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Abstract—In this paper, a generic and adaptive geometrical-
based stochastic reference model is proposed for multiple-input
multiple-output (MIMO) mobile-to-mobile (M2M) Ricean fading
channels. The proposed model employs a combined two-ring
model and elliptical-ring model, where the received signal is
constructed as a sum of the line-of-sight (LoS), single-, and
double-bounced rays with different energies. This makes the
model sufficiently generic and therefore includes many existing
channel models as special cases. Importantly, the model can
easily be adapted to a variety of M2M propagation environments,
e.g., outdoor macro-, micro, and pico-cells taking into account
different vehicle traffic densities, by adjusting model parame-
ters. From the proposed model, the space-time (ST) correlation
function (CF) and the corresponding space-Doppler (SD) power
spectral density (PSD) of any two sub-channels are derived for
a two-dimensional (2D) non-isotropic scattering environment.
Finally, some numerical results are presented and compared with
measured results. The close agreement between the theoretical
and empirical curves verifies the utility of the proposed model.

I. INTRODUCTION

M2M communications play an important role in wireless
mobile ad hoc networks, relay-based cellular networks, and
intelligent transportation systems, where both the transmitter
(Tx) and receiver (Rx) are in motion and equipped with
low elevation antennas. For the analysis and design of M2M
systems, it is necessary to have a detailed knowledge of the
multipath fading channel and its statistical properties. Akki
and Haber [1], [2] were the first to propose a channel model
for single-input single-output (SISO) M2M Rayleigh fading
channels. Their model was extended in [3] to include the
line-of-sight (LoS) component resulting in a M2M Ricean
fading channel model. In [4], a two-ring model considering
only double-bounced rays was presented for MIMO M2M
Rayleigh fading channels in outdoor macro-cells. In [5], a
more general two-ring model was proposed for MIMO M2M
Ricean fading channels in both outdoor macro- and micro-cells
by taking into account the LoS, single-bounced, and double-
bounced rays. The model in [5] includes the model in [4]
as a special case. However, none of the above MIMO M2M
channel models [4], [5] is sufficiently general to characterize
a wide variety of M2M propagation environments. Especially
for pico-cell scenarios, where the distance between the Tx
and Rx is relatively small (normally less than 400 m), a
combined model consisting of an elliptical ring and two rings

seems to be more appropriate. Pico-cell scenarios are currently
receiving more and more attention in M2M communications
with some measurement campaigns going on [7]. Doppler
PSD characteristics for an elliptical-ring MIMO M2M channel
model, however, are not known yet.

The objectives are mainly two-fold. First, we aim to propose
a generic and adaptive geometrical-based stochastic reference
model for ST correlated MIMO M2M Ricean fading channels.
Motivated by some interesting observations in [6], we take
the impacts of both single- and double-bounced rays into
account when proposing this new model. The proposed model
employs a combined two-ring model and elliptical-ring model,
where the received signal is constructed as a sum of the
LoS, single-, and double-bounced rays with different energies.
This makes our model sufficiently generic and includes many
existing models, e.g., those in [4] and [5], as special cases.
More importantly, the model is adaptive to a variety of M2M
propagation environments, e.g., outdoor macro-, micro-, and
pico-cells taking different vehicle traffic densities into further
account, by adjusting model parameters. Second, from the
proposed generic model, the ST CF and the corresponding SD
PSD are derived for a 2D non-isotropic scattering environment.
Closed-form expressions for the above functions are available
in the case of the two-ring model with single-bounced rays for
the macro- and micro-cell scenarios, and the two-ring model
with double-bounced rays for all scenarios. For the two-ring
model with single-bounced rays for pico-cell scenarios and the
elliptical-ring model for all scenarios, numerical computations
for the above functions are necessary while the computation
complexity has been reduced with the help of the newly
derived relationship between the angle of departure (AoD) and
angle of arrival (AoA).

The remainder of this paper is outlined as follows. Section
II describes the new adaptive geometrical-based stochastic
model for narrowband MIMO M2M Ricean fading channels.
In Section III, the ST CF and the corresponding SD PSD
are derived. Numerical results and analysis are presented in
Section IV. Finally, conclusions are drawn in Section V.

II. AN ADAPTIVE GEOMETRICAL-BASED MODEL

Let us now consider a narrowband single-user MIMO M2M
system with MT transmit and MR receive omnidirectional
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antenna elements. Both the Tx and Rx are in motion and
equipped with antennas mounted at low elevations. The prop-
agation scenario is characterized by non-isotropic scattering
with possibly a LoS component between the Tx and Rx.

Fig. 1 illustrates the geometry of the proposed MIMO M2M
channel model, which is the combination of a LoS component,
a two-ring model with single- and double-bounced rays, and
an elliptical-ring model with single-bounced rays. We assume
that uniform linear antenna arrays are used with arbitrary
numbers of antenna elements. As an example, MT = MR = 2
were used in Fig. 1. The two-ring model defines two rings of
effective scatterers, one around the Tx and the other around
the Rx. Suppose there are N1 effective scatterers around the
Tx lying on a ring of radius RT and the n1th (n1 = 1, ..., N1)
effective transmit scatterer is denoted by S

(n1)
T . Similarly,

assume there are N2 effective scatterers around the Rx lying
on a ring of radius RR and the n2th (n2 = 1, ..., N2) effective
receive scatterer is denoted by S(n2)

R . The distance between the
Tx and Rx is D. For the elliptical-ring model, N3 effective
scatterers lie on an ellipse with the Tx and Rx located at
the foci. The semimajor axis of the ellipse and the n3th
(n3 = 1, ..., N3) effective scatterer are denoted by a and S(n3)

TR ,
respectively. The antenna element spacings at the Tx and Rx
are designated by δT and δR, respectively. It is normally
assumed that the radii RT and RR and the semimajor axis
a are all much larger than the antenna element spacings δT
and δR, i.e., min{RT , RR, a} >> max{δT , δR}. The multi-
element antenna tilt angles are denoted by βT and βR. The Tx
and Rx move with speeds υT and υR in directions determined
by the angles of motion γT and γR, respectively. The symbol
φLoSRq

denotes the AoA of a LoS path. The AoAs of the

waves travelling from the effective scatterers S
(n1)
T , S(n2)

R ,
and S

(n3)
TR towards the Rx are denoted by φ

(n1)
R , φ(n2)

R , and
φ

(n3)
R , respectively. The AoDs of the waves that impinge on

the effective scatterers S(n1)
T , S(n2)

R , and S(n3)
TR are designated

by φ(n1)
T , φ(n2)

T , and φ(n3)
T , respectively.

From the above proposed geometrical-based model, the
received complex impulse response at the carrier frequency
fc for the Tp−Rq link is a superposition of the LoS, single-,
and double-bounced rays can be expressed as

hpq (t) = hLoSpq (t) + hSBpq (t) + hDBpq (t) (1)

where
hLoSpq (t) =

√
KpqΩpq
Kpq + 1

e−j2πfcτpq

×ej
[
2πfTmax t cos

(
π−φLoS

Rq
+γT

)
+2πfRmax t cos

(
φLoS

Rq
−γR

)]
(2)

hSBpq (t) =
I∑
i=1

hSBi
pq (t)

=
I∑
i=1

√
ηSBi

Ωpq
Kpq + 1

lim
Ni→∞

Ni∑
ni=1

1√
Ni
ej(ψni

−2πfcτpq,ni)

×ej
[
2πfTmax t cos

(
φ

(ni)
T −γT

)
+2πfRmax t cos

(
φ

(ni)
R −γR

)]
(3)

hDBpq (t) =

√
ηDBΩpq
Kpq + 1

lim
N1,N2→∞

N1,N2∑
n1,n2=1

1√
N1N2

×ej(ψn1,n2−2πfcτpq,n1,n2)

×ej
[
2πfTmax t cos

(
φ

(n1)
T −γT

)
+2πfRmax t cos

(
φ

(n2)
R −γR

)]
. (4)

In (2)–(4), p = 1, 2, ...,MT , q = 1, 2, ...,MR, τpq = εpq/c,
τpq,ni

= (εpni
+ εniq)/c, τpq,n1,n2 = (εpn1 + εn1n2 + εn2q)/c

are the travel times of the waves through the link Tp − Rq,
Tp−S(n1)

T (S(n2)
R or S(n3)

TR )−Rq, and Tp−S(n1)
T −S(n2)

R −Rq,
respectively. Here, c is the speed of light, i ∈ {1, 2, ..., I},
and I = 3. The symbol Kpq designates the Ricean factor of
the Tp −Rq link and Ωpq denotes the total power transferred
through the Tp − Rq link. Parameters ηSBi

and ηDB specify
how much the single- and double-bounced rays contribute to
the total scattered power Ωpq/(Kpq + 1). This indicates that
these energy-related parameters satisfy

∑I
i=1 ηSBi

+ηDB = 1.
The phases ψni

and ψn1,n2 are independent and identically
distributed (i.i.d.) random variables with uniform distributions
over [−π, π), fTmax

= υT /λ and fRmax
= υR/λ are the

maximum Doppler frequencies associated with the Tx and Rx,
respectively, and λ is the carrier wavelength.

As mentioned earlier, the proposed model in (1)–(4) is
adaptive to a wide variety of M2M propagation environments
by adjusting model parameters. It turns out that these im-
portant model parameters are the distance D, the energy-
related parameters ηSBi

and ηDB , and the Ricean factor Kpq.
Based on these parameters the outdoor M2M propagation
environments can roughly be categorized into the following
four different scenarios: macro-cell, micro-cell, pico-cell with
a low vehicle traffic density, and pico-cell with a high vehicle
traffic density. For a macro-cell propagation environment,
D � max{RT , RR} holds. The Ricean factor Kpq and the
energy parameter ηSB3 related to the single-bounced elliptical-
ring model are very small or even close to zero. The received
powers mainly come from the single- and double-bounced rays
two-ring model. Based on the investigations in [6], we as-
sume that double-bounced rays bear more energy than single-
bounced rays since the AoAs and AoDs are highly independent
in such scenarios, i.e., ηDB > max{ηSB1 , ηSB2} � ηSB3 .
This means that a macro-cell scenario can be well charac-
terized by using a two-ring model with the negligible LoS
component. For a micro-cell propagation environment, the in-
equality D � max{RT , RR} is still fulfilled, but the values of
Kpq and ηSB3 in general cannot be neglected unlike a macro-
cell scenario. The received power still mainly comes from the
single- and double-bounced two-ring models, while the single-
bounced rays bear more energy than the double-bounced rays
due to the dependence between the AoAs and AoDs, i.e.,
min{ηSB1 , ηSB2} > ηDB > ηSB3 . Therefore, a micro-cell
scenario is characterized here by using a combined two-ring
model and elliptical-ring model, which is more realistic than
the two-ring model presented in [5]. For a pico-cell propa-
gation environment, the condition D � max{RT , RR} is not
satisfied anymore, which makes the simplified and widely used
relation between the AoD and AoA for the two-ring model
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with single-bounced rays unobtainable [5]. This forces us to
find a new relation between them. A pico-cell propagation
environment can further be classified into the following two
scenarios. When there is a low vehicle traffic density, the value
of Kpq is very large since the LoS component can bear a
significant amount of power. Furthermore, we assume that the
values of the energy parameters ηSB1 and ηSB2 related to
single-bounced rays of the two-ring model are very small or
close to zero. This is due to the fact that the received scattered
power is mainly from waves reflected by the buildings located
on the roadsides. These waves form double-bounced rings of
the two-ring model and single-bounced rays of the elliptical-
ring model, in which single-bounced rays of the elliptical-ring
model bear more energy than double-bounced rays of the two-
ring model due to the high dependency between the AoAs
and AoDs, i.e., ηSB3 > ηDB � max{ηSB1 , ηSB2}. When the
vehicle traffic density is high, the value of Kpq is smaller than
that in the low vehicle traffic density scenario. In this case,
double-bounced rays of the two-ring model bear more energy
than single-bounced rays of the two-ring model and elliptical-
ring model due to the independency between the AoAs and
AoDs, i.e, ηDB � max{ηSB1 , ηSB2 , ηSB3}. To the best of
the authors’ knowledge, all the existing MIMO M2M channel
models [4], [5] have no ability to model pico-cell propagation
environments considering different vehicle traffic densities.

Distances εpq , εpni
, εniq, and εn1n2 in (1)–(4) can be

expressed as functions of the relevant angles, e.g., φLoSRq
, φ(ni)

T ,

and φ
(ni)
R , for the aforementioned different scenarios. From

Fig. 1, assuming D � max{δT , δR} and invoking the laws of
sines and cosines, these distances are
1) For the LoS component,

εpq ≈ ε− kqδR cos
(
φLoSRq

− βR

)
(5)

ε ≈ D − kpδT cosβT (6)

where for the macro- and micro-cell scenarios φLoSRq
≈ π

(D � max{RT , RR}), while for the pico-cell scenario
φLoSRq

≈ π−kpδT sinβT /D (D � max{RT , RR} not fulfilled)
with kp = (MT − 2p+ 1) /2 and kq = (MR − 2q + 1) /2.
2) For the single-bounced component of the two-ring model,

εpn1 ≈ RT − kpδT cos
(
φ

(n1)
T − βT

)
(7)

εn1q ≈ ξn1 − kqδR cos
(
φ

(n1)
R − βR

)
(8)

εpn2 ≈ ξn2 − kpδT cos
(
φ

(n2)
T − βT

)
(9)

εn2q ≈ RR − kqδR cos
(
φ

(n2)
R − βR

)
(10)

where for the macro- and micro-cell scenarios ξn1 ≈
D − RT cosφ(n1)

T , φ
(n1)
R ≈ π − ΔT sinφ(n1)

T , ξn2 ≈
D + RR cosφ(n2)

R , and φ
(n2)
T ≈ ΔR sinφ(n2)

R (D �
max{RT , RR}) with ΔT ≈ RT /D and ΔR ≈ RR/D, while
for the pico-cell scenario the condition D � max{RT , RR} is
not fulfilled anymore. This enforces us to find a new general
relationship between the AoA and AoD for a geometrical-
based model with single-bounced rays. From Fig. 1, using

the laws of sines and cosines to the triangles OTTpOR and
OTTpOR, we have

ξn1=
(
D2 +R2

T − 2DRT cosφ(n1)
T

)1/2

(11)

sinφ(n1)
R ≈(kqδR cosβRΓTA − dpΓTB) /2kqδRdpξn1ΓTC (12)

cosφ(n1)
R ≈kqδR sinβRΓTA + (dpkpδT sinβTΓTB) /D

2kqδRdpξn1ΓTC
(13)

ξn2=
(
D2 +R2

R + 2DRR cosφ(n2)
R

)1/2

(14)

sinφ(n2)
T ≈(kpδT cosβTΓRA − dqΓRB) /2kpδT dqξn2ΓRC (15)

cosφ(n2)
T ≈(dqkqδR sinβRΓRB) /D − kpδT sinβTΓRA

2kpδT dqξn2ΓRC
. (16)

Here, parameters ΓTA, ΓTB , ΓTC , ΓRA, ΓRB , and ΓRC are
ΓTA = ξ2n1

+ k2
qδ

2
R − R2

T − d2
q + 2RT dq cos

(
φ

(n1)
T − θq

)
,

ΓTB = R2
T + k2

pδ
2
T − ξ2n1

− d2
p− 2kpδTRT cos

(
φ

(n1)
T − βT

)
,

ΓTC = (kpδT sinβT cosβR) /D + sinβR, ΓRA = ξ2n2
+

d2
q − R2

R − k2
qδ

2
R + 2kqδRRR cos

(
φ

(n2)
R − βR

)
, ΓRB =

ξ2n2
+ k2

pδ
2
T − R2

R − d2
p − 2dpRR cos

(
φ

(n2)
R + θp

)
, and

ΓRC = (kqδR sinβR cosβT ) /D − sinβT , respectively, with
cos θp = cos θq ≈ 1, sin θp ≈ (kpδT sinβT ) /D, sin θq ≈
(kqδR sinβR) /D, dp ≈ D − kpδT cosβT , and dq ≈ D +
kqδR cosβR.
3) For the single-bounced component of the elliptical-ring
model,

εpn3 ≈ ξ(n3)
T − kpδT cos

(
φ

(n3)
T − βT

)
(17)

εn3q≈ ξ(n3)
R − kqδR cos

(
φ

(n3)
R − βR

)
(18)

ξ
(n3)
T =

(
a2+D2/4+aD cosφ(n3)

R

)
/
(
a+D cosφ(n3)

R /2
)

(19)

ξ
(n3)
R = b2/

(
a+D cosφ(n3)

R /2
)

(20)

ξ
(n3)
T + ξ

(n3)
R = 2a (21)

following the similar reasoning as (12) and (13), we have

sinφ(n3)
T ≈kpδT cosβTΓRAE

−dqΓRBE

2kpδT dqξ
(n3)
T ΓRC

(22)

cosφ(n3)
T ≈(dqkqδR sinβRΓRBE

) /D−kpδT sinβTΓRAE

2kpδT dqξ
(n3)
T ΓRC

(23)

where parameters ΓRAE
and ΓRBE

are ΓRAE
= ξ

(n3)
2

T +d2
q−

ξ
(n3)

2

R − k2
qδ

2
R + 2kqδRξ

(n3)
R cos

(
φ

(n3)
R − βR

)
and ΓRBE

=

ξ
(n3)

2

T + k2
pδ

2
T − ξ

(n3)
2

R − d2
p − 2dpξ

(n3)
R cos

(
φ

(n3)
R + θp

)
,

respectively, and b denotes the semi-minor axis of the ellipse.
4) For the double-bounced component of the two-ring model,

εpn1 ≈ RT − kpδT cos
(
φ

(n1)
T − βT

)
(24)

εn2q ≈ RR − kqδR cos
(
φ

(n2)
R − βR

)
(25)

where for the macro- and micro-cell scenarios εn1n2≈D (D�
max{RT , RR}), while for the pico-cell scenario εn1n2 ≈D−
RT cosφ(n1)

T +RR cosφ(n2)
R (D�max{RT , RR} not fulfilled).
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In this paper, to characterize the AoD φ
(ni)
T and AoA φ

(ni)
R ,

we use the von Mises probability density function (PDF) [8]
defined as f (φ) Δ= exp [k cos (φ− μ)] /2πI0 (k), where φ ∈
[−π, π), I0 (·) is the zeroth-order modified Bessel function of
the first kind, μ ∈ [−π, π) accounts for the mean value of the
angle φ, and k (k ≥ 0) is a real-valued parameter that controls
the angle spread of the angle φ.

III. ST CF AND SD PSD

In this section, based on the proposed channel model in
(1)–(4), we will derive the ST CF and the corresponding SD
PSD for a 2-D non-isotropic scattering environment.

A. The ST CF

The normalized ST CF between any two complex impulse
responses hpq (t) and hp′q′ (t) is defined as

ρhpqhp′q′ (τ) =
E

[
hpq (t)h∗p′q′ (t+ τ)

]
√

E
[
|hpq (t)|2

]
E

[
|hp′q′ (t)|2

] (26)

where (·)∗ denotes the complex conjugate operation, E [·] is
the statistical expectation operator, p, p′ ∈ {1, 2, ...,MT }, and
q, q′ ∈ {1, 2, ...,MR}. It should be observed that (26) is a
function of time separation τ and antenna element spacings
δT and δR.

Using trigonometric transformations, the equality
π∫

−π
exp(a

× sin c + b cos c)dc = 2πI0
(√
a2 + b2

)
[9], and the results

in [6] without considering frequency correlations [?], the ST
CF of the LoS, single-, and double-bounced components for
different scenarios can be obtained as
1) In the case of the LoS component,

ρhLoS
pq hLoS

p′q′
(τ) =

√
KpqKp′q′e

j2πG−j2πτH (27)

where for the macro- and micro-cell scenarios
G=P cosβT−Q cosβR and H=fTmax

cos γT−fRmax
cos γR,

while for the pico-cell scenario G = P cosβT−Q cosβR+
sinβT sinβR (P (MR + 1) δR+Q (MT + 1) δT − 2U) / (2D)
and H=fTmax

(cos γT+kp′δT sinβT sin γT /D)+fRmax
(kp′δT

× sinβT sin γR − cos γR/D), with P=(p′−p) δT /λ, Q=(q′

−q) δR/λ, U=(p′q′−pq) δT δR/λ, kp′=(MT − 2p′ + 1) /2, and
kq′=(MR − 2q′ + 1) /2.
2) In the case of the single-bounced component of the
two-ring model, for macro- and micro-cell scenarios

ρ
h

SBi
pq h

SBi
p′q′

(τ) = ηSBi
ejC

SBi
T

I0

[√(
ASBi

T (R)

)2

+
(
BSBi

T (R)

)2
]

I0

(
kSBi

T (R)

)
(28)

where parameters ASB1
T , BSB1

T , CSB1
T , ASB2

R ,
BSB2
R , and CSB2

R are ASB1
T = kSB1

T cosμSB1
T −

j2π (τfTmax
cos γT+P cosβT ), BSB1

T = kSB1
T sinμSB1

T −
j2π (τfTmax

sin γT−τfRmax
ΔT sin γR+P sinβT+QΔT sinβR),

CSB1
T =2π (τfRmax

cos γR−Q cosβR), ASB2
R =kSB2

R cosμSB2
R −

j2π (τfRmax
cos γR+Q cosβR), BSB2

R = kSB2
R sinμSB2

R −

j2π (τfRmax
sin γR−τfTmax

ΔR sin γT+Q sinβR+PΔR sinβT ),
and CSB2

R = 2π (τfTmax
cos γT+P cosβT ), respectively,with

μSB1
T

(
μSB2
R

)
denoting the mean value of the AoD φ

(n1)
T

(AoA φ
(n2)
R ) and kSB1

T

(
kSB2
R

)
controls the angle spread of

the AoD φ
(n1)
T (AoA φ

(n2)
R ). For pico-cell scenarios, the ST

CF of single-bouced components of the two-ring model is
given as

ρ
h

SBi
pq h

SBi
p′q′

(τ) =
ηSBi

2πI0
(
kSBi

T (R)

) π∫
−π

eJi+j2π(Ti−τVi)dφSBi

T (R) (29)

where J1=kSB1
T cos

(
φSB1
T −μSB1

T

)
, T1=P cos

(
φSB1
T − βT

)
+

Q cos
(
φSB1
R − βR

)
, V1 = fTmax

cos
(
φSB1
T − γT

)
+

fRmax
cos

(
φSB1
R − γR

)
, J2 = kSB2

R cos
(
φSB2
R −μSB2

R

)
,

T2 = P cos
(
φSB2
T − βT

)
+ Q cos

(
φSB2
R − βR

)
, and

V2 = fTmax
cos

(
φSB2
T − γT

)
+ fRmax

cos
(
φSB2
R − γR

)
,

with φSB1
T , φSB1

R , φSB2
T , and φSB2

R are the continuous
notations of φ(n1)

T , φ(n1)
R , φ(n2)

T , and φ(n2)
R , respectively, since

we assume that the number of local scatterers in the proposed
reference model in Section II tends to infinite.
3) In terms of the single-bounced component of the
elliptical-ring model,

ρ
h

SB3
pq h

SB3
p′q′

(τ) =
ηSB3

2πI0
(
kSB3
R

) π∫
−π

eJ3+j2π(T3−τV3)dφSB3
R (30)

where J3=kSB3
R cos

(
φSB3
R −μSB3

R

)
, T3=P cos

(
φSB3
T −βT )+

Q cos
(
φSB3
R − βR

)
, and V3 = fTmax

cos
(
φSB3
T − γT

)
+

fRmax
cos

(
φSB3
R − γR

)
, with φSB3

T and φSB3
R are the contin-

uous notations of φ(n3)
T and φ(n3)

R , respectively. The parameter
μSB3
R denotes the mean value of the AoA φSB3

R and kSB3
R

controls the angle spread of the AoA φSB3
R .

4) In terms of the double-bounced component of the two-ring
model,

ρhDB
pq hDB

p′q′
(τ) = ηDB

×
I0

{√(
ADBT

)2 +
(
BDBT

)2
}
I0

{√(
ADBR

)2 +
(
BDBR

)2
}

I0
(
kDBT

)
I0

(
kDBR

)
(31)

where ADBT = kDBT cosμDBT −j2π (τfTmax
cos γT+P cosβT ),

BDBT =kDBT sinμDBT −j2π (τfTmax
sin γT+P sinβT ), ADBR =

kDBR cosμDBR −j2π (τfRmax
cos γR +Q cosβR), and BDBR =

kDBR sinμDBR − j2π (τfRmax
sinγR +Q sinβR).Finally, the

normalized ST CF between two time-variant complex impulse
responses hpq (t) and h

(†)
p′q′ (t) becomes a summation of the

ST CFs in (27)–(31).

B. The SD PSD

Applying the Fourier transformation in terms of time to the
ST CF in (26), the corresponding SD PSD can be obtained as

F
{
ρhpqhp′q′ (τ)

}
=

∞∫
−∞

ρhpqhp′q′ (τ) e−j2πfDτdτ (32)
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where fD is the Doppler frequency. The integral in (32)
must be evaluated numerically in the case of the two-ring
model with single-bounced rays for pico-cell scenarios and the
elliptical-ring model for all scenarios. While for other cases,

by using the equality
∞∫
0

I0

(
jα

√
x2 + y2

)
cos (βx) dx =

cos
(
y
√
α2 − β2

)
/
√
α2 − β2 [9] and the results in [6], we

can further get closed-form solutions.
1) In the case of the LoS component,

F
{
ρhLoS

pq hLoS
p′q′

(τ)
}

=
√
KpqKp′q′e

j2πGδ (fD +H) (33)

where δ (·) denotes the Dirac delta function.
2) In terms of the single-bounced component of two-ring model,

F

{
ρ
h

SBi
pq h

SBi
p′q′

(τ)
}

=
ηSBi

2e
jU

SBi
T (R)+j2πO

SBi
T (R)

D
SBi
T (R)

W
SBi
T (R)

I0

(
kSBi

T (R)

)

×
cos

[
E

SBi
T (R)

W
SBi
T (R)

√
WSBi

T (R) − 4π2
(
OSBi

T (R)

)2
]

√
WSBi

T (R) − 4π2
(
OSBi

T (R)

)2
(34)

where USB1
T =−2πQ cosβR, USB2

T =2πP cosβT , WSB1
T =

4π2
(
f2
Tmax

+f2
Rmax

Δ2
T sin γ2

R+2fTmax
fRmax

ΔT sin γT sin γR
)
,

WSB2
R =4π2

(
f2
Rmax

+f2
Tmax

Δ2
R sin γ2

T+2fRmax
fTmax

ΔR sin γR
× sin γT ), DSB1

T =j2πkSB1
T

[
fTmax

cos
(
γT − μSB1

T

)
+fRmax

ΔT

× sin γR sinμSB1
T

]
−4π2 [PfTmax

cos (βT − γT )−QΔT fTmax

× sinβR sin γT−PΔT fRmax
sinβT sin γR−QΔ2

T fRmax
sinβR

× sin γR], DSB2
R =j2πkSB2

R

[
fRmax

cos
(
γR − μSB2

R

)
+fTmax

ΔR

× sin γT sinμSB2
R

]
−4π2 [QfRmax

cos (βR − γR)−PΔRfRmax

× sinβT sin γR−QΔRfTmax
sinβR sin γT−PΔ2

RfTmax
sinβT

× sin γT ], ESB1
T =j2πkSB1

T

[
fTmax

sin
(
γT − μSB1

T

)
+fRmax

ΔT

× sin γR cosμSB1
T

]
−4π2 [PfTmax

sin (βT − γT )−QΔT fTmax

× sinβR cos γT−PΔT fRmax
cosβT sin γR], ESB2

R =j2πkSB2
R[

fRmax
sin

(
γR − μSB2

R

)
+fTmax

ΔR sin γT cosμSB2
R

]
− 4π2

[QfRmax
sin (βR − γR)−PΔRfRmax

sinβT cos γR−QΔRfTmax

× cosβR sin γT ], OSB1
T = f − fRmax

cos γR, OSB2
R =

f + fTmax
cos γT , |fD − fRmax

cos γR| ≤
√
WSB1
T /(2π),

and |fD + fTmax
cos γT | ≤

√
WSB2
R /(2π).

3) In terms of the double-bounced component of two-ring model,

F
{
ρhDB

pq hDB
p′q′

(τ)
}

=
ηDBe

jCDB

I0
(
kDBT

)
I0

(
kDBR

)

×2e
j2πf

DDB
T

W DB
T

cos

(
EDB

T

WDB
T

√
WDB
T − 4π2f2

)
√
WDB
T − 4π2f2

�2e
j2πf

DDB
R

W DB
R

cos

(
EDB

R

WDB
R

√
WDB
R − 4π2f2

)
√

(WDB
R − 4π2f2

(35)

where � denotes the convolution, DDB
T = −4π2PfTmax

cos (βT − γT ) + j2πkDBT fTmax
cos

(
γT − μDBT

)
, EDBT =

4π2PfTmax
sin (βT − γT ) + j2πkDBT fTmax

sin
(
γT − μDBT

)
,

DDB
R = −4π2QfRmax

cos (βR − γR) + j2πkDBR fRmax

cos
(
γR − μDBR

)
, EDBR =4π2QfRmax

sin (βR − γR)+j2πkDBR
fRmax

sin
(
γR − μDBR

)
, WDB

T =4π2f2
Tmax

, WDB
R =4π2f2

Rmax
,

and |f |≤
(√

WDB
T +

√
WDB
R

)
/(2π)=fTmax

+fRmax
.

IV. NUMERICAL RESULTS AND ANALYSES

In this section, we first present the numerical results of the
Doppler PSD for elliptical-ring model with single-bounced
rays and then show some numerical evaluations of the pro-
posed theoretical model. The following parameters are used
for our numerical analysis: fc = 5.9 GHz, fTmax

= fRmax
=

570 Hz, D = 350 m, a = 250 m, and RT = RR = 30 m.
From Fig. 2, it is clear that the shape of the Doppler

PSD for the elliptical-ring model with single-bounced rays is
similar to the U -shape PSD in F2M channels. Considering
observations in [6], we can further get another interesting
conclusion that no matter what the propagation environment
is, for M2M channels in isotropic scattering environments, the
single-bounced rays cause the resulting Doppler PSDs to look
like the U -shape, while the double-bounced rays will result in
a “rounded”-shape Doppler PSD. Figs. 3 and 4 show the SD
PSDs for a MIMO M2M Ricean fading channel with different
antenna element spacings in an outdoor pico-cell scenario,
where the Tx and Rx are moving in the same direction on
an expressway, with a low and a high vehicle traffic density,
respectively. Considering the real environment behind the
measurement result of Fig. 6 in [7], where large stationary
objects are available along this expressway, and following the
way to specify the Ricean factor and energy-related parameters
regarding different scenarios given in Section II, in Fig. 3 we
assume K = 2, ηDB = 0.01, ηSB1 = 0.299, ηSB2 = 0.091,
and ηSB3 = 0.6. Similarly, Fig. 4 assumes K = 0.5,
ηDB = 0.7, ηSB1 = 0.19, ηSB2 = 0.01, and ηSB3 = 0.1
for the real environment where the main received power is
reflected by cars around the Tx or Rx. The measurement
result of Fig. 9 in [7] was obtained from this type of scenario.
Finally, comparing our theoretical Doppler PSDs obtained for
δT = δR = 0 in Figs. 3 and 4 with measured Doppler PSDs
of Figs. 6 and 9 in [7], respectively, we can obtain the close
agreement confirming the usefulness of the proposed model.

V. CONCLUSIONS

In this paper, we have proposed a generic and adaptive
geometrical-based stochastic model for MIMO M2M Ricean
fading channels. Considering the impact of separation distance
and energy specified parameters, the proposed model is adapt-
able to a wide variety of M2M propagation environments.
From this model, the ST CF and the corresponding SD PS for
2D non-isotropic scattering environments are derived. Based
on the obtained Doppler PSD for the elliptical-ring model with
single-bounced rays and observations in [6], we conclude that
no matter what the propagation environment is, single-bounced
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rays cause the Doppler PSD look like the traditional U -
shape, while double-bounced rays result in a “rounded”-shape
Doppler PSD for M2M channels in non-isotropic scattering
environments. Finally, the resulting theoretical SD PSDs match
very well measured PSDs in [7].
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[5] A. G. Zajić and G. L. Stüber, “Space-time correlated mobile-to-mobile
channels: modelling and simulation,” IEEE Trans. Veh. Technol., vol. 57,
no. 2, pp. 715–726, Mar. 2008.

[6] X. Cheng, C.-X. Wang, D. I. Laurenson, H. H. Chen, and A. V. Vasilakos,
“Space-time-frequency characterization of non-isotropic MIMO mobile-
to-mobile multicarrier Ricean fading channels,” IEEE IWCMC’08, Chania
Crete Island, Greece, Aug. 2008, accepted for publication.

[7] G. Acosta, K. Tokuda, and M. A. Ingram, “Doubly selective vehicle
traffic-to-vehicle traffic channel measurements and modeling at 5.9 GHz,”
Proc. IEEE WPMC’06, San Diego, CA, USA, Sep. 2006, pp. 1–6.

[8] A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the
distribution of the angle of arrival and the associated correlation function
and power spectrum at the mobile station,” IEEE Trans. Veh. Technol.,
vol. 51, no. 3, pp. 425–434, May 2002.

[9] I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and
Products. 5th ed, A. Jeffrey, Ed. San Diego, CA: Academic, 1994.

R

T

)( 1n
TS )( 2n

RS

)( 3n
TRS

1pn

pT

pT

qT

qT

2pn
qn1 qn2

1n2n

3pn

qn3

)( 3n
T

)( 3n
R

21nn

D

TR RR

1n
T

2n
T

3n
T

1n
R

2n
R

3n
R R

T

R
T

a2

T

R

pq

TO pq

pd
qd

LoS
Rq

Fig. 1. The proposed model with the LoS, Single- and double-
bounced components for a MIMO M2M channel with MT = MR =
2 antenna elements.
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Fig. 2. Normalized space-Doppler PSD of the elliptical-ring model
with single-bounced rays (f = 5.9 GHz, fTmax = fRmax = 570 Hz,
γT = γR = 0, μT = 0, μR = π, kT = kR = δT = δR = 0, and
MT = MR = 2).
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Fig. 3. Normalized space-Doppler PSDs for the outdoor pico-cell
scenario having a low vehicle traffic density with different antenna
element spacings (f = 5.9 GHz, fTmax = fRmax = 570 Hz, K = 2,
γT = γR = 0, μT = 0, μR = π, kT = 3, kR = 2, and MT =
MR = 2).
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Fig. 4. Normalized space-Doppler PSDs for the outdoor pico-cell
scenario having a high vehicle traffic density with different antenna
element spacings (f = 5.9 GHz, fTmax = fRmax = 570 Hz, K =
0.5, γT = γR = 0, μT = 0, μR = π, kT = kR = 1, and MT =
MR = 2).
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