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Abstract 
In this paper, a modified weighted bit-flipping (WBF) 
algorithm is proposed for finite geometry Low-Density 
Parity-Check (FG-LDPC) codes. The calculation for the 
flipping function in the new method includes all the elements in 
sum product algorithm (SPA) instead of the minimum one in 
most existing methods. Simulation results show that the 
proposed method exhibits better performance than the best 
method available in the literature so far. The performances of 
different algorithms are also considered in random constructed 
LDPC codes. The reliability ratio based WBF (RR WBF) 
method performs the best in this kind of codes and the proposed 
method performs very closely to the RR WBF method. The 
decoding complexities for both FG-LDPC and random 
constructed LDPC are also analyzed. 

1 Introduction 
Low-Density Parity-Check (LDPC) codes are one class of 
codes which exhibit near Shannon limit performance. It was 
first introduced by Gallager in his thesis in 1960' [1] and 
rediscovered by D. J. C. Mackay [2] after the debut of Turbo 
codes. Both Turbo codes and LDPC codes utilize the soft-in 
soft-out (SISO) iterative decoding, which is an important 
reason for their Shannon limit approaching ability. But the high 
complexity of SISO methods restricts their implementations. 
For LDPC codes, soft decoding can be realized by iterative 
decoding based on the SPA or belief propagation (BP) 
algorithm. Gallager also proposed the so-called bit-flipping 
(BF) method based on hard decision with lower complexity [1] 
but at the expense of large performance degradation. To bridge 
the performance gap between BF and SPA decoding, different 
WBF methods were proposed [3]-[9], which have a good 
tradeoff between the performance and complexity. The WBF 
method is very effective for [mite geometry codes which 
usually have relatively large column or row weight. The WBF 
methods in [7] and [8] perform the best so far. 

The WBF method was first proposed in [3] together with the 
construction of finite geometry codes. In [3] the minimum 
magnitude of the received symbols in a check sum was used as 
the reliability of the check sum and further be used to calculate 
the reliability of bit. A modified version was proposed in [4] in 
which intrinsic message was added on check constraint 
messages. A different bit metric using both the minimum and 
maximum magnitudes of the symbols in the check sum was 
presented in [5]. In [6], an improved method was given through 
adjusting the weighting factors of different check sums. A 
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method called RR WBF was given in [7] and its 
implementation-efficient version was shown in [8]. The 
RR WBF method is effective for LDPC codes with smaller row 
or column weight. But for finite geometry codes the method in 
[9] performs better than all the WBF methods mentioned above. 
The improved modified WBF (lMWBF) method in [9] 
modifies the method in [4] and constructs the connection 
between the WBF method and the normalized uniformly most 
powerful (UMP) BP algorithm [lO], [11]. Also, it derives the 
adjusting factor theoretically instead of just by simulations. 

The contributions of the IMWBF method lie in two aspects. 
First, it excludes the intrinsic information of the symbol from 
check reliability which receives the reliability value. Second, it 
adopts the method in [11] for the normalized UMP BP 
algorithm to get the weighting factor in WBF decoding. The 
weighting factor is used to adjust the simplified result for 
approaching the real result in SPA decoding. But the result in 
SPA decoding includes all the symbols in a check sum except 
the symbol receiving the result, while the simplified result is 
only based on the symbol with the minimum magnitude. The 
aim of this paper is to propose a novel method, which utilizes a 
linear combination of all the elements in the operation of SPA 
decoding to approach the real result. The coefficients in the 
combination can be obtained in terms of the minimum mean 
square error between the linear combination result and real 
result. The novel method is extended from the IMWBF method. 
Simulation results show that the new method achieves better 
performance than both IMWBF and RRWBF methods in 
PG-LDPC codes. Also, the novel method is applied to random 
constructed LDPC codes which have relatively low row or 
column weight. Simulation results show that the RRWBF 
method performs best in this kind of codes. The proposed 
method has worse performance than the RRWBF method but 
better than the IMWBF method. The decoding complexity is 
considered through average decoding iteration numbers and 
some conclusions will be given. The idea in the proposed WBF 
method can also be adapted to BP based decoding method [12]. 

The paper is organized as follows. In Section 2, the RR WBF 
and IMWBF algorithms are reviewed. The novel scheme is 
introduced in detail in Section 3. Simulation results and 
decoding complexity analysis for PG-LDPC codes and random 
constructed codes are given in Section 4. Finally, Section 5 
concludes the paper. 

2 RRWBF and IMWBF methods 
For finite geometry LDPC codes, the IMWBF method 
performs the best. The RR WBF method is also a good WBF 



method. However, there are only a few researches comparing 
the performance of IMWBF and RR WBF methods. In this 
paper, we will use the two methods as benchmarking for our 
new scheme. Some other WBF methods can be found in [3]-[6]. 
In this section we only outline the principles of RR WBF and 
IMWBF methods. 

H= [Hmn] denotes the parity check matrix which has p Is in 

each row and r Is in each column. The matrix usually is 

square for finite geometry codes. The set of bits participating in 

check m is denoted by N(m} = {n : Hmn = I} while the set 

of checks that bit n partIcIpates in are denoted 

by M(n} = {m : Hmn = I}. Also, we denote M(n)\m and 

N(m)\n as the set M(n) with check m excluded and the set N(m) 
with bit n excluded, respectively. The codeword c= 

(c)' c2,"', C N} is BPSK modulated to a transmit a sequence 

(Xpx2,··,XN). The received sequence through an additive 

white Gaussian noise (A WGN) channel is denoted by 

y= (YPY2' "'YN) with Yn = xn + wn ' where wn 
represents a Gaussian random variable with zero mean and 

variance No I 2 . The hard decision result is deduced by 

y=(YPY2""Y N}' 
The RR WBF method gives a new quantity from a check sum 
for calculating the weight for a symbol [7]: 

=,Bhl Rmn Iy;axl' 
(1) 

Here, Y n represents the symbol which receives the quantity, 

Y,;ax denotes the symbol which has the maximum magnitude 

in the check, and ,B is a normalization factor for ensuring 

IRmn = 1. (2) neN(m) 
Then the error term [7] or weight in each iteration for each 
symbol is given by 

En= I(2sm-l}IRmn· (3) meM(n) 
In (3), sm is the syndrome bit for check m. The bit with the 

largest En will be flipped in each decoding iteration. In [8] a 

more implementation-efficient form for the RR WBF method 
was presented where 

Here, 

1 En = -I I I(2sm -l}Tm . (4) Yn meM(n) 

T,/1 = IIYnl (5) neN(m) 
represents the sum for all the magnitudes of symbols in check 
m. 
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In the IMWBF method [9] the reliability value from check m 
to its member bit n is termed as 

w�m = min ly,l,m E [l,Mln E N(m}. (6) , ,eN(m)ln 
The weight for each bit in k iteration is calculated by 

e�WBF,n = I(2s�, -l)w�,m -aIYnl· (7) meM(n) 
It also flips the largest weighting bit. The factor a in (7) is 

very important for performance. It is first obtained by 
simulation in [4]. In [9], (7) is rewritten as 

e1MWBF,n =� I(2s�I-1)L21-12Ynl()21· (8) a meM(n) 
L2 is the result of horizontal step in the UMP BP based 

algorithm [10] and 

IL21 = . min 12y, I ()21 = 2w� m I ()2 
. (9) 'eN(m )In ' 

Then the question is very similar as that in the simplified BP 

algorithm. The factor a is used to adjusting IL21 to approach 

L1 in BP or SPA. 

IL)I = 1 1n �: �I, T = IT 
l-exp 2Yi / (72 

IEN(II/)ln 1 + exp 2Yi / (72 
(10) 

Just like in [11], the IMWBF method gives the factor a under 

the constraint of the minimum mean square error between 
IL21 
a 

and IL11 ' i.e., 

(11) 

3 The novel WBF algorithm 

S = {SI'Sz, .. ·,Sp_l } = �(4/ No)Yn,ln' E N(m)\n} is 

defmed in which s, � Sj for i < j . We focus on the 

calculation of factor a in (7). It is obvious that the IMWBF 

method in [9] only uses S1 to approach L1 from (11). But L1 
is related to all the elements in S . Therefore, an improved 
algorithm is proposed by defining the following variable: 

(12) 

where k = p -1 .The k coefficients are calculated by 

minimizing the mean square error El�L31-ILIIY j. 

Let 
_dE�l�L--,---31--,--- ILl�IY J = O. 

da) (13) 

E[s)z p) + E[S)SJX2 + ... + E[s)sJak = E�s)L)I] (14) 

A group of equations can be easily derived calculating the 
differential coefficient for each coefficient: 



(15) 

E[SkS1] E[SkS2] E[s�] ak E�L1Skl 
All the elements, except the unknown coefficients, in the above 
equation group can be obtained through the samples in 
simulations. 

The procedure of the proposed algorithm is summarized as 
follows: 
Step 1: hard decision and computing the syndrome vector S . If 
the syndrome vector is a zero vector, fmish decoding. The hard 
decision sequence is taken as the decoding result. 

Step 2: For m = 1,2,· .. , M , compute the reliability for each 

member bit n: 

wn,1II = a1s1 + a2s2 + ... + aksk . (16) 

Step 3: For n = 1,2,·· ., N , compute the bit weights: 

e� = I(2s;, -1)wn,1II - IYn l · (17) 
IIIEM(n) 

Step 4: Flip the bit with the largest weight and update the 
syndrome vector. Go to step 2 or stop the decoding iteration if 
the maximum number has been reached. 

The coefficients are dependent on the signal-to-noise ratio 
(SNR). We can use different coefficients at different SNRs. In 
this paper, for simplicity reasons, we only adopt the 
coefficients obtained at the SNR of 3dB and apply to all SNR 
values in simulations. 

The above method is adapted to PG-LDPC codes. When 
applied into random constructed LDPC codes, the method 
should be changed just like in [9]. The coefficients equations 
group (15) is rewritten as 

17E[S12] E[S1S2] 
E[S2S1] 17E[s�] 

17E�L1S11] 
17E�L1S21 (18) 

E[SkS1] E[SkSJ 17E[s�] ak 17E�L1Skl 
Note that'7 = 

p 
is a modification to the bit-based reliability 

r 
value as in [9]. Now we can see (15) again. There is also a 
factor '7 in (15). But '7 equals to 1 since the row weight and 

column weight are usually identical for PD-LDPC codes. For 
random constructed codes, '7 is not identical to 1. For example, 

10 
'7 = - = 2 for the (816,408) code used in later simulations. 

5 

4 Simulation results 
The codes used in the simulation are (273,191) projective 

geometry code with p = r = 17 and (816,408) code with 

p = 10, r = 5 . Note that the (816,408) code is random 

constructed. In Figure 1, we demonstrate the error performance 
simulation results for SPA, RRWBF, IMWBF algorithms and 
the proposed scheme on the (273,191) PG-LDPC code in 
A WGN channel. Both bit error rate curves and block error rate 
curves are given. The IMWBF method performs better than the 
RR WBF method. The proposed scheme is the nearest to the 
performance of SPA in the view of both the bit error rate and 
block error rate. The proposed scheme is derived from the 
IMWBF method. So at low SNR area, the two performance 
curves almost overlap. But when the SNR is larger than 2dB, 
the performance of new scheme outperforms that of the 
IMWBF method. The advantage becomes more obvious with 
the increasing SNR. 

ID 
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� Bit Error Rate w 

Block Error Rate 
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o Novel Scheme 
10' 1J IMWBF 

* RRWBF 
10" !-'=�;:;::===:r;::=�=_=:'::__--o---____::'::__� a 0.5 1.5 2 2.5 3.5 

SNR(Eb/NO) 
Figure 1: Bit error rate (solid line) and block error rate (dashed 
line) performances for different WBF methods on the (273,191) 
PG-LDPC code 

Table 1 gives the average decoding iteration numbers for the 
three WBF methods on different SNRs for the (273,191) 
PG-LDPC code. The maximum iteration number is set at 100 in 
simulations. At a low SNR, the RRWBF method has the lowest 
iteration number. At a high SNR, the novel scheme performs 
the best and the IMWBF method also outperforms the RRWBF 
method. All the decoding numbers are lower than 9 at 4dB. At 
the initial decoding step, the proposed scheme needs 

M * p * (p -1) more multiplications and additions than the 

IMWBF method. The IMWBF method has N more 
multiplications in each decoding iteration. Considering the 
average decoding number difference, the total decoding 
complexity of the novel scheme is a little larger than the 
IMWBF th d H 't 'd b tt fi me o .  owever, I provi es e er per ormance. 

Iteration Number RRWBF IMWBF Novel Scheme 

IdB 59.3 98.41 94.34 
2dB 48.22 60.71 58.59 
3dB 18.6386 21.585 18.3 15 
4dB 8.5666 8.4579 8.33 

Table 1: The average decodmg IteratIOn numbers for dIfferent 
WBF methods on different SNRs for the (273,191) code. 

Figure 2 shows the performance of three WBF methods and 
SPA on (816,408) random constructed LDPC code. It is 
different from PD-LDPC code. RRWBF is nearest to SPA 
curve. The proposed method is close to RR WBF but a little 
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worse. IMWBF is worst among the three WBF methods and the 
gap to other two methods is large. At the same time, the gap 
between SPA and best WBF method is much larger than the 
corresponding one in PG-LDPC code. So WBF method is more 
adapted to PG-LDPC code with larger row or column weight. 
For smaller row or colwnn weight, the bit flipping has greater 
effect on the check sum. Through the average decoding 
iteration numbers below the conclusion will be more clear. 

10·3lr----------, 
Bit Error Rate 

10.4 --+ 
Block Error Rate 
SPA 

o Novel Scheme 
10' IJ IMWBF 

* RRWBF 
10·6l'=::::::r:===:r:=�=::::r=='--o------:-,=-----'---:-,::----.J o 0.5 1 .5 2.5 3.5 4.5 

Figure 2: Bit error rate (solid line) and block error rate (dashed 
line) performances for different WBF methods on the (816,408) 
LDPC code 

Iteration Number RRWBF IMWBF Novel Scheme 

IdB 100 100 100 
2dB 100 99.73 100 
3dB 92.21 98.4 94.1 
4dB 52.7842 72.505 50.38 
5dB 31.9226 36.0604 30.9523 

Table 2: The average decoding iteration numbers for different 
WBF methods on different SNRs for the (816,408) code. 

Table 2 gives the average decoding iteration numbers for the 
three WBF methods on different SNRs for the (816,408) 
random constructed codes. The maximwn iteration number is 
also limited to 100. We can see that the decoding numbers 
decrease much slower with the increasing SNR than PG-LDPC 
codes. At the high SNR area, such as 5dB, the bit error 

performance is approaching 10-5. But the decoding iteration 
number is still larger than 30. The proposed method is the 
lowest and the IMWBF method is the largest at 5dB. The 
RR WBF method is a little larger than proposed method. 

The flipping selection is not always precise in each decoding 
iteration. The wrong bit flipping must be flipped back through 
more decoding iteration if possible. Otherwise, there will be 
decoding failure for the word. For lower row or column weight, 
the wrong bit selection occurs with larger possibility. The effect 
of wrong bit flipping is twofold: one is more decoding iteration 
number, the other is worse error performance. The two effects 
are both testified by the simulation results. Although more Is in 
parity check matrix means more decoding operations. But from 
Table1 and Table 2, we can see that the decoding iteration 
number for random constructed LDPC code is too large 
compared with that for PG-LDPC code. So the WBF method is 
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not proper for random constructed LDPC codes in the view 
both of performance and complexity. 

5 Conclusions 
In general, WBF decoding methods are effective for PG-LDPC 
codes since they can provide a good tradeoff between the 
performance and decoding complexity. However, the existing 
WBF methods cannot be adapted to random constructed LDPC 
codes with low row or column weight. For such random 
constructed LDPC codes, the RR WBF method performs the 
best but the proposed scheme also has good performance. The 
performance of the IMWBF method is better than that of the 
RRWBF method on PG-LDPC codes, while the proposed new 
WBF method performs the best through the simulation results. 
The proposed scheme achieves the smallest average decoding 
iteration number at the high SNR area both on random 
constructed and PG LDPC codes. Compared to all the existing 
WBF methods, our scheme has a better tradeoff between the 
complexity and performance even the total complexity is a little 
larger than the IMWBF method. 
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