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ABSTRACT
To simulate mobile-to-mobile (M2M) Rayleigh fading chan-
nels under more realistic scenario of non-isotropic scatter-
ing, we propose one deterministic and one stochastic sum-
of-sinusoids (SoS) based simulation models. The proposed
models extensively consider the distributions of the angle of
arrival (AoA) and the angle of departure (AoD), and thus
show a good approximation to the desired statistical prop-
erties of the reference model.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
H.1 [Models and Principles]: Miscellaneous

General Terms
Algorithms, Design, Theory

Keywords
Channel simulation model, mobile-to-mobile communications,
Rayleigh fading, sum-of-sinusoids, non-isotropic scattering

1. INTRODUCTION
In recent years, M2M communications have received in-

creasing attention due to some new applications, such as
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wireless mobile ad hoc networks, relay-based cellular net-
works, and dedicated short range communications (DSRC)
for intelligent transportation systems (IEEE 802.11p). Such
M2M systems consider that both the transmitter (Tx) and
receiver (Rx) are in motion and equipped with low elevation
antennas. To successfully analyze and design such M2M
systems, it is necessary to have proper reference models for
the underlying propagation channels. Many M2M reference
channel models were proposed for both isotropic scattering
environments, e.g., those in [1] and [2], and more realistic
non-isotropic scattering environments, e.g., those in [3]–[5].

Besides the modeling of a M2M channel and the investiga-
tion of its statistical properties, the development of accurate
M2M channel simulation models also plays a major role in
the practical simulation and performance evaluation of M2M
systems. However, up to now, many M2M Rayleigh chan-
nel simulators [6]–[8] are limited to isotropic scattering en-
vironments, while simulation models for M2M channels un-
der a more realistic scenario of non-isotropic scattering are
scarce in the current literature. To the best of the authors’
knowledge, only one stochastic SoS based simulation model
[9] was proposed for the simulation of non-isotropic scat-
tering M2M Rayleigh fading channels. However, the model
did not completely utilize the distributions of the AoA and
AoD (i.e., only considered the symmetrical property of the
distributions) and was designed based on the acceptance
rejection algorithm (AJA). This leads to the AJA model
having a notable difficulty in reproducing the desired statis-
tical properties of the reference model and a comparatively
high numerical computation expenditure. Furthermore, it is
worth noting that accurate deterministic simulation models
for non-isotropic scattering M2M Rayleigh fading channels
are not available in the current literature.

To fill the above gap, in this paper based on the “double-
ring” concept, originated from [7] for isotropic scattering
M2M Rayleigh fading channels, we first propose a new M2M

1289



deterministic SoS based simulation model, where all the
three key parameters (e.g., gains, frequencies, and phases)
are fixed for all simulation trials. By allowing at least one
parameter (frequencies and/or gains) to be a random vari-
able, our deterministic model can be further modified to a
stochastic model. It is worth noting that the proposed sim-
ulation models extensively consider the probability density
functions (PDFs) of the AoA and AoD, and thus can ap-
proximate the desired statistical properties of the reference
model for any non-isotropic scattering M2M Rayleigh fading
channel. Moreover, compared to the AJA stochastic model
in [9], our stochastic model presents better approximation
to the desired properties of the reference model with an even
smaller number of harmonic functions.

The paper is structured as follows. Section 2 gives a brief
description of the reference model for non-isotropic scatter-
ing M2M Rayleigh fading channels. In Section 3, we pro-
pose two new SoS based simulation models (deterministic
and stochastic models). The validation of our models are
presented in Section 4. Finally, conclusions are drawn in
Section 5.

2. REFERENCE MODEL
Using Akki and Haber’s mathematical model [1] and con-

sidering the impact of the moving directions of the Tx and
Rx, we can express the complex faded envelope of our ref-
erence model, under a narrowband non-isotropic scattering
M2M Rayleigh fading assumption, as

h(t) = lim
N→∞

1√
N

NX
n=1

ejψn

×ej[2πfTmax t cos(φ
n
T −γT )+2πfRmax t cos(φ

n
R−γR)] (1)

where j =
√−1, N is the number of propagation paths,

fTmax and fRmax are the maximum Doppler frequency due
to the motion of the Tx and Rx, respectively. The Tx and
Rx move in directions determined by the angles of motion
γT and γR, respectively. The random AoA and AoD of the
nth path are denoted by φnR and φnT , respectively, and ψn
is the random phase uniformly distributed on [−π, π). It
is assumed that φnR, φnT , and ψn are mutually independent
random variables.

Since the number of effective scatterers in the reference
model h(t) tends to infinity, the discrete AoA φ

(n)
R and AoD

φ
(n)
T , can be replaced by continuous random variables φR

and φT , respectively. Note that since h(t) describes a non-
isotropic scattering M2M Rayleigh fading channel the AoA
φR and AoD φR exhibit nonuniform distributions. In the lit-
erature, many different nonuniform distributions have been
proposed to characterize the AoA φR and AoD φR, such as
the Gaussian, wrapped Gaussian, and cardioid PDFs [11].
In this paper, the von Mises PDF [12] is used, which can
approximate all the aforementioned PDFs. The von Mises

PDF is defined as f(φ)
Δ
= exp[k cos(φ−μ)]/[2πI0 (k)], where

φ∈ [−π, π), I0(·) is the zeroth-order modified Bessel func-
tion of the first kind, μ∈[−π, π) accounts for the mean value
of the angle φ, and k (k≥0) is a real-valued parameter that
controls the angle spread of the angle φ. For k=0 (isotropic
scattering), the von Mises PDF reduces to the uniform dis-
tribution, while for k>0 (non-isotropic scattering), the von
Mises PDF approximates different distributions based on the
values of k [12].

Applying the von Mises PDF for the reference model h(t)

in (1), we obtain f(φR)
Δ
=exp[kR cos(φR−μR)]/[2πI0 (kR)] for

the AoA φR and f(φT )
Δ
=exp[kT cos(φT−μT )]/[2πI0 (kT )] for

the AoD φT . Considering these two von Mises PDFs, we
can express the correlation function (CF) of the reference
model as [4]
ρhh (τ ) = E [h (t)h∗ (t− τ )]

=
1

I0(kT )I0(kR)
I0

h`
A2
T +B2

T

´1/2
i
I0

h`
A2
R +B2

R

´1/2
i

(2)

with AT=−kT cos(μT )−j2πτfTmax cos(γT ) (3a)

BT=−kT sin(μT )−j2πτfTmax sin(γT ) (3b)

AR=−kR cos(μR)−j2πτfRmax cos(γR) (3c)

BR=−kR sin(μR)−j2πτfRmax sin(γR) (3d)

where (·)∗ denotes the complex conjugate operation and E [·]
is the stochastic expectation operator.

3. NEW SIMULATION MODELS
In this section, based on the reference model introduced

in Section 2, we will propose the corresponding SoS based
deterministic and stochastic simulation models. The essen-
tial issue to design a M2M SoS based simulation model is to

find the sets of AoAs
n
φ̄

(n)
R

oN
n=1

and AoDs
n
φ̄

(n)
T

oN
n=1

that

make the simulation model reproduce the desired statistical
properties of the reference model as faithfully as possible
with reasonable complexity, i.e., with a finite number of N .

Here, φ̄
(n)
R and φ̄

(n)
T denote the AoA and AoD of a simulation

model, respectively. Under the condition of non-isotropic
scattering environments, the PDFs of the AoA φR and AoD
φT should be extensively considered for the proper design of

the sets of AoAs
n
φ̄

(n)
R

oN
n=1

and AoDs
n
φ̄

(n)
T

oN
n=1

that guar-

antee the uniqueness of the sine and cosine functions related

to the AoA φ̄
(n)
R and AoD φ̄

(n)
T in a complex faded envelope.

This means that the design of the sets of AoAs and AoDs
for the complex faded envelope h(t) in (1) should meet the

following two conditions: 1) cos(φ̄
(n)
R −γR) �=cos(φ̄

(m)
R −γR),

n�=m; and 2) cos(φ̄
(n)
T −γT )�=cos(φ̄

(m)
T −γT ), n�=m.

3.1 New Deterministic Simulation Model
Following the above mentioned two conditions with the

consideration of the PDFs of the AoA and AoD, and apply-
ing the “double-ring” concept in [7], we design a new deter-
ministic simulation model as follows

eh(t)= ehi(t)+ jehq(t) (4)

ehi(t)= 1√
NiMi

Ni,MiX
ni,mi=1

cos
h eψnimi+2πfTmax t cos(eφmi

T −γT )

+2πfRmax t cos(eφni
R − γR)

i
(5)

ehq(t)= 1p
NqMq

Nq,MqX
nq,mq=1

sin
h eψnqmq+2πfTmaxt cos(eφmq

T −γT )

+2πfRmax t cos(eφnq

R − γR)
i

(6)

where the AoA and AoD are

eφni/q

R = F−1

„
ni/q − p

Ni/q

«
, eφni/q

R ∈ [−π, π) (7a)
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eφmi/q

T = F−1

„
mi/q − p

Mi/q

«
, eφmi/q

T ∈ [−π, π) (7b)

with F−1(·) denoting the inverse function of the von Mises

cumulative distribution function (CDF). In (4)–(6), ehi(t)
and ehq(t) are inphase and quadrature components of com-

plex envelope eh(t), respectively, Ni/q is the number of effec-
tive scatterers located on the ring around the RX, Mi/q is
the number of effective scatterers located on the ring around

the Tx, the phases eψni/qmi/q
are random variables uniformly

distributed on the interval [−π, π). It is assumed that eφni/q

R ,eφmi/q

T , and eψni/qmi/q
are mutually independent. Note thateh(t) is ergodic random process and the sets of AoAs and

AoDs are constant for different simulations. Based on the
PDFs of the AoA and AoD (i.e., the mean AoA μR and mean
AoD μT ), and the angles of motion γR and γT , the values
of the parameters Ni/q , Mi/q, and p can be determined as
the following.

• Case I : The values of μT , μR, γT , and γR meet the
following condition: |μT−γT |=|μR−γR|=90◦. In such a
case, we haveNi �=Nq, Mi �=Mq, and p=1/2, which leads

to eφ(ni/q)

R =F−1
“
ni/q−1/2

Ni/q

”
with [−π, π) and eφ(mi/q)

T =

F−1
“
mi/q−1/2

Mi/q

”
with [−π, π).

• Case II : The values of μT , μR, γT , and γR meet the
following condition: |μT−γT |=|μR−γR|=0◦ or ±π. In
such a case, we have Ni=Nq=N , Mi=Mq=M , and

p=1/4, which results in eφ(n)
R =F−1

“
n−1/4
N

”
(ni=nq=n)

with [−π, π) and eφ(m)
T =F−1

“
m−1/4
M

”
(mi=mq=m)

with [−π, π).

• Case III : The values of μT , μR, γT , and γR do not
meet all the conditions in other cases. In this case, we
have Ni=Nq=N , Mi=Mq=M , and p=1/2, which leads

to eφ(n)
R =F−1

“
n−1/2
N

”
(ni =nq =n) with [−π, π) and

eφ(m)
T =F−1

“
m−1/2
M

”
(mi=mq=m) with [−π, π).

A few remarks are made below in order to fully describe
this model.

Remark 1 : As mentioned above, the following two con-
ditions should be met for the proper design of a M2M SoS

based simulation model: 1) eφni/q

R �=−eφ(n′

i/q)

R +2γR, ni/q �=n′

i/q

and 2) eφmi/q

T �=−eφm′

i/q

T +2γT , mi/q �=m′

i/q. However, except
for Case II, for other cases, it is difficult to find the sets of

AoAs eφni/q

R and AoDs eφmi/q

T to exactly meet the above two
conditions. Inspired by the isotropic simulation model in [7]
and based on numerous simulations, we found that p = 1/2
results in better performance of the simulation model than
that with other values of p. The validation of this model
will be given in Section IV.

Remark 2 : During our investigation, we found that for
Case I the cross-correlation between the inphase compo-

nent ehi(t) and quadrature component ehq(t) is equal to zero.
By setting Ni �=Nq and Mi �=Mq in this case, we can di-
rectly use the expression of our model itself to guarantee
the aforementioned cross-correlation is equal to zero rather
than through the design of the AoAs and AoDs. This makes

a more efficient use of the number of harmonic functions and
thus renders the model show better performance.

Remark 3 : The time-average CF of the proposed simula-

tion model eh(t) can be expressed as

eρeheh (τ ) = 2eρfhi
fhi

(τ ) − 2jeρfhi
fhq

(τ ) (8)

eρfhi
fhi

(τ ) =
1

2NiMi

Ni,MiX
ni,mi=1

cos
h
2πfTmaxτ cos(eφmi

T −γT )

+2πfRmaxτ cos(eφni
R − γR)

i
(9)

eρfhi
fhq

(τ ) =

8>>>>>><
>>>>>>:

0 , Ni �=Nq andMi �=Mq (Case I)

− 1

2NM

N,MX
n,m=1

sin
h
2πfTmaxτ cos(eφmT−γT )

+2πfRmaxτ cos(eφnR − γR)
i
, Ni=Nq=N

andMi=Mq=M (Case II and III) (10)

When N (Ni) and M (Mi) tend to infinite, it is straightfor-
ward that the time-average CF in (8) matches the ensem-
ble average CF in (2). This allows us to conclude that for
{N(Ni),M(Mi)} → ∞, our simulation model can represent
correlation properties of the reference model.

3.2 New stochastic Simulation Model
By allowing both phases and frequencies to be random

variables, our deterministic model can be further modified
to a stochastic simulation model as

bh(t)= bhi(t)+ jbhq(t) (11)

bhi(t)= 1√
NiMi

Ni,MiX
ni,mi=1

cos
h bψnimi+2πfTmax t cos(bφmi

T −γT )

+2πfRmax t cos(bφni
R − γR)

i
(12)

bhq(t)= 1p
NqMq

Nq,MqX
nq,mq=1

sin
h bψnqmq+2πfTmaxt cos(bφmq

T −γT )

+2πfRmax t cos(bφnq

R − γR)
i

(13)

where the AoA and AoD are

bφni/q

R =F−1

„
ni/q − 1/2 + θR

uNi/q

«
, bφni/q

R ∈
h
φlR, φ

r
R

”
(14a)

bφmi/q

T =F−1

„
mi/q − 1/2 + θT

vMi/q

«
, bφmi/q

T ∈
h
φlT , φ

r
T

”
. (14b)

In (11)–(13), bhi(t) and bhq(t) are inphase and quadrature com-

ponents of complex envelope bh(t), respectively, the phasesbψni/qmi/q
are random variables uniformly distributed on the

interval [−π, π), and parameter θR and θT are random vari-
ables uniformly distributed on the interval [−1/2, 1/2). Note

that parameters bφni/q

R , bφmi/q

T , bψni/qmi/q
, θR and θT are in-

dependent of each other and bhpq(t) are non-ergodic random
processes due to the introduction of the random variables

θR and θT in the AoA bφni/q

R and AoD bφmi/q

T , respectively.
Therefore, the sets of AoAs and AoDs vary for different sim-
ulations. The motivation behind this stochastic model orig-
inates in the model in [10] for isotropic scattering Rayleigh
fading channels. Similar to our deterministic model, the val-
ues of the parameters Ni/q , Mi/q ,u, v, φ

l
R, φrR, φlT , and φrT

will be determined as the following.
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• Case I : The values of μT , μR, γT , and γR meet the
following condition: |μT−γT |=|μR−γR|=90◦. In such
a case, we have Ni �=Nq , Mi �=Mq , u=v=1, φlR=0,

φlT =−π, and φrR =φrT = π, which results in bφni/q

R =

F−1
“
ni/q−1/2+θR

Ni/q

”
with [0, π) and bφmi/q

T =F−1
`
(mi/q−

1/2 + θT )/Mi/q

´
with [−π, π).

• Case II : The values of μT , μR, γT , and γR meet the
following condition: μT =γT =μR=γR=0◦. In such
a case, we have Ni=Nq=N , Mi=Mq=M , u=v=2,

φlR = φlT = 0, and φrR = φrT = π, which leads to bφnR =

F−1
“
n−1/2+θR

2N

”
(ni = nq = n) with [0, π) and bφmT =

F−1
“
m−1/2+θT

2M

”
(mi=mq=m) with [0, π).

• Case III : The values of μT , μR, γT , and γR do not
meet all the conditions in other cases. In this case, we
have Ni=Nq=N , Mi=Mq=M , u=v=1, φlR=φlT=−π,

and φrR=φrT=π, which leads to bφnR=F−1
“
n−1/2+θR

N

”
(ni=nq=n) with [−π, π) and bφmT =F−1

“
m−1/2+θT

M

”
(mi=mq=m) with [−π, π).

Three remarks are given in the following for the better
description of the proposed stochastic model.

Remark 4 : It is clear that different cases have different
ranges of the AoA and AoD, on which the sets of AoAsbφni/q

R and AoDs bφmi/q

T are designed. These ranges are cho-
sen to guarantee a sufficient and efficient design of the sets
of AoAs and AoDs for any non-isotropic M2M Rayleigh fad-
ing channels. The validation of this model will be given in
Section IV. In addition, due to the similar reason given in
Remark 2, our stochastic model is designed for Case I by
setting Ni �=Nq and Mi �=Mq as well.

Remark 5 : It can be shown that our stochastic model ex-
hibits correlation properties of the reference model irrespec-
tive of the values of Ni/q and Mi/q , i.e., for any Ni/q and
Mi/q . Appendix outlines the derivation of the CF bρbhbh (τ )

for the model bh(t).
Remark 6 : Note that the proposed stochastic model shows

better performance and lower complexity than the AJA model
[9]. Since in [9] the authors did not give the detailed explana-
tion on how to generate the AoAs and AoDs for their model
by using the AJA, it is impossible to reproduce this model.
Therefore, to validate the above statement, in Figure 1 we
compare the autocorrelation function of the real part of the
AJA model obtained from Figure 5 in [9] with the one of
our model. For a fair comparison, the same parameters as
those used in Figure 5 in [9] are used as fTmax =100 Hz,
fRmax=50 Hz, μT=π/4, μR=−π/4, kT=kR=3, γT=γR=0◦,
and the number of simulation trials Nstat=10. Note that
the number of harmonic functions used in the AJA model
is N=144, while in our model is Ni=Mi=10. From Fig-
ure 1, it is obvious that our model outperforms the AJA
model with even smaller number of harmonic functions, i.e.,
Ni ×Mi=100<N .

4. NUMERICALRESULTS ANDANALYSIS
In this section, we first validate the newly proposed de-

terministic model by using the squared error between cor-
relation properties of the simulation model and those of
the reference model. Then the validation of the proposed
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Figure 1: Comparison between the proposed
stochastic model and the AJA stochastic model [9].
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Figure 2: Variance in the CF of the proposed de-
terministic simulation model with k = 1 for differ-
ent non-isotropic scattering M2M Rayleigh fading
channels: (a) μT = μR = 110◦ and γT = γR = 20◦; (b)
μT=μR=γT=γR=0◦; (c) μT=30◦, μR=160◦, γT=10◦, and
γR=20◦.

stochastic simulation model is performed by utilizing the
variation in the time average properties of a single simu-
lation trial for the stochastic model from the desired en-
semble average properties. Furthermore, the performance
evaluation of the proposed models is carried out by com-
paring the correlation properties of the proposed simulation
models with those of the reference model. Unless other-
wise specified, all the results presented here are obtained
using fTmax = fTmax = 100 Hz, Ni = Mi = Nq = Mq = 20
(Nq = Mq = 21 for Case I ) for the deterministic model,
Ni = Mi = Nq = Mq = 10 (Nq = Mq = 11 for Case I ) for
the stochastic model, and the normalized sampling period
fTmaxTs = 0.005 (Ts is the sampling period).

To validate our deterministic model, in Figure 2 we com-
pare the variance in the CF eρeheh (τ ) from the desired ρhh (τ )

using the squared error
˛̨eρeheh (τ ) − ρhh (τ )

˛̨2
for different non-

isotropic M2M scenarios. Similarly, to validate our stochas-
tic model, Figure 3 compares the variance in the time aver-
aged CF of a single simulation trial ρ̆hh(τ ) from the desired
CF ρhh (τ ) as Var [ρ̆hh(τ )] = E

ˆ|ρ̆hh(τ ) − ρhh(τ )|2
˜

for dif-
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Figure 3: Variance in the CF of the proposed sta-
tistical simulation model with k = 5 for different
non-isotropic scattering M2M Rayleigh fading chan-
nels: (a) μT = μR = 110◦ and γT = γR = 20◦; (b)
μT =μR=γT =γR=0◦; (c) μT =20◦, μR=10◦, γT =10◦,
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ence model and the CF of the proposed simulation
models with γT = γR = 0◦ for various values of kT ,
kR, the mean AoD μT , and mean AoA μR.

ferent non-isotropic M2M scenarios. The results in Figure 3
are obtained by averaging over 104 simulation trials for each
value of time delay τ . Note that for the sake of the read-
ability of figures, the variance of our models for Case I is
only shown in Figs. 2 (a) and 3 (a) since this variance is ex-
tremely large for other cases. From Figs. 2 and 3, it is clear
that due to the impact of non-isotropic scattering, none set
of model parameters in our models consistently outperforms
others for all non-isotropic M2M scenarios. This, hence, val-
idates the utility of our models that include three different
sets of model parameters rather than only one.

To evaluate the performance of our simulation models,
in Figure 4 we give a comparison between the CF of the
reference model and the one of our simulation models for
various values of kT , kR, μT , and μR. The results obtained
for the stochastic model are averaged over Nstat = 10 trials.
It is obvious that the deterministic model provides a fairly
good approximation to the CF of the reference model, while

the stochastic model presents much better approximation
with an even smaller number of complex harmonic functions
Ni/q and Mi/q .

5. CONCLUSIONS
In this paper, based on the comprehensive analysis of the

PDFs of the AoA and AoD, new deterministic and stochas-
tic SoS based simulation models have been proposed for
non-isotropic M2M Rayleigh fading channels. The perfor-
mance of the proposed simulation models has been verified
in terms of the CF through the theoretical and simulation
results. Results have shown that compared to the proposed
deterministic model, the proposed stochastic model provides
better approximation to the reference model with an even
smaller number of harmonic functions. Moreover, our analy-
sis has revealed that the proposed stochastic model performs
better than the AJA stochastic model.

6. ACKNOWLEDGMENTS
X. Cheng, C.-X. Wang, and D. I. Laurenson acknowl-

edge the support from the Scottish Funding Council for the
Joint Research Institute in Signal and Image Processing be-
tween the University of Edinburgh and Heriot-Watt Univer-
sity which is a part of the Edinburgh Research Partnership
in Engineering and Mathematics (ERPem).

7. REFERENCES
[1] A. S. Akki and F. Haber, “A stochastic model for

mobile-to-mobile land communication channel,” IEEE

Trans. Veh. Technol., 35(1):2–10, Feb. 1986.

[2] A. S. Akki, “stochastic properties of mobile-to-mobile
land communication channels,” IEEE Trans. Veh.

Technol., 43(4):826–831, Nov. 1994.
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APPENDIX
DERIVATION OF THE CF bρbhbh (τ )
In this appendix, we derive the CF bρbhbh (τ ) for the stochastic
simulation model in (11)bρbhbh (τ )=E

hbh(t) bh∗(t− τ )
i

=
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where at the third equality of (15), the integration variables
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last equality of (15) can be solved by using the equalityR π
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[13]. After some ma-

nipulations, the closed-form expression of the CF bρbhbh (τ ) can
be obtained and is the same as ρhh (τ ) in (2).
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