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Abstract—In this paper, a generic and adaptive geometrical-
based stochastic reference model is proposed for multiple-input
multiple-output (MIMO) mobile-to-mobile (M2M) Ricean fading
channels. The proposed model employs a combined two-ring
model and elliptical-ring model, where the received signal is
constructed as a sum of the line-of-sight (LoS), single-, and
double-bounced rays with different energies. This makes the
model sufficiently generic and therefore includes many existing
channel models as special cases. Importantly, the model can
easily be adapted to a variety of M2M propagation environments,
e.g., outdoor macro-, micro, and pico-cells taking into account
different vehicle traffic densities, by adjusting model parame-
ters. From the proposed model, the space-time (ST) correlation
function (CF) and the corresponding space-Doppler (SD) power
spectral density (PSD) of any two sub-channels are derived for
a two-dimensional (2D) non-isotropic scattering environment.
Finally, some numerical results are presented and compared with
measured results. The close agreement between the theoretical
and empirical curves verifies the utility of the proposed model.

I. INTRODUCTION

M2M communications play an important role in wireless
mobile ad hoc networks, relay-based cellular networks, and
intelligent transportation systems, where both the transmitter
(Tx) and receiver (Rx) are in motion and equipped with
low elevation antennas. For the analysis and design of M2M
systems, it is necessary to have a detailed knowledge of the
multipath fading channel and its statistical properties. Akki
and Haber [1], [2] were the first to propose a channel model
for single-input single-output (SISO) M2M Rayleigh fading
channels. Their model was extended in [3] to include the
line-of-sight (LoS) component resulting in a M2M Ricean
fading channel model. In [4], a two-ring model considering
only double-bounced rays was presented for MIMO M2M
Rayleigh fading channels in outdoor macro-cells. In [5], a
more general two-ring model was proposed for MIMO M2M
Ricean fading channels in both outdoor macro- and micro-cells
by taking into account the LoS, single-bounced, and double-
bounced rays. The model in [5] includes the model in [4]
as a special case. However, none of the above MIMO M2M
channel models [4], [5] is sufficiently general to characterize
a wide variety of M2M propagation environments. Especially
for pico-cell scenarios, where the distance between the Tx
and Rx is relatively small (normally less than 400 m), a
combined model consisting of an elliptical ring and two rings

seems to be more appropriate. Pico-cell scenarios are currently
receiving more and more attention in M2M communications
with some measurement campaigns going on [7]. Doppler
PSD characteristics for an elliptical-ring MIMO M2M channel
model, however, are not known yet.

The objectives are mainly two-fold. First, we aim to propose
a generic and adaptive geometrical-based stochastic reference
model for ST correlated MIMO M2M Ricean fading channels.
Motivated by some interesting observations in [6], we take
the impacts of both single- and double-bounced rays into
account when proposing this new model. The proposed model
employs a combined two-ring model and elliptical-ring model,
where the received signal is constructed as a sum of the
LoS, single-, and double-bounced rays with different energies.
This makes our model sufficiently generic and includes many
existing models, e.g., those in [4] and [5], as special cases.
More importantly, the model is adaptive to a variety of M2M
propagation environments, e.g., outdoor macro-, micro-, and
pico-cells taking different vehicle traffic densities into further
account, by adjusting model parameters. Second, from the
proposed generic model, the ST CF and the corresponding SD
PSD are derived for a 2D non-isotropic scattering environment.
Closed-form expressions for the above functions are available
in the case of the two-ring model with single-bounced rays for
the macro- and micro-cell scenarios, and the two-ring model
with double-bounced rays for all scenarios. For the two-ring
model with single-bounced rays for pico-cell scenarios and the
elliptical-ring model for all scenarios, numerical computations
for the above functions are necessary while the computation
complexity has been reduced with the help of the newly
derived relationship between the angle of departure (AoD) and
angle of arrival (AoA).

The remainder of this paper is outlined as follows. Section
IT describes the new adaptive geometrical-based stochastic
model for narrowband MIMO M2M Ricean fading channels.
In Section III, the ST CF and the corresponding SD PSD
are derived. Numerical results and analysis are presented in
Section IV. Finally, conclusions are drawn in Section V.

II. AN ADAPTIVE GEOMETRICAL-BASED MODEL

Let us now consider a narrowband single-user MIMO M2M
system with My transmit and Mp receive omnidirectional
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antenna elements. Both the Tx and Rx are in motion and
equipped with antennas mounted at low elevations. The prop-
agation scenario is characterized by non-isotropic scattering
with possibly a LoS component between the Tx and Rx.

Fig. 1 illustrates the geometry of the proposed MIMO M2M
channel model, which is the combination of a LoS component,
a two-ring model with single- and double-bounced rays, and
an elliptical-ring model with single-bounced rays. We assume
that uniform linear antenna arrays are used with arbitrary
numbers of antenna elements. As an example, My = Mpr = 2
were used in Fig. 1. The two-ring model defines two rings of
effective scatterers, one around the Tx and the other around
the Rx. Suppose there are [Ny effective scatterers around the
Tx lying on a ring of radius Ry and the nith (n; = 1,..., N)
effective transmit scatterer is denoted by S; (n1) . Similarly,
assume there are N> effective scatterers around the Rx lying
on a ring of radius Rg and the naoth (ny = 1, ..., N») effective
receive scatterer is denoted by ng). The distance between the
Tx and Rx is D. For the elliptical-ring model, N3 effective
scatterers lie on an ellipse with the Tx and Rx located at
the foci. The semimajor axis of the ellipse and the nsth
(n3 =1, ..., N3) effective scatterer are denoted by a and S(Tnlg),
respectively. The antenna element spacings at the Tx and Rx
are designated by Jdp and Jg, respectively. It is normally
assumed that the radii Ry and Rpr and the semimajor axis
a are all much larger than the antenna element spacings dr
and dp, i.e., min{Ry, Rg,a} >> max{dr,dr}. The multi-
element antenna tilt angles are denoted by Br and Sr. The Tx
and Rx move with speeds v and vy in directions determined
by the angles of motion vr and ~yp, respectively. The symbol
(;SLOS denotes the AoA of a LoS path. The AoAs of the
waves travelhng from the effective scatterers S("l) S(n2
and S(T Ig towards the Rx are denoted by ¢("1 , %12), and

(n 3), respectively. The AoDs of the waves that impinge on
the effective scatterers S, ("1), SI(%"Q), and S(Tnlg ) are designated
by qb(nl , ("2 , and ¢("3 respectively.

From the above proposed geometrical-based model, the
received complex impulse response at the carrier frequency
fe for the T,, — R, link is a superposition of the LoS, single-,
and double-bounced rays can be expressed as

hpg (£) = BES (8) + hp? (£) + hoP (1)

where
hLOS (t) — ququ e—j277fc7'pq
pq Ky +1

(1)
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s |27 i teos(65) =z ) 427 frp 0y t cos (052 —vr) |
In (2)-(4), p=1,2,....Mp, g = 1,2,.... MR, Tpq = €pq/C,
Tpan: = (€pn; + €niq)/C Tpgniina = (€pny + €nuny + €nyq)/C
are the travel times of the waves through the link T, — R,,
T,—S{) (5% or 83— R, and T, — 87 — 51" — R,
respectively. Here, ¢ is the speed of light, i € {1,2,.... T},
and I = 3. The symbol K, designates the Ricean factor of
the T, — R, link and €2, denotes the total power transferred
through the T}, — R, link. Parameters 7sp, and npp specify
how much the single- and double-bounced rays contribute to
the total scattered power §,,,/(Kpq + ) This indicates that
these energy-related parameters satisfy lel nse, +npp = 1.
The phases %, and v, », are independent and identically
distributed (i.i.d.) random variables with uniform distributions
over [~m,7), fr,.. = vr/\ and fr,. . = vg/\ are the
maximum Doppler frequencies associated with the Tx and Rx,
respectively, and A is the carrier wavelength.

As mentioned earlier, the proposed model in (1)—(4) is
adaptive to a wide variety of M2M propagation environments
by adjusting model parameters. It turns out that these im-
portant model parameters are the distance D, the energy-
related parameters 75, and 77pg, and the Ricean factor K.
Based on these parameters the outdoor M2M propagation
environments can roughly be categorized into the following
four different scenarios: macro-cell, micro-cell, pico-cell with
a low vehicle traffic density, and pico-cell with a high vehicle
traffic density. For a macro-cell propagation environment,
D > max{Rr,Rg} holds. The Ricean factor K,, and the
energy parameter 75, related to the single-bounced elliptical-
ring model are very small or even close to zero. The received
powers mainly come from the single- and double-bounced rays
two-ring model. Based on the investigations in [6], we as-
sume that double-bounced rays bear more energy than single-
bounced rays since the AoAs and AoDs are highly independent
in such scenarios, i.e., npp > max{nsp,,nsB,} > NsBs-
This means that a macro-cell scenario can be well charac-
terized by using a two-ring model with the negligible LoS
component. For a micro-cell propagation environment, the in-
equality D > max{ Ry, Rr} is still fulfilled, but the values of
K,q and nsp, in general cannot be neglected unlike a macro-
cell scenario. The received power still mainly comes from the
single- and double-bounced two-ring models, while the single-
bounced rays bear more energy than the double-bounced rays
due to the dependence between the AoAs and AoDs, i.e.,
min{nsp,,NsB,} > NpB > 7Nsp,. Therefore, a micro-cell
scenario is characterized here by using a combined two-ring
model and elliptical-ring model, which is more realistic than
the two-ring model presented in [5]. For a pico-cell propa-
gation environment, the condition D >> max{Rr, R} is not
satisfied anymore, which makes the simplified and widely used
relation between the AoD and AoA for the two-ring model

\/NlNg

4)

1001



with single-bounced rays unobtainable [5]. This forces us to
find a new relation between them. A pico-cell propagation
environment can further be classified into the following two
scenarios. When there is a low vehicle traffic density, the value
of K, is very large since the LoS component can bear a
significant amount of power. Furthermore, we assume that the
values of the energy parameters ngp, and ngp, related to
single-bounced rays of the two-ring model are very small or
close to zero. This is due to the fact that the received scattered
power is mainly from waves reflected by the buildings located
on the roadsides. These waves form double-bounced rings of
the two-ring model and single-bounced rays of the elliptical-
ring model, in which single-bounced rays of the elliptical-ring
model bear more energy than double-bounced rays of the two-
ring model due to the high dependency between the AoAs
and AoDs, i.e., nsp, > npp > max{nsp,,Nsp, }- When the
vehicle traffic density is high, the value of K, is smaller than
that in the low vehicle traffic density scenario. In this case,
double-bounced rays of the two-ring model bear more energy
than single-bounced rays of the two-ring model and elliptical-
ring model due to the independency between the AoAs and
AoDs, i.e, npp > max{nsp,,NsB,:NsB; - To the best of
the authors’ knowledge, all the existing MIMO M2M channel
models [4], [5] have no ability to model pico-cell propagation
environments considering different vehicle traffic densities.
Distances €pq, €pn;> €n,q>» and €, in (1)=(4) can be
expressed as functions of the relevant angles, e.g., ¢L“S ¢(n"'

and qb ) for the aforementioned different scenarios. From
Fig. 1, assumlng D > max{0r,dr} and invoking the laws of
sines and cosines, these distances are

1) For the LoS component,

€pg = €—kgOpcos (d)]L{zS — ﬂR>
D — kyd7 cos Br

(&)
(6)

where for the macro- and micro-cell scenarios ¢3°% ~
(D > max{Rr,Rgr}), while for the pico-cell scenario
¢3’° ~ m—kydr sin fr/D (D > max{ Ry, Rg} not fulfilled)
with k, = (Mr —2p+1) /2 and ky; = (Mp —2¢+1) /2.

2) For the single-bounced component of the two-ring model,

€E =

€pny, = Ry — kpéT COs ( ¥L1) - ﬁT) @)
€nig = &ny — kgOR COS ( ) ﬁR) ®)
oy & Gun— kydrcos (67 = Br) O
€naq ~ Rpr—kydpgcos ((ﬁém) — ﬁR) (10)
where for the macro- and micro-cell scenarios &, =~
D — Rpcos qb%“ , 5;:1) ~ m — Arsin ¢(7l1 Eny R
D + Rpcosdy "2) and b ()~ Ap s1n¢>§§2) D >

max{Rr, Rr}) with Ay ~ Ry/D and Ar = Rg/D, while
for the pico-cell scenario the condition D > max{Rr, Rr} is
not fulfilled anymore. This enforces us to find a new general
relationship between the AoA and AoD for a geometrical-
based model with single-bounced rays. From Fig. 1, using

the laws of sines and cosines to the triangles O71,0Or and
O71T,OR, we have

(D2 R2 —2DR (m)) /2
Eng + RT — T COS P (11)

sin (ﬁ}gl %(k:qdR COSs ﬂRFTA — dpFTB) /qu(SdefanTc (12)
(n1) kq5R sin ﬂRFTA —+ (dpkp5T sin ﬁTFTB) /D
cos = 13
O 2k, 0 rdpén, Trc (13)
(n2) 1/2
= (D2+R +2DRRCOS¢R2) (14)

singb( 2) (k 5T COSﬂTFRA —d, FRB) /2](1 (;qufnzFRC (15)

oS ¢¥,2)N(quq(5R smﬁRl"RB) /D kp(ST smﬁTI‘RA' (16)
2kp0rdy&n, I Re

Here, parameters I'r 4, I'rp, 'rc, 'ra, I'rp, and I'rc are

Tra = €2, + k26% — R3 — d2 + 2Rpd, cos (qs(T”l) ~9,).

Trp = R34 k262 — €2, — d2 — 2k,07 Ry cos (qb;“) ~Br),
I're = (k’p(STSiDﬂTCOSﬂR) /D =+ sinﬂR, I'ra = gsz =+
@~ Ry — k2% + 2kgdpRucos (64 = Br). Try =

2, + k207 — R} — d2 and

— 2d,Rp cos (d);z) +0 ),
T're = (kg0psin Bg cos Br) /D — sin By, respectively, with
cosf, = cosb, ~ 1, sinf, ~ (kp,drsinfr)/D, sinf,
(kgdrsinpr) /D, dp, =~ D — kydrcosfBr, and dg = D +
kqdR cos Br.

3) For the single-bounced component of the elliptical-ring
model,

Epmy A ET) — k67 cos ( ﬂT> a7
ennggg“” — kq0R cos <¢P73) —ﬁR) (18)
glna) (a +D2/4+aD cos ¢\ )/(a+D cos {19 /2) (19)
(na) 2 (a+Dcos¢Rs)/2> (20)
(na) 4 ¢ns) — 9q @n

following the similar reasoning as (12) and (13), we have

Slngf)(nd) k 5TCOSﬂTFRAE —d, FRBE
2k, 57d T pe
(n3)__ (dql{?q(SRSIHﬁRFRBE)/D k 6TSinﬁTFRAE
2%y 07d 5T pe

(22)

€Os ¢rp (23)

2
zf(T"S) +d3_
) and FRBE =

where parameters I'ra, and I'rp, are 'ra,,
5" = 263 + 2k, 0ney cos (05 — B
(ns)? + k262 — (n3)* A2 — 2d g(ﬂs) cos (d)(ns) +6 )
T pT R P PSR R p)
respectively, and b denotes the semi-minor axis of the ellipse.
4) For the double-bounced component of the two-ring model,

€y ~ Ry — kydr cos ((b;l) — ﬁT) (24)
€nyg ~ Rpr—kydpcos <¢S§2) — 51?,) (25)

where for the macro- and micro-cell scenarios €, n,~D (D>
max{Rr, Rr}), while for the pico-cell scenario €,,,,~D—
Ry cos QS(T"I)+RR cos gzﬁg/”) (D>max{Ry, Rr} not fulfilled).
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In this paper, to characterize the AoD (bg? ) and AoA gi)%”),
we use the von Mises probability density function (PDF) [8]
defined as f (¢) 2 exp [k cos (¢ — p)] /2w 1y (k), where ¢ €
[—7, ), Ip (+) is the zeroth-order modified Bessel function of
the first kind, p € [—m, 7) accounts for the mean value of the
angle ¢, and k (k > 0) is a real-valued parameter that controls
the angle spread of the angle ¢.

III. ST CF AND SD PSD

In this section, based on the proposed channel model in
(1)-(4), we will derive the ST CF and the corresponding SD
PSD for a 2-D non-isotropic scattering environment.

A. The ST CF

The normalized ST CF between any two complex impulse
responses hp, (t) and hyq (t) is defined as

D [hpq (t) h;"]' (t+ T)]
B [l OF]E [J 0]

where ()" denotes the complex conjugate operation, E[-] is
the statistical expectation operator, p,p’ € {1,2, ..., M}, and
q,¢" € {1,2,..., Mp}. It should be observed that (26) is a
function of time separation 7 and antenna element spacings
5T and 0 R-

26)

Phpghyrgr (1) =

Using trigonometric transformations, the equality [ exp(a
x sinc¢ + bceosc)de = 2xly (\/ a2+ b2) [9], and the results
in [6] without considering frequency correlations [?], the ST
CF of the LoS, single-, and double-bounced components for
different scenarios can be obtained as
1) In the case of the LoS component,

_ j2nG—j2nTH
PhkeshLes (1) =V Epg Kprgre @7
where for the macro- and micro-cell scenarios

G=P cos fr—Qcos fr and H=fr,_ . cosvyr—fr, .. COSYR,
while for the pico-cell scenario G = P cos Sr—Q cos Br+
sin By sin g (P (Mg + 1) 6ptQ (Mr + 1) 07 — 2U) / (2D)

and H=fr,,,, (cosyrtky o7 sin frsinyr/DHfr,, .. (kpor
X sin By sinyg — cosyr/D), with P=(p~p) 1/, Q=(¢
—q) 6r/\, U=(p'q"—q) 616 R /N, k=M — 2p’ + 1) /2, and
ke=(Mpg —2¢' + 1) /2.

2) In the case of the single-bounced component of the
two-ring model, for macro- and micro-cell scenarios

2 2
SB; SB;
L Jo \/(AT(R)) +(Bn) 1

ph}{ffz hjf;; (T) nSBie " I kSBi

0\*1r(m) (28)
where  parameters A?Bl s B“TQB1 s C‘;jBl s AEJS?/B2 s
BpP2, and CpP2 are AP = k3P cospilt
§2m (1 fr,,.. cosyrtP cos Br), B3P = k3P sinps?

j2m (tfr,,.. sinyr—fr, . ArsinygHP sin Sr+HQ A7 sin Or),
C$31:27r (TfR,,.. COSYRQ cos BRr), AIS%Bz:k;SB2 cos p B —

J2m (7., cosymiQeos ). BSE: = k5P sinuSPs

J27 (T fRy0w SIMVRT [, AR SIVYTHQ sin Bt A sin 1),
and C9P2 = 21 (7 fp, . cosyr+P cos Br), respectively,with

5B 5Ba denoting the mean value of the AoD d)(T" 1)

Kr— \Fr
(AoA ¢5§2)) and k3P kgBQ) controls the angle spread of

the AoD ¢>§i“) (AoA ¢§g2)). For pico-cell scenarios, the ST
CF of single-bouced components of the two-ring model is

given as 7'r

pugpncpy (1) = —— 2l [ SR ETaglE, 29)
o 2ty (K5 () 2,

were kST o (657", TP (05 — )

Q cos (QS%BI —BR), Vi =" fr,.. cos ;Bl —vr ) +

JRppas €OS ( oo - ’YR>, Jo = k3P cos ( }%BQ—MISgBZ)

T, = Pcos( §B2 —ﬁT) + Qcos( 15%32 —ﬁR), and

Voo = fr,,, oS (¢§BQ - VT) + [Ryas COS (¢}ng2 - 73>,

with q[)“TQB t SB kR ?BZ and QSIS%B? are the continuous

R
notations of qﬁgpm), (;5%”), gbgfl 2), and gb%”), respectively, since

we assume that the number of local scatterers in the proposed
reference model in Section II tends to infinite.
3) In terms of the single-bounced component of the
elliptical-ring model, 7r

1SBs /6J3+j27r(T3—‘rV3)d¢ng (30)
o7l (kff) J

where J3:§§B3 Cos ( }9?,33 _NiBS), T5=P cos <¢533 —Br)+
Qeos (977 — fin) and V=" fr,,,, cos (53 _'YTS +

fRupan COS ( 233 — YR ), with ¢§B3 and ¢IS%B3 are the contin-

Prspanspy (7) =

uous notations of d)(T" #) and d)ga) , respectively. The parameter
uf%BS denotes the mean value of the AoA ¢§B3 and k:lsf3
controls the angle spread of the AoA gb}g{B 3.

4) In terms of the double-bounced component of the two-ring

model,

Phquhf,J;, (1) =npB

0 {yap)+ (887} 1 { V(427 + (577}
Io (k27) Io (kR®) G1)

where ARB = kBB cos uPB—j2n (1 fr,,, . cosyr+P cos Br),
BRB=ERB sin ynPP—jor (1 fr,,.. sinyp+Psin Br), ARB
kBB cos uBB—j2m (1 fr,,.. cosvr + Qcos Br), and BRP =
kEBsinuBB — j2m (7 fr,,..sinyr + Qsin Bg).Finally, the
normalized ST CF between two time-variant complex impulse
responses Ay, (t) and hg?z, (t) becomes a summation of the
ST CFs in (27)~(31).

B. The SD PSD

Applying the Fourier transformation in terms of time to the
ST CF in (26), the corresponding SD PSD can be obtained as

X

o

F {phmhp/q/ (T)} = / Phygh,, (7)€ 72™PTdr — (32)

— 00
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where fp is the Doppler frequency. The integral in (32)
must be evaluated numerically in the case of the two-ring
model with single-bounced rays for pico-cell scenarios and the
elliptical-ring model for all scenarios. While for other cases,

by using the equality [ Io (jom/;t2 + y2) cos (Bz) dx
0
coS gy\/oz2 - ﬁQ) /\/a2 — (32 [9] and the results in [6], we

can further get closed-form solutions.
1) In the case of the LoS component,

F {Phle;sms <T>} = VEp Ky (fpo + H)  (33)

where § (-) denotes the Dirac delta function.
2) In terms of the single-bounced component of two-ring model,

SB;

D
NsB,;2€ W
F{Phﬁqu‘hS,B; (T)} = SB,
r'q IO (kT(R)>
Er \/ SB; sB: )2
cos Ly W2 A — 4w (O : )
[WTSZBI%) T(R) T(R)
X - (34)
SB; SB
\/ Wil — 4x2 (050

where USBl = —27(Q) cos Bg, USB2 =27 P cos A, WﬁBl =
(fT +fR A% SINYFA2 ST, 00 fRpae A SNy SID ’YR) )
WSBZ—4 (meM fT,,M A%ﬁ sin ’YT+2meam ITar ARSINVR

X sinyr), DSB1 ]27rI€SB1 [fT cos (7T — uTBl)-i-meaz

SB
x sinygsinpy”t | —4n? [Pfr,,, cos (Br — yr)-QArfr,,,,

x sin Bg sinyr—PAr fr,,,. sin By sin yR-QA% fr, .. sin fr
x sin ], D=2k | fR,. cos (7R — M532>+meMAR

X sin yr sin uffz]fzm [Qfr,... cos (Br — YrR-PARSR,,..

x sin Br sin yg-QAR fr,,,. sin Br sinyr—PA% fr,.. sin Br
X sinyr], ES 1fj27rkSB1 [fT sin (’YT — ,u*;Bl)ﬂmew Arp

max

—4n? [Pfr,,,, sin (Br — yr)-QAr fr,,,.,
x sin B cos yp—PAr fg,. .. cos Brsinyg|, EgBZ :j27rlfl,S%B2

P’Rmm sin (’yR — u}q{Bz )+fT,naT Ap sinyr cos MIS%BZ — 4x?

QfRpan sin (Br — VEBPPARJ’RM, sin A7 cos 'YR_QARmem
o7

fp = fRys cOSTR| <

and |fp + fr,,., cosvyr| < /W52 /(2).

3) Interms of the double-bounced component of two-ring model,

F{Phquhf,f, (T)} = T (kDB) T (kgB)
(25 W}
W, —4r2f2?

WDB 47T2f2>

— 47r2f2

X sin YR COS ,uT

= [~ fRpe cOSTR,_OF
VWt /@),

X cos B sinyr),

[+ fry.. cosvyr,

'r’DBejCDB

DDB cos
J2mf o
X2e

. pBB
j2n f WJ?B

%

R

e

®2e

(35)

47T2PfT

where © denotes the convolution, DF?B = o
EDB

cos (Br — 1) + j2nki P fr,,,.cos (yr — up "),
47r2PmeaT sin (Br —yr) + jQWkIQBfTMI sin ('yT — /LQQB),
DRB —AT2QfR,p0. €08 (Br — YR) + J27kRP fR,...
cos (yr — pRP), ERP=Am2QfR,,.. sin (Br — Yr)H+j27kRP

SRmas Sin (YR — pR5), W:/?B:47r2f% S WRB=AR (L
and |f <<\/ WEPH /W B> = Toaa T R

IV. NUMERICAL RESULTS AND ANALYSES

In this section, we first present the numerical results of the
Doppler PSD for elliptical-ring model with single-bounced
rays and then show some numerical evaluations of the pro-
posed theoretical model. The following parameters are used
for our numerical analysis: f. = 5.9 GHz, fr,.. = fRy0. =
570 Hz, D = 350 m, a = 250 m, and Ry = Rz = 30 m.

From Fig. 2, it is clear that the shape of the Doppler
PSD for the elliptical-ring model with single-bounced rays is
similar to the U-shape PSD in F2M channels. Considering
observations in [6], we can further get another interesting
conclusion that no matter what the propagation environment
is, for M2M channels in isotropic scattering environments, the
single-bounced rays cause the resulting Doppler PSDs to look
like the U-shape, while the double-bounced rays will result in
a “rounded”-shape Doppler PSD. Figs. 3 and 4 show the SD
PSDs for a MIMO M2M Ricean fading channel with different
antenna element spacings in an outdoor pico-cell scenario,
T where the Tx and Rx are moving in the same direction on
an expressway, with a low and a high vehicle traffic density,
respectively. Considering the real environment behind the
measurement result of Fig. 6 in [7], where large stationary
objects are available along this expressway, and following the
way to specify the Ricean factor and energy-related parameters
regarding different scenarios given in Section II, in Fig. 3 we
assume K = 2, NpB = 0.01, nsp, = 0.299, NSBy, = 0.091,
and nsp, = 0.6. Similarly, Fig. 4 assumes K 0.5,
NpB = 0.7, nsB, = 0.19, nsB, = 0.01, and NsB; = 0.1
for the real environment where the main received power is
reflected by cars around the Tx or Rx. The measurement
result of Fig. 9 in [7] was obtained from this type of scenario.
Finally, comparing our theoretical Doppler PSDs obtained for
d0r = dr = 0 in Figs. 3 and 4 with measured Doppler PSDs
of Figs. 6 and 9 in [7], respectively, we can obtain the close
agreement confirming the usefulness of the proposed model.

V. CONCLUSIONS

In this paper, we have proposed a generic and adaptive
geometrical-based stochastic model for MIMO M2M Ricean
fading channels. Considering the impact of separation distance
and energy specified parameters, the proposed model is adapt-
able to a wide variety of M2M propagation environments.
From this model, the ST CF and the corresponding SD PS for
2D non-isotropic scattering environments are derived. Based
on the obtained Doppler PSD for the elliptical-ring model with
single-bounced rays and observations in [6], we conclude that
no matter what the propagation environment is, single-bounced
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rays cause the Doppler PSD look like the traditional U-
shape, while double-bounced rays result in a “rounded”-shape
Doppler PSD for M2M channels in non-isotropic scattering
environments. Finally, the resulting theoretical SD PSDs match
very well measured PSDs in [7].

REFERENCES

[1] A. S. Akki and F. Haber, “A statistical model for mobile-to-mobile land
communication channel,” IEEE Trans. Veh. Technol., vol. 35, no. 1, pp.
2-10, Feb. 1986.

A. S. Akki, “Statistical properties of mobile-to-mobile land communica-
tion channels,” IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 826-831,
Nov. 1994.

[31J. M. G. Linnartz and R. F  Fiesta. (1996) Evalua-
tion of radio links and networks. [Online].  Available:
http://www.path.berkeley.edu/PATH/Publications/PDF/PRR/96/PRR-
96-16.pdf.

M. Pitzold, B. O. Hogstad, N. Youssef, and D. Kim, “A MIMO mobile-
to-mobile channel model: Part I-the reference model,” Proc. IEEE
PIMRC’05, Berlin, Germany, Sept. 2005, pp. 573-578.

A. G. Zaji¢ and G. L. Stiiber, “Space-time correlated mobile-to-mobile
channels: modelling and simulation,” IEEE Trans. Veh. Technol., vol. 57,
no. 2, pp. 715-726, Mar. 2008.

X. Cheng, C.-X. Wang, D. I. Laurenson, H. H. Chen, and A. V. Vasilakos,
“Space-time-frequency characterization of non-isotropic MIMO mobile-
to-mobile multicarrier Ricean fading channels,” IEEE IWCMC’08, Chania
Crete Island, Greece, Aug. 2008, accepted for publication.

G. Acosta, K. Tokuda, and M. A. Ingram, “Doubly selective vehicle
traffic-to-vehicle traffic channel measurements and modeling at 5.9 GHz,”
Proc. IEEE WPMC’06, San Diego, CA, USA, Sep. 2006, pp. 1-6.

A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the
distribution of the angle of arrival and the associated correlation function
and power spectrum at the mobile station,” IEEE Trans. Veh. Technol.,
vol. 51, no. 3, pp. 425-434, May 2002.

I. S. Gradshteyn, and 1. M. Ryzhik, Table of Integrals, Series, and
Products. 5th ed, A. Jeffrey, Ed. San Diego, CA: Academic, 1994.

[2]

(4]

(5]

(6]

(71

(8]

[91

p%(”’ )

,f‘”‘.f‘ /
T hN e

R, e
Sp!
D
2xa
Fig. 1. The proposed model with the LoS, Single- and double-

bounced components for a MIMO M2M channel with Mt = Mg =
2 antenna elements.

Normalized Doppler PSD (dB)

L
-1 -0.8 -0.6

-0.4 -0.2 0 0.2 04 0.6 0.8 1
Normalized Doppler frequency, !D/imax

Fig. 2.

Yr =9r =0, ur =0, ur
Mp = Mg = 2).

—8,/A=8./A=0
---8/A=8./A=0.5
- - 8 /A= /=1

L
o
7

| |

@ n

S =]
T T

Normalized space—Doppler PSD (dB)
A
£

|

a

=]
T
L

. L
60 -1000 -500

.
0 1000
Doppler frequency, 1D (Hz)

Fig. 3.

Yr =79r =0, ur =0, ur = 7, k7 = 3, kr = 2, and Mr

Mg = 2).

—8,/A=8./A=0
---8/A=8./A=05

- - 8. /A=8 /=1

| | |

N & =

=) a =)
T T T

Normalized Doppler PSD (dB)
&
o

-35

W . .
-1000 -500 0 500 1000
Doppler frequency, 1D (Hz)

Fig. 4. Normalized space-Doppler PSDs for the
element spacings (f = 5.9 GHz, fr1,,.,. = fRmas = 970 Hz, K
0.5,’YT:’YR:O,/LT:O,MR:W,kT:kR:1,andMT
Mpr = 2).

Normalized space-Doppler PSD of the elliptical-ring model
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Normalized space-Doppler PSDs for the outdoor pico-cell
scenario having a low vehicle traffic density with different antenna
element spacings (f = 5.9 GHz, f7,,,. = fRma. = D70Hz, K =2,

outdoor pico-cell
scenario having a high vehicle traffic density with different antenna
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