purposes of machine learning. Other types of algorithms
listed in Table 1 can also be applied to classification and
regression problems. The main difference between classifi-
cation and regression is that the output variable takes class
labels for classification problems, but it takes continuous
values instead for regression problems.

212 IEEE TRANSACTIONS ON BIG DATA, VOL. 6, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Southeast University. Downloaded on June 28,2020 at 14:54:33 UTC from IEEE Xplore.  Restrictions apply. 



2.2 Machine Learning in Wireless Communications

Recently, there have been various developments in app-
lying big data analytics to wireless communications.
The core to use machine learning algorithms in wireless
communications is that many problems in wireless com-
munications can be converted to clustering, classification,
and regression problems. By learning and training the big
datasets in wireless communications, the network can be
more intelligent to achieve better performance and adapt
to various applications.

A popular application of machine learning in wireless
communications is indoor and outdoor localization/position-
ing [23], [24], [25], [26], [27]. In [23], features that represent
propagation conditions were extracted from ultra-wideband
(UWB) measurement data, then classification and regression
algorithms were developed based on SVM. SVM can be used
for non-probabilistic binary classification. The developed
algorithms were capable of non-line-of-sight (NLOS) identifi-
cation andmitigation to reduce localization errors. In [24], the
RVMbased localization algorithmwas applied toNLOS iden-
tification and mitigation. Compared to SVM, RVM has an
identical functional form but provides probabilistic classifica-
tion based on Bayesian statistics. In [25], [26], two ELMbased
algorithms were developed for indoor positioning. ELM is
a FNN for classification or regression with a single layer of
hidden nodes, where theweights connecting inputs to hidden
nodes are randomly assigned and never updated. The
weights between hidden nodes and outputs are learned in a
single step, which essentially amounts to learning a linear
model. In [27], a FNN based localization algorithm was pro-
posed using channel fingerprint vectors as inputs. In [28], the
SVM was used for spectrum sensing. In [29], the SVM was
used for antenna selection, while in [30], both the SVM and
Naive Bayesian were utilized for antenna selection. Other
applications include caching [31], [32], [33], resource alloca-
tion [34], [35], [36], interference management [37], channel
estimation [38], [39], [40], modulation classification [41], sce-
nario classification [42], user clustering [43], etc.

2.3 Machine Learning in Wireless Channel Modeling

There have been a new trend to apply big data analytics to
wireless channel modeling [12]. As new complex scenarios,
large frequency bands, and massive antennas will be used for
5G wireless communication systems, big channel impulse
response (CIR) datasets will be generated from channel mea-
surement campaigns. Meanwhile, many new channel charac-
teristics should be measured and modeled, including three-
dimensional (3-D) double-directional angles, non-stationarity
in spatial-temporal-frequency domains, spherical wavefront,
high path loss, and high delay resolution.

We summarize recent developments and applications of
machine learning algorithms in wireless channel modeling,
as shown in Table 2. In [44], the RBF-NN was used to pre-
dict the path loss. The Tx and Rx heights, Tx–Rx distance,
carrier frequency, and intercede range were the inputs, and
the output was the path loss. In [45], the sparse Bayesian
learning of RVM was applied to direction of arrival (DoA)
estimation. It first obtained coarse signal locations with the
sparsity-inducing RVM on a predefined spatial grid, and
then achieved refined direction estimation via searching.
In [46], the RVM was employed to filter the MPCs of mea-
sured power delay profiles (PDPs) in indoor environments,
enabling the determination of the delays and complex
amplitudes. The RVM used few kernel functions to generate
the sparsity concept, and it allowed the estimation of chan-
nel parameters as well as the number of MPCs. In [47], the
FNN and RBF-NN were combined with ray launching in
complex indoor environments. The neural network was
used to predict the intermediate points in ray launching
algorithm to decrease the computation complexity. In [48],
big data was used to model wireless channels, and a clus-
ter-nuclei based channel model was proposed. First, the
measurement data was processed by using high resolution
estimation algorithms to obtain MPC parameters and then
clustered. Meanwhile, the image processing algorithms
were applied to reconstruct the measurement environment
and find main scattering objects. The clusters and scatterers

TABLE 1
Different Types of Machine Learning Algorithms

Machine learning algorithms Descriptions Representatives

Decision tree Use a tree-like graph or model to learn deci-
sion rules

Iterative Dichotomiser 3 (ID3), C4.5, classi-
fication and regression tree (CART)

Bayesian Use the Bayes rule to infer model parameters Naive Bayesian, Bayesian network
Clustering Group similar data points into a cluster K-means, K-nearest neighbors (KNN),

fuzzy C-means (FCM), DBSCAN, expecta-
tion maximization (EM)

Classification Classify data into given set of categories AdaBoost, support vector machine (SVM),
relevance vector machine (RVM)

Regression Learn the relationship between variables in
the dataset

LASOO, minimax probability machine
(MPM), Gaussian process regression (GPR)

Dimensionality reduction Exploit the inherent structure of the dataset
to describe it with less information

Principal component analysis (PCA), ran-
dom forests

ANN A processing network with amounts of neu-
rons inspired by neuroscience

FNN, RBF-NN, multilayer perceptron
(MLP), extreme learning machine (ELM),
wavelet neural network (WNN)

Deep learning Use a cascade of many layers of non-linear
processing units for feature extraction and
transformation

Convolution neural network (CNN), recur-
rent neural network (RNN), deep belief net-
work (DBN), deep Boltzmann machine
(DBM)
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were matched based on the cluster characteristics and object
properties, and then a limited number of cluster-nuclei were
formed. With the cluster-nuclei, the CIR was produced by
machine learning algorithms such as ANN. With the big
datasets, the CIR prediction in various scenarios can be real-
ized. In [49], [50], the ANN was used to remove the noise
from measured CIR, and the PCA was utilized to exploit
the features and structures of the channel and model the
CIR. In [51], the MLP was applied to predict the received
signal strength. The inputs were Tx–Rx distance and diffrac-
tion loss, while the output was the received signal strength.
In [52], the CNN was used to automatically identify diffe-
rent wireless channels and help decide which relevant
wireless channel features should be used. The MPC parame-
ters like amplitude, delay, and Doppler frequency were
extracted using the space-alternating generalized expecta-
tion-maximization (SAGE) algorithm and used as input
parameters in the CNN, and the output of the CNN was
the class of thewireless channels. In [53], the complex LASSO
algorithm was applied to estimate the tapped delay line CIR
from channel measurement data. In [54], the SVM was used
to predict the path loss for smart metering applications. It
was based on received signal strength measurements and a
3-D map of the propagation environment. In [55], various
clustering algorithms were used for clustering and tracking
ofMPCs, including K-means, FCM, andDBSCAN.

3 A MACHINE LEARNING ENABLED

CHANNEL MODEL

Channel modeling is important for system design and perfor-
mance evaluation. From channel modeling, some important
channel statistical properties including large-scale and small-
scale parameters can be obtained. Generally, channel meas-
urements will be indispensable to validate channel models.

For the coming 5G wireless communications, the scenarios
become more complicated, such as mmWave, massive
MIMO, high-speed trains, etc. Channel measurements should
be conducted to study new channel propagation characteris-
tics in these challenging scenarios. The huge bandwidths,
massive antennas, fast velocity, and various scenarios will
generate big datasets which are time consuming for data
post-processing and needed to be handled by machine
learning. By learning from channel measurement datasets,
important channel statistical properties can be obtained and
expressed as a non-linear function of arbitrary known inputs,
thus decreasing the time consuming channel measurements
and complicated data post-processing works. However, a
channel sounder which is able to satisfy all the 5G new
deployments is very expensive and challenging, and channel
measurement campaigns are also very time consuming. It is
hard to achieve big datasets from channel measurement cam-
paigns, which should contain various configurations such as
different scenarios, Tx and Rx antenna coordinates, Tx–Rx
distances, and carrier frequencies.We resort to both real chan-
nel measurement datasets and GBSM simulation datasets.
Measurement datasets are obtained at some fixed locations,
while simulation datasets are obtained in a randommanner.

3.1 Channel Measurement Datasets

Channel measurement campaigns were conducted in an
indoor office environment with room size of 7:2� 7:2� 3 m3,
as shown in Fig. 1 [56]. Four mmWave frequency bands were
measured, i.e., 11, 16, 28, and 38 GHz bands. In each band,
the Rx antenna was located at (1, 3, 1.45) and scanned in a
large uniform rectangular array (URA), and Tx antennas
were located at Tx1 (4, 2.2, 2.6), Tx2 (3.2, 2.4, 2.6), Tx3 (3.6, 3,
2.6), and Tx4 (2, 5.2, 2.6). Antenna elements in the URA for the
four bands are 51� 51, 76� 76, 91� 91, and 121� 121, respec-
tively. The sweeping points for 11 GHz and 16 GHz bands is
401, while it is 801 for 28 GHz and 38 GHz bands. The SAGE
algorithm is used to extract MPC parameters from the
sub-array measurement data. The sub-array is 10 � 10, 15 �
15, 15� 15, and 20� 20 for the four bands, respectively. More
details about the channel measurements and data processing
can be found in [56].

Fig. 1. Layout and antenna locations of the measurement environment.

TABLE 2
Applications of Machine Learning in Wireless Channel Modeling.

Ref. Algorithms Applications

[44] RBF-NN Predict the path loss
[45] RVM Estimate DoA of MPCs
[46] RVM Filter the noise embedded MPCs

to determine the PDP
[47] FNN and

RBF-NN
Predict the intermediate points in
ray launching simulation to obtain
the indoor received power

[48] ANN Produce the CIR with a limited
number of cluster-nuclei

[49], [50] ANN and
PCA

Remove the noise and estimate
the CIR

[51] MLP Predict the outdoor received
signal strength

[52] CNN Extract channel features and
identify different wireless chan-
nels based on channel measure-
ment data

[53] LASSO Estimate the CIR based on channel
measurement data

[54] SVM Predict the path loss
[55] K-means,

FCM, and
DBSCAN

Clustering and tracking MPCs
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3.2 GBSM Simulation Datasets

GBSM is a popular channel modeling approach. It repre-
sents scatterers with regular or irregular geometry shapes.
The MPC parameters including power, delay, and depar-
ture and arrival angles are then calculated from the geome-
try relationships.

The GBSM used here is a 3-D wideband mmWave MIMO
channel model [57]. Clusters in the 3-D space are generated
with a homogeneous Poisson point process (PPP) to capture
effects of the environment. The Tx and Rx antennas are sur-
rounded by two spheres to mimic the clustering property of
MPCs in both delay and angular domains. The scatterers are
related with rays in each cluster which are confined by surfa-
ces of a circular cone and a spherical segment. After the gener-
ation of all clusters and scatterers, routes from the Tx antenna
to the Rx antenna are formed, each corresponds to a MPC
with parameters of received power, delay, and departure and
arrival angles. The received power is calculated from path
loss model, the delay is obtained from the length of each
MPC, while the departure and arrival angles are calculated
from the geometry relationships. The channel model is vali-
dated by comparing with channel measurements in the same
office environment and used to generate big channel datasets.

Denote the Tx coordinate as ðxt; yt; ztÞ, the Rx coordinate
as ðxr; yr; zrÞ, the Tx–Rx distance as dtr, and the carrier fre-
quency as fc. The eight parameters are known and used as a
represent of the environment.

A total of L MPCs are simulated from the GBSM with
parameters [pl; tl;ftl; utl;frl; url], l ¼ 1; :::; L, which are the
received power, delay, azimuth angle of departure (AAoD),
elevation angle of departure (EAoD), azimuth angle of
arrival (AAoA), and elevation angle of arrival (EAoA) of the
lth MPC, respectively. From the MPC parameters, some
important channel statistical properties can be obtained.
The total received power is calculated as

P ¼
XL
l¼1

pl: (1)

The RMS DS is a important second-order statistic to
describe channel dispersion in delay domain and can be cal-
culated as

DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

1 plt
2
lPL

1 pl
� ð

PL
1 pltlPL
1 pl

Þ2
s

: (2)

The RMS AS is a important second-order statistic to
describe channel dispersion in angle domain and can be cal-
culated as

AS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

1 plc
2
lPL

1 pl
� ð

PL
1 plclPL
1 pl

Þ2
s

; (3)

where cl denotes either of the four angles.

3.3 ANN Based Channel Model

We share the similar viewpoint with research works in the lit-
erature and use ANN for wireless channel modeling. ANN is
based on a large collection of simple neural units. Each neural
unit is connected with many others. Thresholds of the nodes
and weights of the connections are trained to learn the non-
linear relationship between the inputs and outputs. The data-
sets are usually divided as training and testing datasets.

For multi-dimensional modeling, FNN and RBF-NN are
the extensively used ANN algorithms. FNN increases the
number of non-linear segmentations using two layers con-
taining activation functions to achieve high non-linearity.
FNN contains one input layer, one hidden layer, and one
output layer. RBF-NN uses a single layer with a very high
number of neurons with the same goal of achieving higher
number of non-linear segmentation. Because neurons are
added as learning continues and only one layer of weights
is to be adjusted for RBF-NN, its computational cost of
learning is less than that for FNN [47].

The channel measurement data and GBSM simulation
data are both used to train and test the neural network. For
channel measurement data, there are 25, 25, 36, and 36 sub-
arrays for the four bands, respectively. In addition, four Tx
positions were measured, thus obtaining 100 (25 � 4), 100
(25 � 4), 144 (36 � 4), and 144 (36 � 4) groups of datasets for
the four bands, respectively. The measurement datasets are
divided into 400 groups of training datasets and 88 testing
datasets. For GBSM simulation data, a total of 500 groups of
datasets are generated from 500 times Monte-Carlo simula-
tions, in which 400 groups are used for training and the left
100 groups are used for testing. The Tx and Rx coordinates
are varying randomly in the confined environment, the
Tx–Rx distance is calculated according to Tx and Rx coordi-
nates, and the carrier frequency is varying randomly in the
range of 10 GHz to 60 GHz. The eight parameters are used
as inputs of the ANN. The outputs are the six channel statis-
tical properties, including received power P , RMS DS sds,
AAoD spread (ADS) sads, EAoD spread (EDS) seds, AAoA
spread (AAS) saas, and EAoA spread (EAS) seas. The rela-
tionship between the inputs and outputs is

yðP; sds; sads; seds; saas; seasÞ ¼ fðxt; yt; zt; xr; yr; zr; dtr; fcÞ:
(4)

As the inputs have definite physical meanings, their val-
ues are varying in different ranges and at different levels
with different units, the input parameters should be nor-
malized and mapped to be in the range of �1 to 1. The out-
puts also have similar inverse conversion operations to
obtain real predicted values.

The general ANN based channel model framework is
illustrated in Fig. 2. In our simulations, both the FNN and
RBF-NN are used to predict channel statistical properties.
The prediction performance of the two ANN algorithms are
also compared.

4 RESULTS AND ANALYSIS

The MATLAB neural network toolbox is used to build the
neural network. The FNN and RBF-NN are constructed by
‘newff’ and ‘newrb’ functions, respectively.

For FNN, the ‘logsig’, ‘tansig’, and ‘purelin’ activation
functions are used for input layer, hidden layer, and output
layer, respectively. The activation functions are given as

logsigðnÞ ¼ 1

1þ e�n
(5)

tansigðnÞ ¼ 2

1þ e�2n
� 1 (6)

purelinðnÞ ¼ n: (7)
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The number of neurons in the hidden layer of FNN is
selected from trial and error. Different number of neurons
in the hidden layer are tested and 10 hidden neurons is
found to achieve good performance with relatively low
complexity. Thus, a 8-10-6 FNN is constructed. The goal of
convergence error is set as 5� 10�2. The weight vectors are
trained to achieve the goal of convergence error.

For RBF-NN, the goal of convergence error is set as
3� 10�2. The Gaussian RBF is given as

GðnÞ ¼ e
�ðn�cÞ2

2s2 ; (8)

where c is the center point, and s is the spread of Gaussian
RBF which is set as 0.75 to have a smooth interpolation
plane. In the training procedure, 5 neurons are added
between two displays.

In the simulations, for both FNN and RBF-NN, the
Levenberg-Marquardt optimization algorithm is used to
train the neural network, the mean square error (MSE) is
selected to evaluate the prediction performance, and the
number of iterations was set as 1000. Compared with RBF-
NN, the goal of convergence for FNN is larger to avoid local
optimization and over-fitting. The detailed parameters and
values for FNN and RBF-NN are summarized in Table 3.

Once the ANN is trained to achieve the goal of conver-
gence error, the neural network is well learned for the train-
ing datasets, and it can predict the outputs for testing input
parameters. The predicted outputs can then be compared

with measured and simulated outputs to evaluate the per-
formance of the learned neural network.

4.1 Predicting Statistical Properties for
Measurement Datasets

Important channel statistical properties including received
power, RMS DS, AAS, and EAS are predicted. In Fig. 3, the
measurement and predicted received powers are shown.
Both the prediction performances of FNN and RBF-NN are
illustrated. The x-axis denotes the testing dataset index. The
measurement and predicted RMS DSs are illustrated in
Fig. 4. Themeasurement and predicted RMSAASs and EASs
are illustrated in Figs. 5 and 6, respectively. From these
results, we can see that both the FNN and RBF-NN work
well on themeasurement datasets. The received power, RMS
DS, andRMSAAS are accurately predicted, while the predic-
tion error for RMS EAS is slightly larger.

4.2 Predicting Statistical Properties for Simulation
Datasets

In Fig. 7, the simulated and predicted received powers are
shown. Both the prediction performances of FNN and RBF-
NN are illustrated. The x-axis denotes the index of testing
dataset. The value of received power lies in the range of
�80 dB to �60 dB. In Fig. 8, the simulated and predicted
RMS DSs are shown. The value of RMS DS lies in the range

Fig. 2. The general ANN based channel model framework.

TABLE 3
Parameters and Values for FNN and RBF-NN

Parameters Values

Optimization algorithm Levenberg-Marquardt
algorithm

Performance metric Mean square error (MSE)
Number of iterations 1000
The goal of convergence
error

FNN: 5� 10�2 (to avoid local
optimization and over-fitting);
RNF-NN: 3� 10�2

Number of neurons in
the hidden layer

FNN: 10 (tuned in practice);
RBF-NN: 5 neurons are added
between two displays when
training

Spread of Gaussian RBF 0.75 (to have a smooth interpo-
lation plane)

Fig. 3. Measurement and predicted received power.

Fig. 4. Measurement and predicted RMS DS.
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of 2 ns to 12 ns. The simulated and predicted RMS ASs
including ADSs, EDSs, AASs, and EASs are shown in Fig. 9.
The azimuth angles are in the range of 20 to 140 degree,
while the elevation angles are in the range of 10 to 50
degree. The GBSM simulation datasets have similar statisti-
cal properties with the channel measurement datasets.

In general, the value and trend of the output parameters
can be predicted well, except that some points with too small
or too large real values are predicted with relatively larger
deviations. The prediction performances of received power
and RMS DS are better than that of RMS ASs. The reason
may be that the received power and RMS DS are more
correlated with the input parameters than that of RMS ASs.
Specifically, the received power is highly correlated with the
Tx–Rx distance. Due to the fact that angle parameters of
MPCs are more correlated with scatterers, the relationship
between RMS AS and the input parameters may be weaker,
thus leading to the worse performance. Moreover, as the
azimuth ASs are varying in a larger range, their prediction
performance is worse than that of elevation ASs.

In comparison, the outputs of the RBF-NN can have
stable values, while a drawback of the FNN is that the
outputs may be local optimization values. Thus, the outputs
of the FNN can change for each run due to the initializa-
tion procedure of the neural network. Another problem
for FNN is that the goal of convergence error may not be

achieved. For those reasons, the performance of RBF-NN is
generally better than that of FNN.

Compared with existing similar works [44], [47], [51],
the developed ANN based channel model framework is
more robust and adaptive. Not only heights of Tx and Rx
antennas are considered, but also their accurate locations
in the horizontal plane. The carrier frequency are also vary-
ing in a large range, which covers most of the mmWave
frequency bands like 11, 16, 28, 38, 45, and 60 GHz. More-
over, the output parameters are not limited to only the
received power or the path loss. The channel sparsity prop-
erties in delay and 3-D double-directional angular domains
are also considered.

4.3 Prediction Performance Comparison

Note that the goal of convergence error will have important
impact on the performance of neural network. If the goal is
near to zero, the learned neural network will be excellent for
the training datasets. However, for the testing datasets, there
may be over-fitting problems. That is to say, for some inputs
with extreme values which are unknown to the learned
neural network, the outputs may have great deviation from
the expected values. Moreover, the predicted values
may out of their reasonable ranges. Thus, in our simulations,
the goal for FNN and RBF-NN are tuned to achieve good
performance.

Fig. 5. Measurement and predicted RMS AAS.

Fig. 6. Measurement and predicted RMS EAS.

Fig. 7. Simulated and predicted received power.

Fig. 8. Simulated and predicted RMS DS.

HUANG ET AL.: A BIG DATA ENABLED CHANNEL MODEL FOR 5GWIRELESS COMMUNICATION SYSTEMS 217

Authorized licensed use limited to: Southeast University. Downloaded on June 28,2020 at 14:54:33 UTC from IEEE Xplore.  Restrictions apply. 



In addition, the root mean square errors (RMSEs) for
FNN and RBF-NN are shown in Table 4. RMSEs for the
total dataset, training dataset, and testing dataset are given.
As illustrated, the prediction of received power and RMS
DS are better than that of RMS ASs. The performance of
RBF-NN is better than that of FNN. Compared with RMSE
for training datasets, the values of RMSE are a little larger
for the total datasets and testing datasets.

4.4 Input and Output Relationships

Once the neural network is trained and learned well, the
non-linear relationships between inputs and outputs can be
obtained. The six output parameters are distributed in
a eight-dimensional space constructed by the eight input
parameters. Here a simplified configuration is shown. The
coordinate of Tx antenna is set as (1,3,1.45). The x-coordinate
and z-coordinate of Rx antenna are set as 4 m and 2.6 m,
respectively. The y-coordinate of Rx antenna is varying from
0.6 m to 6.6 m, and the Tx–Rx distance is also varying with

their coordinates. The carrier frequency is varying from
10 GHz to 40 GHz. As an example, the influence of carrier
frequency and y-coordinate of Tx antenna on the received
power is analyzed. The received powers predicted by FNN
and RBF-NN are shown in Figs. 10 and 11, respectively.
Generally, the FNN and RBF-NN predicted received powers
show similar trend with varying input parameters. The
curve surfaces are more smooth for RBF-NN. As the carrier
frequency increases, the received power tends to be smaller,
which is reasonable. As the y-coordinate of Tx antenna
varies, the Tx–Rx distance also varies, the received power
shows variations along the y-axis.

4.5 Extensions and Discussions

In this paper, the training and testing datasets are collected
both from real channel measurement data and GBSM simu-
lation data in an indoor environment. Both the FNN and
RBF-NN are applied and validated to predict important
channel statistical properties. In general, FNN and RBF-NN
show similar performance on measurement datasets, while
RBF-NN shows better performance than that of FNN for
simulation datasets. Though the ANN based channel model
framework is only applied to a specific indoor office envi-
ronment, it can be extended to other more complicated
scenarios. Datasets collected from different communication
environments can be used together to train the ANN, thus
obtaining a unified channel model framework. The learned
channel model framework can also be used to classify
different scenarios by distinguishing the pattern of channel
statistical properties. Problems and challenges lie in three
aspects:

Fig. 9. Simulated and predicted results of (a) RMS ADS, (b) RMS EDS, (c) RMS AAS, and (d) RMS EAS.

TABLE 4
RMSEs Comparison for FNN and RBF-NN

RMSE (total/
training/testing) FNN RBF-NN

Received power (dB) 2.21/2.05/2.63 1.98/1.46/3.05
RMS DS (ns) 1.64/1.50/2.00 1.12/0.83/1.71
RMS ADS (�) 24.94/21.28/33.61 19.92/15.05/30.13
RMS EDS (�) 9.88/8.46/13.24 7.71/5.11/12.63
RMS AAS (�) 27.03/23.65/35.29 21.18/15.71/32.48
RMS EAS (�) 9.38/8.67/11.26 6.74/4.68/10.76
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4.5.1 Scenario Representation

The wireless channel is actually the physical medium in the
environment. How to represent the influence of the environ-
ment is a challenging task. For 5G wireless communications,
scenarios will be versatile, such as indoor hotspot, outdoor
vehicle-to-vehicle (V2V), and high speed train (HST). For
indoor scenarios, tables, desks, and electronic devices are
some typical objects. For outdoor scenarios, trees, buildings,
and cars are some typical objects instead. It is needed to
find a general representation of the different objects in vari-
ous scenarios to train big datasets obtained from different
environments. Moreover, as different datasets from differ-
ent scenarios will show different channel statistical proper-
ties or channel fingerprint, scenario classification can also
be completed from learning of the big datasets.

4.5.2 Big Datasets Acquisition

We use both measured and simulated datasets in this paper.
The real channel measurement data shows better perfor-
mance. The influence of objects in the measured environ-
ment can be better reflected by real channel measurement
data, and a more complicated relationship between input
and output parameters may be learned. This indicates
that channel sounder design and channel measurement
campaigns will be very important for future 5G wireless
channel modeling when applying machine learning based
approaches. As channel measurements in various environ-
ments are expensive and time consuming, some attempts
have been made to develop open access big channel mea-
surement datasets to accelerate researches. For example,
Shanghai Research Center for Wireless Communications
(WiCO), which is a leading research and evaluation institute
focusing on the R&D of the key technologies for 5G wireless
communication network, has conducted a large mount of
wireless channel measurements in many typical scenarios,
including beach, stadium, hotel lobby, rural area, campus
hot spots, etc. More real measurement data of MIMO chan-
nels at different communication scenarios can be found at
the open-source website http://www.wise.sh/.

4.5.3 Inputs and Outputs Selection

Actually, machine learning is to find the relationship between
inputs and outputs. Thus, how to select the input and output
parameters will have influence on the learned machine. As
seen from our analysis, the received power and RMSDS have
higher correlation with the Tx and Rx coordinates, Tx–Rx dis-
tance, and carrier frequency than that of RMSASs. To achieve
good performance, the most correlated parameters which
may influence the outputs should be selected.

5 CONCLUSION

The exponential increase of mobile data has brought 5G
wireless network to the era of big data. In this paper, we
have investigated various machine learning algorithms
and recent developments in applying big data analytics to
wireless communications and channel modeling. An ANN
based channel model framework has been proposed. Data-
sets have been collected from real channel measurements
and GBSM simulations. Both the FNN and RBF-NN have
been applied and compared. Important channel statistical
properties including the received power, RMS DS, and RMS
ASs have been predicted. Simulation results have been ana-
lyzed and validated, which have shown that machine learn-
ing algorithms can be powerful analytical tools for future
measurement-based wireless channel modeling.
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