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Prediction of Wireless MmWave Massive MIMO Channel
Characteristics Based on Graph Attention Networks

SUMMARY  This paper proposes a procedure of predicting millimeter
wave (mmWave) massive multiple-input multiple-output (MIMO) indoor
channel characteristics based on graph attention networks (GAT). We use
the K-nearest neighbor (KNN) algorithm to construct the real channel mea-
surement data into a graph dataset. Different from existing machine learn-
ing (ML) based channel characteristics prediction algorithms using all data
points at the same time, we only use some data with high correlation to train
our model in order to reduce complexity and the number of iterations. Sce-
nario parameters including transmitter (Tx) and receiver (Rx) coordinates,
Tx—Rx distance, and carrier frequency are used to characterize the correla-
tion between data points, while the output parameters are channel statistical
properties, including the received power, root mean square (RMS) delay
spread (DS), and RMS angle spreads (ASs). The predicted channel charac-
teristics can fit those of real channels well, which indicates the effectiveness
of the proposed method.
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1. Introduction

To satisfy the requirements of high transmission rate and
spectral efficiency of the sixth generation (6G) communica-
tion systems [1], mmWave and massive MIMO have been
considered as key technologies and also brought new chal-
lenges on channel modeling [2]. A wireless channel model
with high accuracy is always the basis for design and theo-
retical analysis of wireless communication systems. How-
ever, with the bandwidth, the number of antennas, and the
diversity of scenarios explosively increase, the future wire-
less network will have unprecedented complexity, which will
generate big data and make traditional wireless channel mea-
surements and modeling methods more difficult or even no
longer applicable [3], [4]. Due to its excellent ability to auto-
matically mine the internal information and mapping rules of
big data, ML is regarded as an indispensable tool to make up
for the inadequacy of traditional methods and is increasingly
applied to the field of wireless communications [5], [6].

ML applications in wireless communication channels can
be roughly divided into four categories: scenario classifi-
cation, multipath components (MPCs) clustering, channel
modeling, and prediction of channel characteristics. How
to distinguish between line-of-sight (LOS) and non-line-of-
sight (NLOS) scenarios is of great significance for channel
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modeling. In [7] and [8], the authors proposed a LOS/NLOS
identification method based on random forest and convolu-
tional neural network (CNN), respectively. However, they
cannot predict the channel statistical characteristics. MPCs
clustering algorithms play an important role in traditional
geometry-based stochastic models (GBSMs), such as the
general three-dimensional (3D) massive MIMO GBSM [9]
and COST 2100 channel model [10]. MPC distance was first
proposed in [11]] and K-power-means algorithm was used
for clustering in [12]. A power-angle-spectrum based clus-
tering and tracking algorithm that could track the dynamic
changes of clusters in real time was proposed in [13]. All
clustering algorithms mentioned above can be considered as
auxiliaries to GBSMs. On the contrary, the author in [14]
proposed a method applying principal component analysis
(PCA) to reconstruct the amplitude and phase of massive
MIMO channel impulse response directly. This method uti-
lized hidden features and structures extracted from chan-
nel measurement data and combined scenario and antenna
configurations information to predict the channel capacity.
In [15], the authors proposed a generative adversarial net-
work (GAN)-based channel modeling framework to avoid
complex theoretical analysis and sophisticated data process-
ing, which succeeded in approximating the distribution of
additive white Gaussian noise channel. However, the two
channel modeling methods in [14] and [15] considered only
one channel statistical characteristic. Prediction of chan-
nel characteristics is taking advantage of ML to mine the
internal mapping relationship between channel scenario in-
formation and channel statistical characteristics. In [16],
feed-forward neural network (FNN) and radial basis func-
tion neural network (RBF-NN) were used to characterize the
relationship between channel characteristics and scenario
parameters, which showed that RBF-NN had better perfor-
mance. Authors in [17] and [18] used multi-layer CNN to
predict channel excess attenuation for satellite communica-
tion systems at Q-band with weather data and propagation
measurements as input and to predict channel parameters,
such as delay, power, and angles, with Tx and Rx coordi-
nates as input parameters.

All above-mentioned ML based channel characteristics pre-
diction algorithms use all data points at the same time to train
the model, without considering the correlation between data
points, which results in more complex structures and more
training time. In this paper, we proposed a GAT-based [19]
model to predict indoor channel characteristics which only
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Fig.1  Flowchart of the channel characteristics predicting procedure.

uses some data points with high correlation to train, rather
than all data points at the same time, thus simplifying the
model structure and reducing the number of iterations.

The rest of this paper is organized as follows. The procedure
based on GAT to predict channel statistical characteristics
is described in Section 2. In Section 3, we introduce the
real indoor channel measurement dataset and the principle
of the graph dataset. The architecture of the proposed GAT is
presented in Section 4. In Section 5, we discuss and analyze
the predictive performance of proposed procedure. At last,
conclusions are drawn in Section 6.

2. System Model

The flowchart of the procedure based on GAT to predict chan-
nel statistical characteristics is presented in Fig. 1. Firstly,
we get the real mmWave massive MIMO indoor channel data
through channel measurements [16]. After data processing,
we can get the channel statistics characteristics. Then, we
treat each group of data as a node, and build edges between
a node and its neighbor nodes to form a graph dataset. The
dataset formed is divided into train set and test set with a
ratio of 3:1. Both two sets have known nodes channel statis-
tics characteristics as input vector and unknown nodes as
output vector. The train set is used to train GAT, while the
mean square errors (MSEs) between the predicted unknown
nodes characteristics by trained GAT and unknown nodes
characteristics of the test set determine whether to continue
training the model.

3. Graph Dataset Generation

Channel measurements were carried out in an indoor office
environment with room size of 7.2x7.2x3 m?3 [20]. With Rx
fixed and Tx placed at four positions, the authors measured

2
Table 1  Parameters of dataset time for model training with different
number of neighbor nodes.
Dataset Number of Number of Time for
nodes edges training

GAT_N10 400 4000 70.6898s
GAT_N20 400 8000 136.5315s
GAT_N30 400 12000 229.6373s
GAT_N40 400 16000 316.9865s
GAT_N50 400 20000 378.6503s

four mmWave frequency bands including 11, 16, 28, and
38 GHz, and extracted MPC parameters from different sub-
arrays measurement data through space-alternating gener-
alized expectation-maximization (SAGE) algorithm. More
details on channel measurement and data processing could
be found in [20]. Finally, 400 nodes (i.e., 400 groups of data)
consisting of scenario parameters and channel characteristics
were obtained, which were divided into 300 for training and
100 for testing. The scenario parameters were Tx and Rx
coordinates, Tx—Rx distance, and carrier frequency, while
the channel characteristics were received power P, RMS DS
ops, and RMS azimuth angle of departure spread (ADS)
TADS, azimuth angle of arrival spread (AAS) o445, eleva-
tion angle of departure spread (EDS) ogps, and elevation
angle of arrival spread (EAS) oE s.

It is easy to understand that the channel characteristics are
similar in the context of similar scenario parameters, thus
scenario parameters are used to represent the correlation be-
tween nodes. Since scenario parameters have practical phys-
ical significance and have different variation ranges, we need
to normalize them to the range of 0-1. According to the nor-
malized scenario parameters, KNN algorithm is used to find
N nodes with the highest correlation, called neighbor nodes
for each node and edges are established between each node
and every one of its neighbor nodes. When a node is a neigh-
bor node for another, the reverse is not necessarily true, so
all edges are directed. According to the different values of N,
we create 5 graph datasets, including Data_N10, Data_N20,
Data_N30, Data_N40, and Data_N50, corresponding to N
values of 10, 20, 30, 40, and 50, respectively. Parameters
of datasets are presented in Table 1. Meanwhile, the times
for model training of different datasets are also listed in the
table. It can be seen that even when N is 50, the time of
300 iterations using the central processing unit (CPU) is less
than 400 seconds.

4. Architecture of the Proposed GAT for Channel Char-
acteristics Prediction

The architecture of GAT with multi-head attention at node
1 is shown in Fig. 2 [19], which can be found at each node.
Vector fzi or h j (@,j=1,2,...,6)is normalized channel char-
acteristics at node i or j. Vector &ij G, j=1,2, ..., 6) is
attention coefficient, indicating the importance of node j to
node i, which is obtained through a FNN based on channel
characteristics of node i and j. Thus, the prediction of node
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Fig.2  Architecture of GAT with 3 heads attention at node 1 (node 2-6
are neighbor nodes of node 1).

channel characteristics is obtained by weighted average of the
characteristics of its neighbor nodes. To make the prediction
more stable, multiple independent attention mechanisms are
used, called multi-head attention, denoted by different ar-
row styles and colors. Single layer GAT prediction can be
expressed as

K
Z;:%ZZ&UW@ )

k=1 jeN;

where K is the number of independent attention mechanisms,
N; denotes the set of neighbor nodes of node i, k denotes the
k-th attention mechanism, and Wy is a weight matrix to
transform characteristics into higher dimensions.

Our model consists of two layers GAT with 32 heads, GAT-
convl and GATconv2. GATconv1 takes 1x6 vector as input
and 1x32 vector as output, while GATconv2 takes output of
GATconvl as input and 1x6 vector as output. The activation
function between two layers is ELU (exponential linear unit),
given as

x, x>0,
ELU(x) = o1 x<0 (2)

In the training, Adam optimization algorithm are selected,
MSE is used as loss function and the number of iterations is
300, as mentioned in Section 3.

5. Results and Analysis

GAT_KI10 to GAT_KS50 are five models, corresponding
to the models trained from five datasets of Data_N10 to
Data_N50. The root mean square errors (RMSEs) of chan-
nel characteristics of the five models and the RBF-NN model
in [16] are listed in Table 2. As we can see, model GAT_K30
has better predictive performance on almost all characteris-
tics, which shows that model GAT_K30 is significantly better
than RBF-NN model. The same conclusion can be drawn
from Fig. 3, which compares GAT_K30 with the other four

Table 2 RMSE loss of channel characteristics of different models.
RMSE P DS AAS ADS EAS EDS
GAT_K10 323 | 1.49 | 24.47 | 20.62 7.73 9.10
GAT_K20 3.90 | 1.47 | 2270 | 19.92 7.14 8.78
GAT_K30 233 | 1.30 | 14.21 | 1241 6.79 8.90
GAT_K40 3.53 | 1.57 | 19.42 | 22.62 7.34 9.37
GAT_K50 3.06 | 1.64 | 18.90 | 20.78 8.18 9.93
RBF-NN[16] | 3.05 | 1.71 | 32.48 | 30.13 | 10.76 | 12.63

GAT models in RMS AAS predicted performance. As is
shown in Fig. 3, when N increases from 10 to 30, the predic-
tion performance of the model keeps improving, but it will
decline slightly when N continues to increase to 40 or 50.
If we increase N further to 100, the predicted characteristics
curves will tend to be horizontal, fluctuating around the av-
erage. In our analysis, this is because when the number of
neighbor nodes is less than 30, the effective information for
prediction maybe not sufficient, while when N more than 30,
some nodes with low correlation are also connected edges,
thus interfering the performance. Among other character-
istics prediction, predicted channel statistical characteristics
of GAT_K30 also shows a good fitting with the channel mea-
surement data. Thus, it turns out that 30 is an appropriate
number of neighbor nodes.

6. Conclusions

In this paper, we have proposed a procedure of predict-
ing mmWave massive MIMO indoor channel characteristics
based on GAT without using all data. The data used to train
the GAT have been obtained by measurement campaigns in
an indoor office environment. By building different datasets
to train the model, we have found that the appropriate number
of neighbor nodes used to predict the channel characteristics
of a node is about 30, using which there are good fittings
between the predicted channel statistical characteristics and
the real ones. To better predict channel characteristics, how
to better represent the correlations between nodes and dy-
namically determine the number of neighbor nodes will be
meaningful work to be solved in the future.
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