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Abstract—This paper proposes a multi-feature fusion based
propagation scene recognition model for high-speed railway (HSR)
channels and presents the channel relevance analysis of HSR
scenes. Extensive field measurement data in typical HSR scenes, in-
cluding rural, station, suburban and multi-link scenes, are collected
with the assist of railway long-term evolution (LTE) networks.
The datasets of space-time-frequency channel features, involving
Ricean K-factor, root mean square delay spread, Doppler spread,
and angle spread, are generated for the model training and testing
as well as the relevance analysis. The proposed model merges a
weighted score fusion scheme into the deep neural network (DNN)
in order to adaptively determine the optimal weights for each
feature stream. This weighted score fusion based DNN model is
implemented and evaluated in terms of accuracy, confusion matrix,
F-score, and receiver operating characteristic (ROC) curve, which
exhibits better performance than other machine learning mod-
els like random forest, support vector machine (SVM), k-nearest
neighbor (KNN), and weighted KNN. In addition, the channel
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relevance of HSR scenes is analyzed from perspectives of high-
dimensional distribution distance and joint correlation of multiple
features. Two metrics, Wasserstein distance and correlation matrix
collinearity, are used in the analysis. Statistical results are provided,
which reveals the relatively strong channel relevance between the
multi-link and suburban scenes.

Index Terms—Deep neural network, high-speed railway
channels, multi-feature fusion, propagation scene recognition,
relevance analysis.

I. INTRODUCTION

THE global spread of high-speed railway (HSR) has been
accelerating in recent years, due to increased awareness

of the global environment and construction of major transport
infrastructure for economic growth. A HSR system consists
of many intricate aspects, in which the communication system
is an indispensable part for satisfying railway operational and
passengers’ requirements. To provide higher data rates, long-
term evolution for railway (LTE-R) will be the next-generation
railway-dedicated mobile communication system [1]. Further-
more, the forthcoming fifth-generation (5G) system aims to
support a variety of high-mobility scenes, and thus will be
deployed on HSR to make sure the demand of passengers for
5G services is guaranteed.

The high-speed train usually runs through multiple scenes
along a HSR line [2]. The HSR scenes were specifically par-
titioned into 12 scenes in terms of radio propagation, such as
viaduct, cutting, tunnel, station, hilly terrain, rural, suburban,
urban, in-train, etc [3]. Authors in [4] also defined 6 scenes
for HSR, where the rural, urban, and suburban were combined
into an open space scene and others were the same as those in
[3]. Besides, a special scene appeared in HSR communication
networks, called multi-link scene, was mentioned in [5]. This
scene is caused by the use of the cell combination technology
and will be specifically introduced in the later section. Various
propagation scenes lead to different propagation characteristics,
which fundamentally affect the performance of communication
systems [6]–[13]. If a wireless system is able to intelligently rec-
ognize its operating propagation scene, the system performance
will be significantly improved by using some adaptive technolo-
gies, such as adaptive modulation and coding, and by achieving
intelligent decisions, e.g., intelligent resource allocation and
scheduling. Although it will be more effective and accurate to
determine the modulation and coding modes depending on CIR

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on December 23,2020 at 13:49:40 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9908-255X
https://orcid.org/0000-0001-8792-8570
https://orcid.org/0000-0002-9729-9592
https://orcid.org/0000-0002-4227-9893
https://orcid.org/0000-0002-7142-7621
mailto:taozhou@bjtu.edu.cn
mailto:17120131@bjtu.edu.cn
mailto:liuliu@bjtu.edu.cn
mailto:chtao@bjtu.edu.cn
mailto:chxwang@seu.edu.cn
mailto:sana.salous@durham.ac.uk
wangjun
高亮

wangjun
高亮

wangjun
高亮



8108 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 8, AUGUST 2020

features, using the propagation scene identification could be sim-
pler. This is because it is only required to choose the modulation
and coding mode once for a propagation scene. Otherwise, the
modulation and coding mode could be frequently changed if the
determination is based on the time-variant CIR features. Thus,
propagation scene recognition is of great importance for the
design of high-performance HSR communication systems.

Moreover, propagation scene recognition is vital to achieve
efficient mapping of measurement data and scenes in passive
channel sounding. As for traditional positive measurements
using channel sounders, the measured scene is usually known
and fixed. The drawback of this method is the lower efficiency
when it is applied to HSR measurements [14]. Recently, a
high-efficiency passive channel sounding approach by use of
railway networks has been widely employed. Extensive HSR
channel measurements have been conducted, with the assistance
of global system for mobile communications for railway (GSM-
R), wideband code-division multiple access (WCDMA), or LTE
[15]–[17]. Since channel data are collected in the networks along
the whole HSR line, the measured scenes are unknown and fre-
quently changed. A direct way to recognize the scenes is manual
recognition, either by site inspection or based on electronic map
and global positioning system (GPS) information. However, it
is not appropriate for the recognition of massive scenes and the
accuracy cannot be guaranteed. Thus, automatic and accurate
propagation scene recognition is quite necessary for passive
channel measurements on HSR.

Machine learning (ML) has been successfully applied in
speech, image and video recognitions [18]–[20]. However, the
ML was less used to implement the propagation scene recog-
nition although it has been widely employed for multipath
components (MPCs) clustering [21], [22] and channel character-
istics predicting [23]–[28]. A semi-supervised ML method was
introduced in [29] for classification of indoor and outdoor en-
vironments. Authors in [30] utilized k-nearest neighbor (KNN)
and weighted KNN (WKNN) methods to recognize different
indoor environments based on the radio frequency features such
as channel transfer function and frequency correlation function.
However, this method is not appropriate for scene recognition
in outdoor time-variant environments. To the best of our knowl-
edge, propagation scene recognition or classification for HSR
based on ML is still missing.

In addition, the relevance in time, frequency and space do-
mains, multiple links, and different scenes should be analyzed,
which is essential to reveal the underlying channel characteris-
tics. Most of studies focused on time-frequency correlations of
HSR channels [31], [32]. Due to the lack of multi-antenna chan-
nel measurements, there were few works referring to the spatial
correlation in realistic HSR scenes. Using a moving virtual
antenna array scheme, the spatial correlation was investigated
in viaduct and cutting scenes [33]. According to a geometry-
based stochastic model, space-time-frequency correlation func-
tions were theoretically derived and analyzed for non-stationary
multi-antenna HSR channels [34]. Based on measurement data
collected in dedicated LTE networks on HSR, the multi-link
correlations of large-scale parameters and small-scale fading
were studied in [5], [35]. The correlation between different links
is due to the common scatterers or environmental similarity,

which was merged into channel modeling [36]–[38]. In fact,
various propagation scenes could have the similarity in terms of
joint channel features (joint consideration of different channel
features) although its physical environments are diverse. How-
ever, there is still no study referring to the analysis of channel
relevance in HSR propagation scenes.

To fill the aforementioned research gaps, this paper aims to
investigate the propagation scene recognition model and achieve
the relevance analysis of propagation scenes for HSR channels.
The major contributions and novelties of this paper are as
follows.

1) Extensive channel measurement data are collected for
typical HSR scenes based on railway LTE networks, in-
cluding rural, station, suburban, and multi-link scenes. The
space-time-frequency dispersion features, such as Ricean
K-factor (KF), root mean square (RMS) delay spread
(DS), Doppler spread (DPS) and angle spread (AS), are
extracted and the corresponding datasets are generated.

2) A novel weighted score fusion based deep neural network
(DNN) model for HSR propagation scene recognition is
proposed. The proposed model is implemented by activa-
tion function of parametric rectified linear units (PReLU),
parameter initialization strategy of He-initializer and
gradient-based optimization algorithm of adaptive mo-
ment estimation (Adam), and is comprehensively eval-
uated by three metrics, such as accuracy, F-score, and
receiver operating characteristic (ROC) curve.

3) The relevance analysis of the four HSR propagation
scenes is newly performed from the perspectives of high-
dimensional distribution distance and joint correlation of
multiple features, using Wasserstein distance (WD) and
correlation matrix collinearity (CMC). The statistical WD
and CMC results for different scenes are obtained and
analyzed.

The remainder of this paper is outlined as follows. Section II
describes the LTE network assisted HSR channel measurements.
In Section III, the multi-feature fusion based DNN model for
HSR propagation scene recognition is proposed. Then, the
performance evaluation of the proposed model is presented in
Section IV. In addition, relevance analysis of HSR propagation
scenes is studied in Section V. Finally, conclusions are drawn in
Section VI.

II. LTE NETWORK ASSISTED HSR CHANNEL MEASUREMENTS

A. Scene Description

Our measurements were performed on Beijing to Tianjin (BT)
HSR in China, assisted by the LTE network deployed along the
railway [14], [17]. The BT HSR has about 120 km distance
in total, about 86% percent of which is built on viaduct, and
supports the operating speed of up to 350 km/h. The high-speed
train runs through the suburban areas (near the Beijing or
Tianjin), rural areas (between Beijing and Tianjin), and three
train stations (excluding departure and terminal stations) on
the whole railway line. Meanwhile, there exists the multi-link
propagation condition in the HSR network. Thus, four propa-
gation scenes are involved on BT HSR line, i.e., rural, station,
suburban, and multi-link, as shown in Fig. 1. Due to limited
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Fig. 1. The measured HSR propagation scenes: (a) Rural, (b) Station, (c) Suburban, and (d) Multi-link.

measurements, this paper only considers these four scenes. The
detailed description for the scenes is introduced as follows.

1) Rural: The railway built on the viaduct is about 10 m above
the ground and is higher than the surroundings including
light forests and low buildings in most of cases. However,
there still exist a few cases with higher and denser forests
around the viaduct. The base station (BS) is about 10–
30 m higher than the viaduct. The propagation in the HSR
rural scene is the line-of-sight (LoS) or obstructed LoS
(OLoS) dominance. Besides, non-LoS (NLoS) caused by
the sparse scatterers will be identified as the train runs
away from the BS after a certain distance.

2) Station: In the measurement the high-speed train runs
through the three stations without stopping. These stations
belong to a kind of open-type station with two awnings
which only cover the platform supporting a clear free
space over the railway [39]. However, the awnings can
still yield some MPCs to complicate the fading behavior.
The stations have similar geometrical size, with 400 m
length, 15 m width of the awning, and 10 m width of the
gap between the two awnings approximately.

3) Suburban: Suburban is a transition zone between the rural
and urban areas. Compared with the rural and open-type
station environments, the suburban environment has more
reflectors and scatterers such as high buildings, which
could produce richer MPCs. The density of the buildings in
the suburban area is similar to that in the urban region, but
the height of the buildings is lower. In fact, our measured
suburban areas are close to the urban regions, which can
be also regarded as a kind of urban scene.

4) Multi-link: It is a special propagation scene existing in the
HSR network, due to the use of the cell combination tech-
nology [14]. To reduce the handover, several physical cells
transmitting identical signals with the same frequency are
combined into a logical cell. In the overlapping regions
of the logical cell, multiple links from neighboring BSs
exist simultaneously, which causes the echo channel effect
(ECE) and yields additional MPCs. This region is regarded
as the multi-link scene. The impact of ECE on propagation
characteristics was analyzed in [40].

B. CIR Collection

The measurement was performed several times for return on
BT HSR line using the experimental high-speed train with the
maximum speed of 300 km/h. During the measurements, the
BSs with average 1.2 km spacing send out cell-specific refer-
ence signals at 1890 MHz or 2605 MHz, and channel impulse
responses (CIRs) are continuously collected by a customized
LTE sounder. The measurement equipment is shown in Fig. 2
[14], [17]. Two cross-polarized directional antennas at BS side
and two train-mounted omnidirectional antennas with the spac-
ing of 1.2 m at train side are employed, which forms 2 × 2
multi-antenna measurement. In this paper, we regard the 2 ×
2 multi-antenna measurement as four separate single-antenna
measurements. Thus, four groups of CIR data were obtained
for each measurement. The collected CIRs have 0.5 ms sample
interval and 55.6 ns delay interval, and can support a maximum
time delay of 11 us. The more detailed measurement parameters
can be found in [14], [17].

C. Feature Extraction

In the paper, we aim to recognize the propagation scene based
on the channel features derived from the CIRs. We extract chan-
nel feature parameters, including KF, RMS DS, RMS DPS, and
RMS AS. These parameters comprehensively characterize the
channel fading severity and dispersion in space-time-frequency
domain, which can be beneficial for the propagation scene
recognition. In the following, we briefly describe the extraction
of the four feature parameters.

1) KF: KF is a measure of the fading severity, defined as
the power ratio of the LoS component to the NLoS com-
ponents. A traditional moment-based method is used to
extract the KF. Note that the narrowband KF is considered
here. The calculation of narrowband KF can be found in
[41].

2) RMS DS: RMS DS is an important parameter used to
characterize time dispersion of wireless channels. The
RMS DS is estimated as the standard deviation of the
second central moment of power delay profiles (PDPs)
[5]. Here, a dynamic threshold is applied to the PDPs,
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Fig. 2. Measurement equipment: (a) High-speed train, (b) LTE BS along the railway, (c) LTE sounder, and (d) Train-mounted antennas.

which can be used to capture the MPCs more effectively
than the fixed threshold.

3) RMS DPS: RMS DPS is widely used to quantify the
frequency dispersion of radio channels. The RMS DPS can
be derived according to Doppler power spectral density
(DPSD), using the similar calculation method as the RMS
DS.

4) RMS AS: The severity of space dispersion is usually
quantified by RMS AS, which can be computed by power
angular spectrum (PAS) [5]. It is worth noting that the
multi-antenna CIRs used for angle of arrival (AOA) esti-
mation are obtained by the single-antenna CIRs, according
to a moving virtual antenna array (MVAA) scheme. The
detailed description of the MVAA scheme can be found
in our previous work [33].

D. Dataset Generation

After the feature extraction, we generate feature datasets
labelled by four scenes. One dataset contains the data for the
four features, which are collected in the coverage area of one
BS. In other words, one dataset belongs to one BS and the
corresponding scene is labelled. Table I lists the amount of
training and testing datasets for the four scenes. In this paper,
1528 effective datasets with four-dimensional channel features
is obtained in total, which are further divided into 1028 datasets
for training and 500 datasets for testing. It should be noticed
that although 123 datasets for station scenes are obtained, these
datasets do not correspond to 123 unique physical stations.

TABLE I
TRAINING AND TESTING DATASETS

III. MULTI-FEATURE FUSION BASED DNN MODEL FOR

HSR PROPAGATION SCENE RECOGNITION

A. General Framework of DNN

The traditional DNN, also known as a multilayer feedforward
neural network, comprises multiple layers of logistic regression
models with continuous nonlinearities. The deeper architecture
provides network with the possibility of extracting appropriate
representations for classification or regression purpose [42].
Every hidden layer in deep architecture is fully connected to
the adjacent layer with different weights and biases attached
to the connection. Massive data are sent to the network system
for training purpose to update the values of weights and biases,
which can be regarded as the way how neural network under-
stands input feature data.

Fig. 3 illustrates a general framework of N -layer DNN,
defined as i− 1th, ith and i+ 1th layers. The value of each
neuron in ith layer is obtained through calculating weighted
sum of previous layer’s neurons. The weighted sum is then fed
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Fig. 3. A general framework of N -layer DNN.

into a non-linear activation function after adding a bias to each
neuron in ith layer. The output of jth neuron in ith layer yij is
expressed as

yij = f

(
Mi−1∑
k=1

(
wi

j,ky
i−1
k

)
+ bij

)
(1)

where wi
j,k denotes the weight that connects kth neuron in

i− 1th layer and jth neuron in ith layer, bij indicates the bias
of jth neuron in ith layer, Mi−1 denotes to total number of
neurons in i− 1th layer, f(·) represents a non-linear activation
function, e.g., sigmoid, rectified linear unit (ReLU), or softmax.
The sigmoid or ReLU function is usually applied in hidden
layers, while softmax is used in output layer.

Furthermore, the weights and biases need to be updated via
gradient based algorithms. The back-propagation algorithm is
commonly used for computing gradients in the DNN network
[43]. We assume that the output will eventually be used to com-
pute a scalar loss L. Given an input-output pair, L = C(y, ŷ),
where L = C(·) denotes to categorical cross-entropy function.
Each individual component of the gradient, ∂L/∂wi

j,k, can be
computed by the chain rule. The back-propagation does not need
to compute unnecessary intermediate values and is able to effi-
ciently compute the gradient by avoiding duplicate calculations.

B. Multi-Feature Fusion Schemes

Intuitively, taking only one feature (KF, DS, DPS, or AS)
into consideration for the propagation scene recognition task
will have limited recognizing ability. Thus, we integrate multi-
feature fusion schemes into the DNN, in order to take advantage
of the four channel features and thus enhance the recognition
performance. Motivated by fusion approaches that has been
applied in RGB videos and human action recognition [44]–[46],
three fusion schemes involving early fusion, feedforward fusion
and score fusion are considered, as shown in Fig. 4. The principle
of these fusion schemes is described as follows:

1) Early fusion: The regular scheme is early fusion, which
makes use of all feature streams by designing a layer
concatenating them together. After the concatenate layer,
three fully connected or dense layers are employed, and
then are connected to a softmax layer.

2) Feedforward fusion: Different from fusing feature streams
at the input layer, the feedforward fusion aims to achieve

the fusion before the output layer. Each feature stream is
as an independent input connected to a DNN. Then, the
outputs of the four networks are concatenated together and
fed to an extra fully connected layer before the softmax
layer. This scheme considers the adaptive representation
for different feature streams. However, it will lead to an
over-fitting problem, which has been reported in [46].

3) Score fusion: Another fusion scheme is based on the
softmax scores of the multiple DNN streams, where each
stream outputs corresponding prediction scores of multi-
ple classes. The scores will be fused to generate the final
decision. A simple and widely used way of score fusion
is to assign identical weights for each feature stream,
called average score fusion. However, since different fea-
tures may have unequal contribution to the final decision,
they should have different weights. Thus, we consider a
weighted score fusion scheme, which will be introduced
next.

C. Weighted Score Fusion Based DNN Model

Combing the DNN and the score fusion scheme, we propose a
weighted score fusion based DNN model to recognize the HSR
propagation scenes, as shown in Fig. 5. We denote the confidence
scores from the kth stream as sk ∈ RC(k = 1, . . . ,K) with C
being the number of classes and K being the number of streams,
and let ŷ be the final confidence score vector. A straightforward
way of late fusion is to compute the final prediction as ŷ =
f t(s1, . . . , sK). Here, f t(·) is a transition function, which can
be a linear function, a logistic function, etc.

Different from the average score fusion method, we attempt
to adaptively integrate the confidence scores of each class from
multiple streams to determine the optimal weights for each
feature stream. To this end, we first stack the multiple confidence
score vectors of a training sample n as a coefficient vector, i.e.,

sn =
[
s1
n, . . . , s

k
n, . . . , s

K
n

] ∈ RC×K . (2)

Then, the stream-specific fusion weights α = [α1, . . . , αK ] ∈
RK can be learned with an additional softmax layer that is con-
nected to confidence scores. The objective of network training
is to minimize the cross entropy in two steps.

The first step is to get the confidence score of every stream
and the optimization target is written as

W = arg min
w1,...wK

− 1
N

N∑
n=1

(
C∑
i=1

ŷn,i log

(
1
K

K∑
k=1

skn,i

))

(3)
where 1

K

∑K
k=1 s

k
n,i denotes the ith class’s average confidence

score of a training sample n, ŷn,i indicates the ground-truth
label of the nth training sample, N represents to total number
of samples.

The next step is to get the confidence score vector of weighted
score fusion with an another softmax layer connected. The
weighted score before the softmax layer is written as

on =
K∑
k=1

αks
k
n = snα

T ∈ RC . (4)

Authorized licensed use limited to: Southeast University. Downloaded on December 23,2020 at 13:49:40 UTC from IEEE Xplore.  Restrictions apply. 



8112 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 8, AUGUST 2020

Fig. 4. Multi-feature fusion schemes: (a) Early fusion, (b) Feedforward fusion, and (c) Score fusion.

Fig. 5. A weighted score fusion based DNN model for propagation scene recognition.

Then, we optimize another objective function, expressed as

α = arg min
α1,...,αK

− 1
N

N∑
n=1

C∑
i=1

ŷn,i log(on,i). (5)

It should be mentioned that the weights and biases of the network
of each stream are frozen and they are not adjusted in this part of
training, which can be seen as a straightforward way to alleviate
the over-fitting problem.

D. Model Implementation

In the proposed model, we use PReLU as the activation
function, instead of sigmoid or ReLU. The sigmoid function has
the drawback of causing gradient vanishing, whereas ReLU is
not suitable here as well for disabling a large number of neurons.
The ReLU function tends to kill certain hidden neurons when
the network is training by gradient-based algorithm, where the
gradient becomes zero when the input is less than zero. The
neuron will never be turned on again once it has been turned off
(zero value). The PReLU avoids the occurrence of dead neurons

at a relative low price of growth of computation complexity [47].
A slight modification of the PReLU function is that it allows a
non-zero value related to a trainable parameter when the input
is less than zero.

A three-layer fully-connected network for each feature stream
is used and the number of neurons at each layer in different
fusion schemes is listed in Table II. We initialize the weights in
each layer using He-initializer by taking PReLU into account
[47]. This initialization method allows the models using PReLU
to converge effectively, whereas the traditional Xavier initializer
cannot. The weights that connect lth layer and l + 1th layer need

to fulfill w ∼ N
(

0,
√

2
Nl

)
, where Nl is the number of neurons

in lth layer, the biases in the network are initially set to zero.
The weights and biases are learnt by Adam which stores an

exponentially decaying average mt of past gradients and an
exponentially decaying average of past squared gradients vt,
written as [48]

mt = β1mt−1 + (1 − β1)gt (6)
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TABLE II
THE NUMBER OF NEURONS AT EACH LAYER IN DIFFERENT FUSION SCHEMES

and

vt = β2vt−1 + (1 − β2)g
2
t (7)

where t means the iteration index, mt and vt are the estimates
of the first moment and the second moment of the gradients,
respectively,β1 andβ2 are the exponential decay rates for the first
moment and the second moment of the gradients, respectively,
g2
t indicates the elementwise square of gradient gt.mt and vt are

initialized as vectors of zero. Then, the bias-corrected estimates
of m̂t and v̂t can be calculated as

m̂t =
mt

1 − βt
1

(8)

and

v̂t =
vt

1 − βt
2
. (9)

Finally, using these moment estimations updates the parame-
ters θt to yield the Adam update rule, expressed as

θt+1 = θt − η√
v̂t + ε

m̂t (10)

where the learning rate η is initially set to 10−3, β1 and β2 are
set to 0.9 and 0.999, respectively, and ε is set to 10−8 in order to
prevent zero denominator. Besides, a mini-batch of 64 samples
is fed to the network for training purpose.

Stratified k-fold cross-validation procedure is enabled in the
training process, which is an advanced validation strategy for
model selection and optimal hyperparameter decision. The set-
ting of k = 5 is employed and 20% of training datasets are
split as validation datasets. Each validation datasets contains
approximately the same percentage of samples of each target
class. We find that the model has a similar performance when
the number of hidden layers is more than three. Since more
hidden layers will introduce extra computational complexity,
three hidden layers are used in the proposed model in order to
achieve the tradeoff between the performance and complexity.

The computational time of the proposed model is approx-
imately 160 μs, which corresponds to 0.013 m in case of
300 km/h. This means that the train only moves 0.013 m when
we perform scene recognition per time. Therefore, the proposed
model can be suitable for some real-time applications in HSR
communications.

IV. PERFORMANCE EVALUATION OF THE PROPOSED MODEL

To comprehensively evaluate the performance of the proposed
model for HSR propagation scene recognition, we focus on four
metrics including accuracy, confusion matrix, F-score, and ROC
curve.

TABLE III
ACCURACY OF THE DNN MODEL CONSIDERING SINGLE FEATURE

A. Accuracy

Accuracy is the most commonly used measure to evaluate the
recognition performance. We firstly compare the accuracy of
the DNN model without using multi-feature fusion, which only
considers a certain feature, as shown in Table III. It is found that
a certain feature achieves a good performance for some scenes
while it performs worse for other scenes. For instance, the KF
has 90% accuracy for recognizing the station scene, whereas it
is only 62% and 67% for the suburban and rural. This means
that the KF is more suitable to distinguish the station scene.
Similarly, we observe that RMS AS has the better performance
on the multi-link scene recognition. These observations confirm
that different features do not contribute equally to the final
predictions and their weights used in multi-feature fusion should
not be identical. Besides, it can be also seen that the RMS DS
achieves the better recognition performance than other features,
reaching 79% overall accuracy. However, it is still lower than
the multi-feature fusion based methods, as shown in Table IV.

Table IV compares the recognition accuracy of ML models
such as random forest (RF), support vector machine (SVM),
KNN, WKNN, and DNN, using various multi-feature fusion
schemes, including early fusion, feedforward fusion, average
score fusion, and weighted score fusion. RF is a widely used
ensemble learning method for classification tasks that operates
by constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes of the
individual trees [49]. SVM was initially proposed in [50], which
is a kind of supervised learning model that analyzes data used for
classification and regression analysis. Input samples are mapped
to a high-dimension feature space, and then the SVM constructs
a hyperplane, which can be regarded as decision surface. It is
observed from Table IV that the DNN model has the better
accuracy than the other ML models when using the early fusion
scheme. It can be also found that the accuracy of the feedforward
fusion has better performance than the early fusion and average
score fusion. This is because the feedforward fusion makes use
of more discriminative features and suppressing somewhat less
discriminative features at concatenation layer due to its adaptive
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TABLE IV
PERFORMANCE OF THE ML MODELS USING MULTI-FEATURE FUSION SCHEMES

TABLE V
ACCURACY OF DIFFERENT FEATURE COMBINATIONS

weights that connected to the softmax layer. However it may suf-
fer the over-fitting problem by adding an extra fully-connected
layer. Especially, our proposed weighted score fusion based
DNN model shows the best performance. This is because this
model adds a training process for the weights after scores of each
feature stream and freezes the weights and biases in previous
layers, which thus avoids the over-fitting problem.

To explore the contributions of different features, we compare
the performance of different feature combinations, as listed in
Table V. It can be found that the combination of RMS DS
and RMS AS exhibits the highest accuracy when two-feature
combination is considered. This means that RMS DS and RMS
AS have the major contribution to scene recognition. It can be
also seen that the combination of RMS DS, RMS DPS and RMS
AS has almost similar accuracy to that of four features, which
means that KF has less contribution than the other three features.
These results are consistent with the previous findings as shown
in Table III that RMS DS and RMS AS outperform the other
two features and KF is the worst.

B. Confusion Matrix

Confusion matrix, also known as an error matrix, is a specific
table layout that allows visualization of the performance of
an algorithm, typically a supervised learning algorithm. Each
column of the matrix represents the instances in a predicted
class while each row represents the instances in an actual class
(or vice versa). The element in the confusion matrix is defined
as

Vi,j =
1

|Ci|
∑
n∈Ci

1argmaxC(on)==Cj
(11)

Fig. 6. Confusion matrix for the weighted score fusion based DNN model.

where 1(·) denotes the indicator function, Ci indicates the
collection of testing samples that belongs to class i, | · | is the
cardinality function, which represents the number of instances
of Ci, n ∈ Ci means the nth testing sample and also belongs
to the class i, and argmaxC(on) is to get the label of the nth
testing sample from the C dimensional confidence score vector
on obtained in (4). Here, each element Vi,j is the ith column and
jth row element in matrix which stands for the percentage of the
samples with the ground-truth label of class Ci being wrongly
classified into class Cj .

The confusion matrix of the proposed model is illustrated
in Fig. 6. It can be found that the proposed model performs
well on most of the scenes. However, the misclassification is
not avoidable. It is worth noting that 11% data of suburban are
misclassified to multi-link and 8% data of multi-link are mis-
classified to suburban, which means that there exists relatively
great confusion between the suburban and multi-link scenes.
The reasons for this confusion can be interpreted from two as-
pects: the recognition error of the model itself and the relevance
between the two scenes. If two scenes have the strong channel
relevance, it will deteriorate the performance of a classification
model. The relevance between scenes will be analyzed in detail
in the following section.

C. F-Score

The F-score can be interpreted as a weighted harmonic
mean of the precision P and recall R. The recall is the ratio
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tp/(tp+ fn), where tp is the numbers of true positives and
fn is the number of false negatives. The precision is the ratio
tp/(tp+ fp), where fp is the number of false positives. The
F-score is defined as

Fβ =
(β2 + 1)PR

β2P +R
(12)

whereβ is the trade-off betweenP andR. Whenβ = 1, it means
that the recall and the precision are equally important.Fβ reaches
its best value at 1 and its worst score at 0. Although F1 score
is typically used for binary classifiers, it can also be extended
to multi-class context, such as micro-F1 score, macro-F1 score
and weighted macro-F1 score. Here, the micro-F1 score is
considered. In order to obtain the micro-F1 score, tp, fn and fp
in (12) should be calculated globally by counting the total true
positives, false negatives and false positives of the four classes.

Table IV lists the results of F-1 score for different ML models
using various multi-feature fusion schemes. It can be seen that
the weighted score fusion based DNN model has the highest
F-1 score, reaching 0.91. This confirms the better performance
of the proposed model in terms of precision and recall.

D. ROC Curve

The ROC curve is a graphical plot that illustrates the per-
formance of a binary classifier system as its discrimination
threshold is varied. It is created by plotting the fraction of true
positives out of the positives (TPR = true positive rate) versus
the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. Area under ROC
curve (AUC) of a classifier Ci is the probability that Ci ranks a
randomly drawn positive example higher than a randomly drawn
negative example, expressed as

auc(Ci) = P
[
Ci(x

+) > Ci(x
−)
]
. (13)

The higher the AUC is, the more likely a positive sample
scores higher than a negative sample. AUC can be regarded
as a measure of the robustness of the classifier. Similar to the
F1-score, the ROC curve can also be used in multi-class classi-
fication based on two averaging strategies including one-vs-one
(OvO) and one-vs-rest (OvR) algorithms [51]. Here, the OvR
algorithm is used, where weighted average of the ROC for each
class against all other classes is computed and the weights are
decided by number of true samples of each class. The ROC
curves for different multi-feature fusion based DNN models are
depicted in Fig. 7 and corresponding AUC results of are shown
in Table IV. It is found that the proposed model has the largest
AUC with 0.99, which means that our model is more robust.

V. RELEVANCE ANALYSIS OF HSR PROPAGATION SCENES

The relevance of the four HSR propagation scenes will be
investigated from macro and micro perspectives. On one hand,
we analyze the high-dimensional distribution distance of multi-
ple features in different scenes, which is regarded as the macro
perspective. On the other hand, we analyze the joint correlation
of multiple features from the micro perspective. In the paper,
two metrics are used to perform the relevance analysis, including

Fig. 7. ROC curves for different multi-feature fusion based DNN models.

Wasserstein distance (WD) and correlation matrix collinearity
(CMC). These two metrics determine the channel relevance of
propagation scenes together.

A. Wasserstein Distance

The most commonly used measure of distribution distance
is Kullback-Leibler divergence (KLD). The KLD is a kind of
asymmetric metric and can be infinite. In order to avoid these
two defects, a new kind of divergence called Jensen-Shannon
divergence (JSD) is introduced. The JSD is based on the KLD,
with some notable modification, including that it is symmetric
and it always has a finite value. However, The JSD will become
a constant if the two distributions are so far apart that they don’t
overlap at all, which is not suitable for two non-overlapped distri-
butions [52]. To solve this problem, a new measure known as WD
is used. The WD is a distance function between two probability
distributions on a given metric space. If the probability density
function of each distribution is viewed as the piled up dirt, then
the WD can be considered as the minimum cost of turning one
pile into the other, defined as

W (P1, P2) = inf
γ∈∏ (P1,P2)

E(x,y)∼γ [‖x− y‖] (14)

where
∏

(P1, P2) denotes the set of all joint distributions γ(x, y)
whose marginal are respectively P1 and P2. And γ(x, y) indi-
cates how much mass of pile must be transported from x to y in
order to transform the distributionP1 into the distributionP2 and
W (P1, P2) is the infimum of the cost of the optimal transport
strategy. Although the infimum in (14) is highly intractable when
dealing with extraordinary high dimensional distributions, only
four-dimensional distributions are considered in our task.

The statistical results of WD for various HSR scenes are
provided in terms of bar chart with error bar, as illustrated in
Fig. 8. It is found that the mean value of WD between multi-link
and rural is much larger than others. This means that these
two scenes have less relevance from the view of distribution
distance. It can be also seen that the multi-link and suburban
scenes have the smallest mean value of WD, which implies that
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Fig. 8. Statistical results of WD for HSR scenes.

the multi-link and suburban have a certain degree of similarity.
This is reasonable that both the scenes have rich MPCs, which
causes the closer propagation dispersion.

B. Correlation Matrix Collinearity

To analyze the correlation between two propagation scenes,
only focusing on the correlation of a certain feature is not
appropriate. It is necessary to jointly consider the correlation
of multiple features. The CMC is a parameter quantified the
correlation of two matrices, which has been applied to evaluate
the spatial correlation between MIMO channel matrices of dif-
ferent links [53]. Similarly, it is also suitable for the correlation
analysis in different propagation scenes. The CMC coefficient
can be calculated as

c(A,B) =

∣∣tr(ABH)
∣∣

‖A‖F ‖B‖F
(15)

whereA andB are two matrices with the same dimension, ‖ · ‖F
denotes the Frobenius norm of the matrix, and (·)H represents
the matrix conjugate transpose operation. The CMC coefficient
reflects how similar the two matrices are. This coefficient ranges
from zero (absolutely non-collinear, i.e. two matrices are orthog-
onal to each other) to one (fully collinear, i.e. two matrices are
same).

We apply the feature matrices with four dimensions in dif-
ferent propagation scenes to the equation (15), the statistical
CMC coefficient results can be obtained, as shown in Fig. 9. It
is observed that the mean value of CMC coefficients between
multi-link and suburban scenes is much higher than others.
This infers that the multi-link and suburban scenes have a
stronger similarity, while the other scenes show comparative
low similarity. Since the multi-link and suburban scenes have
both closer distribution distance and higher correlation, we can
believe that there exists relatively stronger channel relevance
between these two propagation scenes. Moreover, the relatively
higher misclassification between multi-link and suburban scenes

Fig. 9. Statistical results of CMC for various HSR scenes.

found in the confusion matrix result also confirms this relevance
to some extent.

VI. CONCLUSION

In this paper, the propagation scene recognition using multi-
feature fusion schemes and relevance analysis of propagation
scenes have been investigated for HSR channels. Assisted by
the railway LTE networks, CIR data have been collected in
four typical HSR scenes, including rural, station, suburban,
and multi-link. The corresponding datasets with four channel
features involving KF, RMS DS, RMS DPS, and RMS AS have
been generated. The DNN model using the weighted score fusion
scheme has been proposed, implemented, and evaluated. It has
been found that the proposed model reaches the accuracy of
90.8%, the F-1 score of 0.91, and the AUC value of 0.99, which
outperforms the other mentioned recognition models. Further-
more, the relevance of HSR scenes has been analyzed based on
high-dimensional distribution distance and joint correlation of
multiple features. The statistical WD and CMC results have been
derived, demonstrating that the multi-link and suburban scenes
have the relatively stronger channel relevance than that of rural
and station scenes.
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