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Abstract

The performance of multiple input multiple output (MIMO) systems is greatly influenced by the
spatial temporal correlation properties of the underlyingMIMO channels. This paper investigates
the spatial temporal correlation characteristics of the Spatial Channel Model (SCM) in the Third
Generation Partnership Project (3GPP) and the Kronecker Based Stochastic Model (KBSM) at
three levels, namely the cluster level, link level, and system level. The KBSM has both the spatial
separability and spatial temporal separability at all the three levels. The spatial temporal separability
is observed for the SCM only at the system level, but not at thecluster and link levels. The SCM
shows the spatial separability at the link and system levels, but not at the cluster level since its spatial
correlation is related to the joint distribution of the angle of arrival (AoA) and angle of departure
(AoD). The KBSM with the Gaussian shaped Power Azimuth Spectrum (PAS) is found to fit best
the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability,
the KBSM is restricted to model only the average spatial temporal behavior of MIMO channels.
The SCM provides more insights of the variations of different MIMO channel realizations but the
implementation complexity is relatively high.

Index Terms – MIMO channel models, 3GPP SCM, Kronecker model, spatial temporal
correlation properties.
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I. I NTRODUCTION

In the 3rd generation (3G) and beyond-3G (B3G) wireless communication systems, higher data
rate transmissions and better quality of services are demanded. This motivates the investigation
towards the full exploitation of time, frequency, and more recently, space domains. By
deploying spatially separated multiple antenna elements at both ends of the transmission
link, multiple input multiple output (MIMO) technologies can improve the link reliability
and provide a significant increase of the link capacity [1]. It was further shown in [2] that
the MIMO channel capacity grows linearly with antenna pairsas long as the environment
has sufficiently rich scatterers. To approach the promised theoretical MIMO channel capacity,
practical signal processing schemes for MIMO systems have been proposed, e.g., space-time
processing [3] [4] and space-frequency processing [5].

Both the link capacity and signal processing performance aregreatly affected by fading corre-
lation characteristics of the underlying MIMO channels [6]. An appropriate characterization
and modeling of MIMO propagation channels are thus indispensable for the development
of 3G and B3G systems. In the literature, MIMO channels are often modeled by applying
a stochastic approach [7] [8]. Stochastic MIMO channel models can roughly be classified
into three types [9], namely Geometrically Based StochasticModels (GBSMs), Correlation
Based Stochastic Models (CBSMs), and Parametric Stochastic Models (PSMs). A GBSM is
derived from a pre-defined stochastic distribution of scatterers by applying the fundamental
laws of reflection, diffraction, and scattering of electro-magnetic waves. The well-known
GBSMs are one-ring [10], two-ring [11], and elliptical [12] MIMO channel models. CBSMs
are another type, in which the spatial correlation properties of a MIMO channel are derived
from a Kronecker product structure. A Kronecker based stochastic model (KBSM) [7], which
is a simplified CBSM, has been adopted as the core of the link level MIMO model in the
3rd Generation Partnership Project (3GPP) [13]. The third type is PSMs, which characterize
the MIMO channels by using selected parameters such as angleof arrival (AoA) and angle
of departure (AoD). The received signal is modeled as a superposition of waves, and often
adopted into a tapped delay line structure for implementation. Within this category, the widely
employed models are the Spatial Channel Model (SCM) [14] for bandwidths up to 5MHz
and the wideband SCM [15] for bandwidths above 5MHz, specifiedin the 3GPP.

It is important to mention that the above three types of stochastic MIMO channel models
are interrelated. The relationship between a GBSM and a PSM was theoretically analyzed
in [16], while the connection between a GBSM and a CBSM was demonstrated in [6]. The
mapping between a PSM and a CBSM was addressed only in a few papers [17]–[19], where
the comparison of the spatial temporal correlation properties of both types of models was not
based on the same set of parameters. This leaves us a doubt whether the difference of the
spatial temporal correlation characteristics are caused by the models’ structural difference or
different parameter generation mechanisms.

The SCM [14] was proposed by the 3GPP for both link and system level simulations, while
the KBSM [7] was mainly used as the link level MIMO simulations[13]. Both models have
advantages and disadvantages. The SCM can directly generatechannel coefficients, while
does not specify the spatial temporal correlation properties explicitly. It is therefore difficult
to connect its simulation results with the theoretical analyses. Also, the implementation
complexity of the SCM is high since it has to generate many parameters such as antenna
array orientations, mobile directions, delay spread, angular spread (AS), AoDs, AoAs, and
phases. On the other hand, a KBSM requires less input parameters and provides elegant and
concise analytical expressions for MIMO channel spatial correlation matrices. This makes the
KBSM easier to be integrated into a theoretical framework. However, compared with the SCM,
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KBSMs are often questioned about the oversimplification of MIMO channel characteristics.
Although both the SCM and KBSM are well-known, some important issues still remain
unclear for academia and industry. These issues include: 1)What is the major physical
phenomenon that makes the fundamental difference of the twomodels? 2) Under what
conditions will the two models exhibit similar spatial temporal correlation characteristics?
3) When shall we use the SCM or KBSM as the best tradeoff between the model accuracy
and efficiency? The aim of this paper is to find solutions to theabove unclear questions. For
this purpose, we propose to distinguish the spatial temporal correlation properties of both
models at three levels, namely the cluster level, link level, and system level. Also, the same
parameter generator is used for both models so that the difference of the resulting channel
characteristics is caused only by the fundamental structural difference between the SCM and
KBSM.

The rest of the paper is organized as follows. Section II briefly reviews the 3GPP SCM. Its
spatial temporal correlation characteristics are also analyzed. A KBSM and its spatial temporal
correlation properties are presented in Section III. Section IV compares the spatial temporal
correlation properties of the two models. Finally, the conclusions are drawn in Section V.

II. T HE 3GPP SCMAND ITS SPATIAL TEMPORAL CORRELATION CHARACTERISTICS

In this paper, we will consider a downlink system where a basestation (BS) transmits to
a mobile station (MS). The developed results and conclusions, however, can be applied to
uplink systems as well.

A. Angle Parameters and the Concept of Three Levels

The 3GPP SCM [14] emulates the double-directional and clustering effects of small scale
fading mechanisms in a variety of environments, such as suburban macrocell, urban macrocell,
and urban microcell. It considersN clusters of scatterers. A cluster can be considered as a
resolvable path. Within a resolvable path (cluster), thereareM subpaths which are regarded
as the unresolvable rays. A simplified plot of the SCM is given in Fig. 1 [14], where only one
cluster of scatterers is shown as an example. Here,θv is the angle of the MS velocity vector
with respect to the MS broadside,θn,m,AoD is the absolute AoD for themth (m = 1, . . . ,M )
subpath of thenth (n = 1, . . . , N ) path at the BS with respect to the BS broadside, and
θn,m,AoA is the absolute AoA for themth subpath of thenth path at the MS with respect to
the MS broadside. The absolute AoDθn,m,AoD and absolute AoAθn,m,AoA are given by [14]

θn,m,AoD = θBS + δn,AoD + ∆n,m,AoD = θn,AoD + ∆n,m,AoD (1)

θn,m,AoA = θMS + δn,AoA + ∆n,m,AoA = θn,AoA + ∆n,m,AoA (2)

respectively, whereθBS is the line-of-sight (LOS) AoD direction between the BS and MS
with respect to the broadside of the BS array,θMS is the angle between the BS-MS LOS and
the MS broadside,δn,AoD andδn,AoA are the AoD and AoA for thenth path with respect to the
LOS AoD and the LOS AoA, respectively,∆n,m,AoD and∆n,m,AoA are the offsets for themth
subpath of thenth path with respect toδn,AoD andδn,AoA, respectively,θn,AoD = θBS +δn,AoD

andθn,AoA = θMS + δn,AoA are called the mean AoD and mean AoA, respectively.

From (1) and (2), it is clear that the absolute AoD/AoA is determined by three parameters,
each of which can be either a constant or a random variable. Different reasonable combinations
(constant or random variable) of those three parameters correspond to different channel
behaviors with different physical implications. Based on the hierarchy of the construction
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of θn,m,AoD/θn,m,AoA, we propose to distinguish the model properties at three levels, i.e., the
cluster level, link level, and system level.

At the cluster level, we assume that the cell layout, user locations, antenna orientations, and
cluster positions all remain unchanged, only the scattererpositions within acluster may vary
based on a given distribution. This implies that the mean AoDθn,AoD = θBS + δn,AoD and
mean AoAθn,AoA = θMS +δn,AoA are kept constant, while the subpath AoD offsets∆n,m,AoD

and subpath AoA offsets∆n,m,AoA are determined by the distribution of scatterers within a
cluster, i.e., the subpath power azimuth spectrum (PAS). Clearly, cluster level characteristics
are only related to subpath PASs within clusters. Note that for the SCM, specified constant
values are given for∆n,m,AoD and ∆n,m,AoA (see Table 5.2 in [14]) to emulate the subpath
statistics in various environments. For readers’ convenience, they are repeated in Table 1.

At the link level, the cell layout, user locations, and antenna orientations are still kept constant,
which indicates that we only considerone link consisting of a single BS and a single MS. It
follows thatθBS andθMS are fixed. The cluster positions may change following a distribution,
i.e., δn,AoD and δn,AoA are random variables. Note that link level properties are obtained by
taking the average of the corresponding cluster level characteristics over all the realizations
of δn,AoD andδn,AoA.

At the system level, θBS, θMS, δn,AoD, andδn,AoD are all considered as random variables. It
is important to mention that the actual values ofθBS andθMS depend on the relative MS-BS
positions, which are determined according to the cell layout and the broadside of the instant
antenna array orientations. Since bothθBS andθMS are random variables, we actually consider
multiple cells, BSs, and MSs as a completesystem. Similarly, the system level properties are
obtained by averaging all realizations ofθBS andθMS based on the link level statistics. For
clarity, we show in Table 2 the choices ofθBS, θMS, δn,AoD, δn,AoD, ∆n,m,AoD, and∆n,m,AoA

as either constants or random variables at three levels.

To understand better the relationship of the above defined three levels, let us now consider
an examle of a multi-user cellular system with multiple cells, BSs, and MSs. This system
consists of multiple single-user links, where each link relates to the connection of a single
BS and a single MS. Suppose that each link is corresponding to awideband channel model
adopting the tapped-delay-line structure. Then, each cluster is in fact associated with a single
tap with a given delay. Clearly, a lower level channel behavior reflects only a snapshot (or a
realization/drop/simulation run) of the higher level channel behavior.

B. Spatial Temporal Correlation Properties

For anS element linear BS array and aU element linear MS array, the channel coefficients
for one of theN paths are given by aU -by-S matrix of complex amplitudes. By denoting
the channel matrix for thenth path (n = 1, · · · , N ) as Hn(t), we can express the (u, s)th
(s = 1, · · · , S andu = 1, · · · , U ) component ofHn(t) as follows

hu,s,n(t) =

√

Pn

M

M
∑

m=1

exp[jkds sin(θn,m,AoD)] exp[jkdu sin(θn,m,AoA)]

× exp[jk ‖v‖ cos(θn,m,AoA − θv)t] exp(jΦn,m) . (3)

wherej =
√
−1, k is the wave number2π/λ with λ denoting the carrier wavelength in meters,

Pn is the power of thenth path,ds is the distance in meters from BS antenna elements to
the reference (s = 1) antenna,du is the distance in meters from MS antenna elementu to the
reference (u = 1) antenna,Φn,m is the phase of themth subpath of the nth path, and‖v‖ is the
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magnitude of the MS velocity vector. It is important to mention that (3) is a simplified version
of the expressionhu,s,n(t) in [14] by neglecting the shadowing factorσSF and assuming that
the antenna gains of each array elementGBS(θn,m,AoD) = GMS(θn,m,AoA) = 1.

The normalized complex spatial temporal correlation function between two arbitrary channel
coefficients connecting two different sets of antenna elements is defined as

ρs1u1

s2u2
(∆ds, ∆du, τ) = E

{

hu1,s1,n(t)h∗

u2,s2,n(t + τ)

σhu1,s1,n
σhu2,s2,n

}

(4)

where E{·} denotes the statistical average,σhu1,s1,n
=

√
Pn and σhu2,s2,n

=
√

Pn are the
standard deviations ofhu1,s1,n(t) andhu2,s2,n(t), respectively. The substitution of (3) into (4)
results in

ρs1u1

s2u2
(∆ds, ∆du, τ) =

1

M

M
∑

m=1

E{exp[jk∆ds sin(θn,m,AoD)] exp[jk∆du sin(θn,m,AoA)]

× exp[−jk ‖v‖ cos(θn,m,AoA − θv)τ ]} (5)

where∆ds = |ds1
−ds2

| and∆du = |du1
−du2

| denote the relative BS and MS antenna element
spacings, respectively. Note thatE{exp(Φn,m1

− Φn,m2
)} = 0 when m1 6= m2 was used in

the derivation of (5). From (5), the spatial cross-correlation function (CCF) and temporal
autocorrelation function (ACF) can also be obtained.

1) Spatial CCFs: By imposingτ = 0 in (5), we get the spatial CCFρs1u1

s2u2
(∆ds, ∆du) between

two arbitrary channel coefficients at the same time instant:

ρs1u1

s2u2
(∆ds, ∆du) =

1

M

M
∑

m=1

E{exp[jk∆ds sin(θn,m,AoD)] exp[jk∆du sin(θn,m,AoA)]}. (6)

Some special cases of (6) can be observed:

(i) ∆ds = 0: This results in the spatial CCF observed at the MS

ρMS
u1u2

(∆du) =
1

M

M
∑

m=1

E{exp[jk∆du sin(θn,m,AoA)]} . (7)

(ii) ∆du = 0: The resulting spatial CCF observed at the BS is

ρBS
s1s2

(∆ds) =
1

M

M
∑

m=1

E{exp[jk∆ds sin(θn,m,AoD)]} . (8)

It is important to mention that (6), (7), and (8) are valid expressions for the spatial CCFs
of the SCM at all the three levels. However, at the cluster level, E{·} can be omitted since
all the involved angle parameters are kept constant. Note that the spatial CCF in (6) cannot
simply be broken down into the multiplication of a receive term (7) and a transmit term (8).
This indicates that the spatial CCF of the 3GPP SCM is in general not separable.

(iii) M → ∞: From (6), we have

lim
M→∞

ρs1u1

s2u2
(∆ds, ∆du)=

∫

2π

0

∫

2π

0

{exp[jk∆ds sin(φn,AoD)] exp[jk∆du sin(φn,AoA)]

×pus(φn,AoD, φn,AoA)dφn,AoDdφn,AoA (9)

wherepus(φn,AoD, φn,AoA) represents the joint probability density function (PDF) ofthe AoD
and AoA.
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(iv) ∆ds = 0 andM → ∞: From (7), we have

lim
M→∞

ρMS
u1u2

(∆du) =

∫

2π

0

exp[jk∆du sin(φn,AoA)]pu(φn,AoA)dφn,AoA (10)

wherepu(φn,AoA) stands for the PDF of the AoA.
(v) ∆du = 0 andM → ∞: From (8), we have

lim
M→∞

ρBS
s1s2

(∆ds) =

∫

2π

0

exp[jk∆ds sin(φn,AoD)]ps(φn,AoD)dφn,AoD (11)

whereps(φn,AoD) denotes the PDF of the AoD.

2) The Temporal ACF: Let ∆ds = 0 and∆du = 0 in (5), we obtain the temporal ACF:

r(τ) = ρs1u1

s2u2
(0, 0, τ) =

1

M

M
∑

m=1

E{exp[−jk ‖v‖ cos(θn,m,AoA − θv)τ ]} . (12)

Again, the above expression is valid for the SCM at all the three levels. The comparison of (5),
(6), and (12) clearly tells us that the spatial temporal correlation functionρs1u1

s2u2
(∆ds, ∆du, τ)

is not simply the product of the spatial CCFρs1u1

s2u2
(∆ds, ∆du) and the temporal ACFr(τ).

Therefore, the spatial temporal correlation of the SCM is in general not separable as well.

III. T HE KBSM AND ITS SPATIAL TEMPORAL CORRELATION CHARACTERISTICS

The KBSM assumes that the transmission coefficients of a narrowband MIMO channel are
complex Gaussian distributed with identical average powers [7]. The channel can therefore
be fully characterized by its first and second order statistics. It is further assumed that all the
antenna elements in the two arrays have the same polarization and radiation pattern [7].

A. Spatial CCFs

Let us still consider a downlink transmission system with anS element linear BS array and
a U element linear MS array. The complex spatial CCF at the MS is given by [20]

ρ̂MS
u1u2

(∆du)=

∫

2π

0

exp[jk∆du sin(θ̂AoA)]pu(θ̂AoA)dθ̂AoA. (13)

In (13),pu(θ̂AoA) denotes the PAS related to the absolute AoAθ̂AoA. In the literature, different
functions have been proposed for the PAS, such as a cosine raised function [21], a Gaussian
function [22], a uniform function [23], and a Laplacian function [24]. Note that the PAS
here has been normalized in such a way that

∫

2π

0
pu(θ̂AoA)dθ̂AoA = 1 is fulfilled. Therefore,

pu(θ̂AoA) is actually identical with the PDF of the AoÂθAoA. Analogous to the AoAθn,m,AoA

for the SCM in (2),θ̂AoA can also be written aŝθAoA = θ̂MS+δ̂AoA+∆θ̂AoA = θ̂0,AoA+∆θ̂AoA,
where θ̂MS, δ̂AoA, ∆θ̂AoA, and θ̂0,AoA have similar meanings toθMS, δn,AoA, ∆n,m,AoA, and
θn,AoA, respectively.

The spatial CCF at the BS between antenna elementss1 ands2 can be expressed as [20]

ρ̂BS
s1s2

(∆ds)=

∫

2π

0

exp[jk∆ds sin(θ̂AoD)]ps(θ̂AoD)dθ̂AoD (14)

whereps(θ̂AoD) is the PAS related to the absolute AoD. Due to the normalization, ps(θ̂AoD)
is also regarded as the PDF of the AoD. Similar to the AoD for the SCM in (1), the equality
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θ̂AoD = θ̂BS + δ̂AoD + ∆θ̂AoD = θ̂0,AoD + ∆θ̂AoD is fulfilled, where θ̂BS, δ̂AoD, ∆θ̂AoD, and
θ̂0,AoD have similar definitions toθBS, δn,AoD, ∆n,m,AoD, andθn,AoD, respectively.

The KBSM further assumes that̂ρBS
s1s2

(∆ds) and ρ̂MS
u1u2

(∆du) are independent ofu and
s, respectively. This implies that the spatial CCF̂ρs1u1

s2u2
(∆ds, ∆du) between two arbitrary

transmission coefficients has the separability property and is simply the product of̂ρBS
s1s2

(∆ds)
and ρ̂MS

u1u2
(∆du), i.e.,

ρ̂s1u1

s2u2
(∆ds, ∆du)= ρ̂BS

s1s2
(∆ds)ρ̂

MS
u1u2

(∆du) . (15)

Thus, the spatial correlation matrix̂RMIMO of the MIMO channel can be written as the
Kronecker product of̂RBS and R̂MS [7], i.e., R̂MIMO = R̂BS ⊗ R̂MS, where⊗ represents
the Kronecker product,̂RBS andR̂MS are the spatial correlation matrices at the BS and MS,
respectively.

B. The Temporal ACF

The temporal ACF of the KBSM is determined by the inverse Fourier transform of the Doppler
power spectrum density (PSD). When the Doppler PSD is of the U-shape [25], the temporal
ACF is given by the well-known Bessel function, i.e.,r̂(τ) = J0(2π ‖v‖ τ/λ).

Besides the spatial separability, the above construction ofthe KBSM also demonstrates
the spatial temporal separability. This allows us to express the spatial temporal correlation
function ρ̂s1u1

s2u2
(∆ds, ∆du, τ) of the KBSM as the product of the individual spatial and temporal

correlations, i.e.,
ρ̂s1u1

s2u2
(∆ds, ∆du, τ) = ρ̂s1u1

s2u2
(∆ds, ∆du)r̂(τ). (16)

IV. COMPARISONSBETWEEN THESCM AND KBSM

A. Spatial CCFs

The comparison of (6) and (15) clearly shows the fundamentaldifference between the SCM
and KBSM. The SCM assumes a finite number of subpaths in each path, while the KBSM
simply assumes a very large or even infinite number of multipath components. The AoD and
AoA are assumed to be independently distributed in the KBSM, while correlated in the SCM.
This is also the reason why the spatial CCF is always separable for the KBSM but not always
for the SCM. On the other hand, the comparison of (10) and (13) as well as the comparison
of (11) and (14) tells us that both models tend to have the equivalent spatial CCFs under all
of the following three conditions: 1) The numberM of subpaths in each path for the SCM
tends to infinity. 2) Two links share the same antenna elementat one end, i.e.,∆ds = 0 or
∆du = 0. This corresponds to the spatial CCFs at either the MS or the BS. 3) The same set
of angle parameters is used for both models.

The subpath AoA and AoD offsets are fixed values (see Table 1) for the SCM, but are
described by PDFs for the KBSM. Our first task is to find out whichcandidates [22]–[24]
should be employed for the PDFs of the subpath AoD offset∆θ̂AoD and subpath AoA offset
∆θ̂AoA in the KBSM in order to fit well its spatial CCFs to those of the SCM with the
given set of parameters. For this purpose, we keep the mean AoD (θn,AoD, θ̂0,AoD) and mean
AoA (θn,AoA, θ̂0,AoA) constant and the same for both models. Without loss of generality,
θn,AoD = θ̂0,AoD = 600 and θn,AoA = θ̂0,AoA = 600 were chosen. In this case, we actually
consider the cluster level spatial CCFs for both models. As discussed earlier, the best fit
subpath PASs for the KBSM should give the smallest differencebetweenlim

M→∞
ρMS

u1u2
(∆du)

in (10) and ρ̂MS
u1u2

(∆ds) in (13), as well aslim
M→∞

ρBS
s1s2

(∆ds) in (11) and ρ̂BS
s1s2

(∆ds) in
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(14). To approximate the assumption ofM → ∞ in the SCM, we used the three sets of
subpath AoA/AoD offsets given in Table 2 and interpolated them 100 times, resulting the
so-called interpolated SCM. Fig. 2 plots the absolute valuesof the resulting spatial CCFs
at the BS (AS=20 for macrocell and AS=50 for microcell) and MS (AS=350) as functions
of the normalized antenna spacings∆ds/λ and∆du/λ, respectively, for both the SCM and
interpolated SCM. In this figure, we also include the corresponding absolute values of the
spatial CCFs for the KBSM with uniform, truncated Gaussian, andtruncated Laplacian
subpath PASs. Note that the method of Bessel series expansion[20] was applied here to
calculate (13) and (14) for the KBSM. From Fig. 2, the following observations can be
obtained: 1) The KBSM with the truncated Gaussian subpath PASs provides the best fitting
to both the SCM and interpolated SCM. This is interesting by considering the fact that the
3GPP actually suggested a Laplacian distribution for the AoD PAS and either a Laplacian
or a uniform distribution for the AoA PAS in its link level calibration [14]. However, this
observation conforms to the measurement result in [26], where a Gaussian PDF was found to
best match the measured azimuth PDF. 2) A larger AS results insmaller spatial correlations.
The same conclusion was also mentioned in [7]. 3) The spatialCCFs at the BS, i.e., AS=20

and 50, of the SCM can match well the corresponding ideal values, approximated here by
those of the interpolated SCM. However, the spatial CCF at the MS, i.e., AS=350, of the
SCM fluctuates unstably around that of the interpolated SCM. This is caused by the so-called
“implementation loss” due to the insufficient numberM of subpaths used in the SCM. It is
therefore suggested that in the 3GPP SCM, the employed numberof subpathsM = 20 is not
sufficient and should be increased in order to improve its simulation accuracy of the cluster
level spatial CCF at the MS.

In the following, using the same parameter generating procedure [14] [27], we will compare
the spatial CCFsρs1u1

s2u2
(∆ds, ∆du) in (6), ρMS

u1u2
(∆du) in (7), andρBS

s1s2
(∆ds) in (8) of the SCM

with ρ̂s1u1

s2u2
(∆ds, ∆du) in (15), ρ̂MS

u1u2
(∆du) in (13), andρ̂BS

s1s2
(∆ds) in (14) of the KBSM having

Gaussian subpath PASs at the three levels. The normalized BS antenna spacing∆ds/λ = 1
was chosen to calculate (6), (8), (14), and (15), while the normalized MS antenna spacing
∆du/λ = 1 was selected for computing (6), (7), (13), and (15). The subpath angle offsets
∆n,m,AoD and ∆n,m,AoA of the SCM were taken from Table 1 with AS=50 and AS=350,
respectively.

Fig. 3 compares the absolute values of the cluster level spatial CCFs of the SCM and KBSM.
Forty constant values were taken from [0,900) for both the mean AoD (θn,AoD, θ̂0,AoD) and
mean AoA (θn,AoA, θ̂0,AoA). From this figure, it is obvious thatρBS

s1s2
(∆ds) ≈ ρ̂BS

s1s2
(∆ds) holds

since all the values are located in the diagonal line. The relatively small difference between
ρMS

u1u2
(∆du) and ρ̂MS

u1u2
(∆du) comes mostly from the above mentioned “implementation loss”.

On the other hand,ρs1u1

s2u2
(∆ds, ∆du) differs significantly fromρ̂s1u1

s2u2
(∆ds, ∆du). This clearly

tells us that the fundamental difference exists between theSCM and KBSM at the cluster
level since the spatial separability is not fulfilled for theSCM.

Fig. 4 illustrates the absolute values of the link level spatial CCFs versus the normalized
MS antenna spacing∆du/λ for both the SCM and KBSM. Here,θBS = 500, θMS = 1950,
δn,AoD = δ̂AoD are considered as uniformly distributed random variables located in the interval
[-400, 400), while δn,AoA = δ̂AoA are Gaussian distributed random variables [14]. To calculate
the average in (6) and (7), 1000 random realizations of the cluster position parametersδn,AoD

and δn,AoA were used. Clearly, good agreements are found in terms of the link level spatial
CCFs between the SCM and KBSM. It follows that the SCM has the same property of the
spatial separability as the KBSM at the link level.

In Fig. 5, we demonstrate the absolute values of the system level spatial CCFs versus the
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normalized MS antenna spacing∆du/λ for both the SCM and KBSM. The cluster position
parametersδn,AoD = δ̂AoD and δn,AoA = δ̂AoA are still random variables following the
corresponding distributions in the link level, while bothθBS = θ̂BS and θMS = θ̂MS are
considered as random variables uniformly distributed over[0, 2π) [14]. Again, the system
level spatial CCFs of the SCM match very closely those of the KBSM.The conclusion we
can draw is that the spatial separability is also a property of the SCM at the system level.

To summarize, the KBSM has the property of the spatial separability at all the three levels,
while the SCM exhibits the spatial separability only at the link and system levels, not at the
cluster level.

B. Temporal ACFs

The temporal ACF̂r(τ) = J0(2π ‖v‖ τ/λ) of the KBSM remains static at all the three levels.
For the SCM, however, the expression (12) clearly shows thatr(τ) varies at different levels.
Fig. 6 compares the absolute values of the temporal ACFs of theKBSM and SCM at the three
levels. For the calculation of (12),θv = 600 and the rest angle parameters at different levels
were taken as specified in Section IV. A. As expected, the temporal ACFs of the SCM at the
cluster or link level show substantial variations across different runs. At the system level, both
models tend to have the identical ACFs. This indicates that the spatial temporal separability
is fulfilled for the SCM only at the system level, not at the cluster and link levels. In the case
of the KBSM, the spatial temporal separability is always its property at any levels. Hence, the
KBSM actually only models the average spatial temporal behavior of MIMO channels, while
the SCM provides us more detailed information about variations across different realizations
of MIMO channels. Clearly, a single KBSM is not sufficient for system level simulations.

V. CONCLUSIONS

In this paper, we have proposed to compare the spatial temporal correlation characteristics of
the 3GPP SCM and KBSM at three levels. Theoretical studies clearly show that the spatial
CCF of the SCM is related to the joint distribution of the AoA and AoD, while the KBSM
calculates the spatial CCF from independent AoA and AoD distributions. Under the conditions
that the number of subpaths tends to infinity in the SCM, two correlated links share one
antenna at either end, and the same set of angle parameters are used, the two models tend
to be equivalent. Compared with uniform and Laplacian functions, it turns out the Gaussian
shaped subpath PAS enables the KBSM to best fit the 3GPP SCM in terms of the spatial
CCFs. It has also been demonstrated that the spatial separability is observed for the SCM
only at the link and system levels, not at the cluster level. The spatial temporal separability
is a property of the SCM only at the system level, not at the cluster and link levels. The
KBSM, however, exhibits both the spatial separability and the spatial temporal separability
at all the three levels.

Although the KBSM has the advantages of simplicity and analytical tractability, it only
describes the average spatial temporal properties of MIMO channels. On the other hand, the
SCM is more complex but allows us to sufficiently simulate the variations of different MIMO
channel realizations. Therefore, the SCM gives more insights of MIMO channel mechanisms.
A tradeoff between model accuracy and complexity must be considered in terms of the use
of the SCM and KBSM.
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[27] J. Salo, G. Del Galdo, J. Salmi, P. Kÿosti, M. Milojevic, D. Laselva, and C. Schneider, “MATLAB implementationof

the 3GPP Spatial Channel Model (3GPP TR 25.996),” Jan. 2005, http://www.tkk.fi/Units/Radio/scm.

10



Table 1. 3GPP SCM subpath AoD and AoA offsets [14].

Subpath Offset for a 2 deg AS Offset for a 5 deg AS Offset for a 35 deg AS
number (m) at BS (Macrocell) at BS (Microcell) at MS

∆n,m,AoD (degrees) ∆n,m,AoD (degrees) ∆n,m,AoA (degrees)
1, 2 ±0.0894 ±0.2236 ±1.5649
3, 4 ±0.2826 ±0.7064 ±4.9447
5, 6 ±0.4984 ±1.2461 ±8.7224
7, 8 ±0.7431 ±1.8578 ±13.0045
9, 10 ±1.0257 ±2.5642 ±17.9492
11, 12 ±1.3594 ±3.3986 ±23.7899
13, 14 ±1.7688 ±4.4220 ±30.9538
15, 16 ±2.2961 ±5.7403 ±40.1824
17, 18 ±3.0389 ±7.5974 ±53.1816
19, 20 ±4.3101 ±10.7753 ±75.4274

Table 2. The angle parameters of the SCM at three levels.

∆n,m,AoD δn,AoD θBS

∆n,m,AoA δn,AoA θMS

Cluster level Constant Constant Constant
Link level Constant Random Constant
System level Constant Random Random
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