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AbstrAct
5G wireless communication networks are cur-

rently being deployed, and B5G networks are 
expected to be developed over the next decade. 
AI technologies and, in particular, ML have the 
potential to efficiently solve the unstructured 
and seemingly intractable problems by involv-
ing large amounts of data that need to be dealt 
with in B5G. This article studies how AI and ML 
can be leveraged for the design and operation 
of B5G networks. We first provide a compre-
hensive survey of recent advances and future 
challenges that result from bringing AI/ML tech-
nologies into B5G wireless networks. Our survey 
touches on different aspects of wireless network 
design and optimization, including channel mea-
surements, modeling, and estimation, physical 
layer research, and network management and 
optimization. Then ML algorithms and applica-
tions to B5G networks are reviewed, followed 
by an overview of standard developments of 
applying AI/ML algorithms to B5G networks. We 
conclude this study with future challenges on 
applying AI/ML to B5G networks.

IntroductIon
Global demand for wireless communication net-
works continues to increase, mainly due to the 
ever-growing numbers of wireless users and new 
emerging wireless services. The fifth generation 
(5G) and beyond 5G (B5G) wireless networks are 
expected to be developed in the future and offer 
higher data rates, improved coverage, better cost 
efficiency, resource utilization, security, adaptabil-
ity, and scalability [1]. Artificial intelligence (AI) 
technologies have the potential to efficiently solve 
unstructured and seemingly intractable problems 
involving large amounts of data that need to be 
dealt with in the design and optimization of 5G 
and B5G wireless networks.

AI is “the simulation of human intelligence pro-
cesses by machines, especially computer systems” 
[2]. It is usually defined as the science of making 
computers perform tasks that require intelligence 
like humans. Whereas AI is a broader concept 
of machines being able to carry out tasks smart-
ly, machine learning (ML) is a current (probably 

the most popular) application of AI that enables 
machines to learn from large amounts of data 
and act accordingly without being explicitly pro-
grammed. As a special type of ML, deep learning 
studies artificial neural networks (ANNs) that con-
tain more than one hidden layer to “simulate” the 
human brain. Currently, deep learning is one of the 
most widespread ML methods as it has successfully 
been applied to different fields such as computer 
vision, speech recognition, and bioinformatics.

AI technologies will not only reduce or even 
replace manual efforts for network development, 
configuration, and management, but also deliver 
better system performance, reliability, and adapt-
ability of communication networks by making real-
time robust decisions based on predictions of the 
networks’ and users’ behavior. ML, as a typical AI 
technology, is widely expected to rapidly become a 
key component of B5G communication networks. It 
will make full use of big data to overcome the chal-
lenges of designing and operating B5G networks. 
Potential benefits of introducing ML into communi-
cation systems include the following. First, channel 
and interference models are extremely complicat-
ed in reality due to the dynamic nature of wireless 
communication channels, especially in B5G scenar-
ios. ML techniques may automatically extract the 
unknown channel information by learning from the 
communication data and prior knowledge. Second, 
as the density of wireless access points continues to 
increase, there is an urgent need for global optimiza-
tion of communication resources and fine tuning of 
system settings. However, the enormous amount of 
resources, system parameters to be optimized, and 
their coupled correlations render these tasks noto-
riously difficult to solve using existing approaches. 
In contrast, sophisticated ML algorithms (e.g., deep 
learning and probabilistic learning methods) may 
be able to model the highly nonlinear correlations 
and estimate (sub-)optimal system parameters. Last, 
ML will realize learning-based adaptive configuration 
of networks by finding out behavioral patterns and 
responding quickly and flexibly to various scenarios, 
for example, anticipating traffic and planning ahead 
rather than simply reacting to unexpected events.

Current cellular networks designed and operat-
ed based on previous postulates may systematically 
fail to enable future communication services, since 
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INTELLIGENT RADIO: WHEN ARTIFICIAL INTELLIGENCE MEETS THE RADIO NETWORK they cannot keep pace with the data explosion 
and the underlying complexity of the generated 
data while guaranteeing the required capacity, reli-
ability, and adaptability. Thus, the network cannot 
quickly react to and anticipate events that might 
deteriorate communication services in real time. 
However, as most AI algorithms and applications 
are not specifically designed for wireless communi-
cation networks, it is hard to directly apply existing 
AI algorithms to B5G networks.

Compared to earlier survey papers such as [2], 
this article aims to explore the advantages of com-
bining AI technologies with B5G wireless networks, 
leveraging the potential of AI technologies to tack-
le challenges that cannot be efficiently addressed 
using conventional communication technologies. 
This article focuses on five aspects that bring AI 
technologies into B5G wireless networks, as shown 
in Fig. 1. Accordingly, the remainder of the article 
is organized as follows. In the following section, 
we discuss channel measurements, modeling, and 
estimation for B5G networks using AI technolo-
gies. We then study physical-layer research for B5G 
networks using AI technologies. Following that, we 
provide a survey of network management and opti-
mization for B5G networks using AI technologies. 
AI algorithms and applications to B5G networks 
are then given. We then provide an overview of 
standard developments of AI technologies and 
ML algorithms for B5G networks. Conclusions are 
drawn and future challenges are discussed in the 
final section.

chAnnel MeAsureMents, ModelIng, And 
estIMAtIon for b5g networks  

usIng AI technologIes
chAnnel MeAsureMent dAtA ProcessIng And  

chAnnel ModelIng
For B5G wireless communication systems, the 
diversity of frequency bands, including sub-6 
GHz, millimeter-wave (mmWave), terahertz 
(THz), and optical bands, has made channel mod-
eling more complex. To address the B5G channel 
modeling requirements, the existing channel mod-
els are extended with much higher computational 
complexity. When modeling for new scenarios, 
channel measurements must be conducted to 
understand new channel characteristics, which is 
a time-consuming task. Apart from a recent work 
[3], there are very few investigations that have 
studied the benefits of applying AI to channel 
modeling, and most existing works only employ 
very simple AI techniques on a very limited part of 
the channel modeling process. There is no work 
that comprehensively investigates the application 
of AI technologies to channel measurements.

Due to the high complexity of modeling the sig-
nal propagation in diverse scenarios, conventional 
methods make many assumptions and approxima-
tions to simplify the processing and modeling meth-
ods. Wireless channel features can be extracted 
from the huge amount of existing measurement 
data, and, at the same time, the channel modeling 
problem can be tackled in a data-driven manner, 
seamlessly integrating with model-based methods. 
A good balance of the accuracy-complexity trade-
off of both processing and modeling techniques 
will be maintained.

ML can be utilized to channel features predic-
tion, channel impulse response (CIR) modeling, 
multipath component (MPC) clustering, chan-
nel parameter estimation, and scenario classifi-
cation, based on channel measurement data and 
environment information. The authors of [4] pro-
posed a big-data-enabled channel model based 
on both a feed-forward neural network (FNN) 
and a radial basis function neural network (RBF-
NN). It can predict channel statistical properties 
including the received power, root mean square 
(RMS) delay spread (DS), and RMS angle spreads 
(ASs) with input parameters of transmitter (Tx) 
and receiver (Rx) coordinates, Tx–Rx distance, 
and carrier frequency. The performance of FNN 
and RBF-NN were fully compared based on both 
real channel measurement data and synthetic 
data. An example of the measured and predicted 
path loss and RMS DS is shown in Fig. 2. Both 
FNN and RBF-NN show good potential for chan-
nel modeling. In [5], the ANN was applied to 
remove the noise from measured CIR, and the 
principal component analysis (PCA) was utilized 
to exploit the features and structures of the chan-
nel and model the CIR. In [6], several clustering 
algorithms were investigated for MPC clustering 
and tracking, including K-means, fuzzy C-means 
(FCM), and density-based spatial clustering of 
applications with noise (DBSCAN). In [7], a con-
volutional neural network (CNN) was used to 
automatically identify different wireless channels 
and help decide which relevant wireless channel 
features should be used. The MPC parameters 
like amplitude, delay, and Doppler frequency 
were extracted and used as input parameters in 
the CNN, and the output of the CNN was the 
class of the wireless channels.

chAnnel estIMAtIon AssocIAted wIth Ml
In wireless communications, the channel state 
information (CSI) can be acquired through blind 
and pilot-based channel estimation techniques. 
However, blind channel estimation extracts sta-
tistical properties by using abundant received 
symbols. For the pilot-based technique, with the 
deployment of 5G key technologies, pilot over-
head, nonlinear channel, high-mobility channel, 

FIGURE 1. Research aspects that bring AI technologies into B5G wireless net-
works.
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and so on are challenges to be conquered in 
channel estimation. For example, the pilot over-
head can be intolerable for massive multiple-input 
multiple-output (MIMO) channels and ultra-dense 
networks (UDNs). Thus, the trade-off between 
pilot length and channel estimation accuracy 
should be considered. The nonlinear character-
istics of visible light communication (VLC) chan-
nel and mmWave channel make it hard to get 
accurate CSI. In addition, with the development 
of high-speed railways (HSRs), accurate channel 
estimation is important to guarantee the quality 
of service (QoS) and efficient information trans-
mission.

Researchers resort to ML techniques to solve 
the above mentioned problems. To address the 
channel estimation in a fast fading time-varying 
multipath channel, a 2D nonlinear complex sup-
port vector regression (SVR) based on an RBF 
kernel was proposed to achieve accurate chan-
nel estimation [8]. In [9], a deep-learning-based 
channel estimation algorithm was proposed for 
beamspace mmWave massive MIMO systems. 
It can learn channel structure and estimate 
channel from a large number of training data. In 
[10], an off-grid sparse Bayesian learning-based 
channel estimation algorithm was proposed for 
mmWave massive MIMO uplink. It can identify 
the angles and gains of the scatterer paths by 
exploiting spatial sparse structure in mmWave 
channels.

For this topic, one future direction is the gener-
alized ML-based channel estimation scheme, which 
can be directly used in different scenarios without 
further training. In order to build this generalized 
scheme, a vast amount of pre-collected commu-
nication data have to be used by machine/deep 
learning algorithms to learn the channel feature of 
different environments.

PhysIcAl-lAyer reseArch for b5g networks 
usIng AI technologIes

lArge-scAle sensIng vIA MAssIve rAdIo InterfAces
The use of large antenna arrays offers not only 
unprecedented performance in terms of reliable 
and high-rate communications (as exploited in 
massive MIMO), but also provides enormous 
amounts of baseband-level data that can be used 
to make inferences about the environment. More 
novel emerging use cases include inference prob-
lems, for example, detection of the presence of 
moving objects, estimation of the amount of traf-
fic on a road, counting of the number of persons 
in a room, and guarding against intrusion in pro-
tected spaces. Particular technical challenges that 
lie within reach are the sensing of open spaces, 
indoor venues, and even through walls. There are 
emerging commercial use cases and also many 
applications in security, surveillance, and moni-
toring.

ML algorithms are particularly suitable to ana-
lyze the vast amounts of data generated by large 
antenna arrays, especially massive MIMO arrays, 
as typically parametric models are unavailable or 
inaccurate; hence, classical estimation/detection 
algorithms are inapplicable. More specifically, in 
terms of algorithmic approaches, deep learning 
networks and methodology from image processing 
and video analytics may offer the most promising 
path. It is important to note the distinction from 
conventional radar imaging, where the objective 
is to create an image or map of the environment, 
whereas the goal of emerging large-scale sensing is 
to extract specific features of the dynamics of the 
environment and make inferences about specific 
phenomena [11].

Important future research directions should 
include both pertinent physical modeling work 
and the construction of an algorithmic foundation 
that exploits relevant ML tools. Trained deep neu-
ral networks represent an important technology 
component in this regard, but also various forms of 
dictionary learning might be used. Simulated chan-
nel models should be used for evaluation, along 
with experimentally obtained real data. Through 
the use of these techniques, research along this 
direction could significantly advance the state of 
the art in sensing of open spaces, indoor venues, 
and through the wall, and accomplish inference 
tasks that are impossible with conventional mod-
el-based signal processing. Another application that 
may benefit from the technology is gesture recog-
nition, especially when implementing sensing at 
higher frequencies.

sIgnAl ProcessIng
Massive MIMO technologies have been adopted 
in 5G communication systems. It is one of the 
obvious use cases where AI can be deployed. 
Although massive MIMO has many advantages, 
such as spectrum efficiency, energy efficiency, 
security, and robustness, it can produce a large 
volume of data. For example, in channel mea-
surements, a massive MIMO system with 3256 
antennas and 100 MHz bandwidth can produce 
data larger than 32 GB. Both detection and chan-
nel estimation for massive MIMO systems are usu-
ally time-consuming processes and require great 

FIGURE 2. a) Measured and predicted path loss;  
b) measured and predicted RMS DS.
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nologies have been 
adopted in 5G com-
munication systems. It 
is one of the obvious 
use cases where AI can 
be deployed. Although 
massive MIMO has 
many advantages, such 
as spectrum efficiency, 
energy efficiency, secu-
rity, and robustness, it 
can produce a large 
volume of data.
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computational power. The big data property of 
massive MIMO systems makes researchers think 
of ML methods. In [12], the large amount of data 
generated from a massive MIMO system is rep-
resented by large random matrices and analyzed 
using the single ring law. One of the challenges 
for massive MIMO systems is pilot contamination, 
which can have a significant impact on the per-
formance of massive MIMO systems. The pilot 
contamination stems from the pilot interference 
between adjacent cells and can limit the ability 
of systems to obtain accurate CSI. As the number 
of antennas increases, channels in beamspace 
are approximately sparse, that is, most of the 
MPC power results from a few paths gathered 
into clusters in the space, and the channel matrix 
contains a small number of nonzero elements 
[13]. Based on the sparsity property of channels 
in beamspace, the authors of [14] obtain the CSI 
of massive MIMO systems using the sparse Bayes-
ian learning method. Compared to conventional 
CSI estimators, the Bayesian learning method can 
achieve better performance in terms of pilot con-
tamination. The sparse recovery problem is an 
important research issue for Bayesian compres-
sive sensing. It aims to estimate a non-negative 
compressible vector from a set of noiseless mea-
surements.

dAtA-drIven locAlIzAtIon In wIreless networks
Accurate positioning is valuable for context 
awareness and location-based network manage-
ment and services. Most current wireless posi-
tioning techniques use channel information and 
fingerprinting to estimate locations. In reality, 
the channel information needs to be frequently 
updated to reflect the true channel characteristics 
since they are susceptible to a variety of dynam-
ic and time-varying transmission impediments 
(e.g., path loss, interference, and blockage). This 
periodic and long-term maintenance is time-con-
suming and labor-intensive, especially for large-
scale B5G systems. As the amount and diversity 
of sensing and communication data dramatically 
increase in the B5G systems, data-driven local-
ization is a promising solution, that is, positioning 
devices and users through learning from raw sens-
ing and communication data with ML algorithms. 
The data-driven localization algorithms will not 
only be self-adaptive to real-time dynamic trans-
mission impediments, but also evolve over time 
by consistently learning from data. The wireless 
channel locations can be continuously updated 
and improved by automatically learning from 
the crowd-sourced big data from a vast number 
of mobile devices. Benefiting from the accurate 
localization results, users will enjoy better loca-
tion-based services in return.

network MAnAgeMent And oPtIMIzAtIon for 
b5g networks usIng AI technologIes

froM Model-bAsed to dAtA-drIven oPtIMIzAtIon of udns
The current approach to the management and 
optimization of cellular networks is based on 
“models.” This approach is used across all the 
network functionalities, from the design of the 
physical layer to the deployment of network 
infrastructure. However, it is insufficient for the 

design of future networks, which will be based 
on multiple and diverse radio access technolo-
gies, ultra-densely deployed, and have to serve 
a broad class of applications and requirements. 
Such a complicated network ecosystem cannot 
be optimally designed and orchestrated based 
on “models” that reproduce actual network 
deployments only in part and are not accurate 
in practice. For example, let us consider a typi-
cal on-demand network deployment that relies 
on the use of unmanned aerial vehicles (UAVs) 
for rescue operation, disaster recovery, and so 
on. Such a network needs to be deployed in an 
ad hoc manner and cannot rely on models that 
do not even exist for the specific case of inter-
est. Based on these premises, there is a compel-
ling need for radically changing the way future 
networks will be engineered and optimized. The 
complexity of future networks and the broad set 
of requirements that they need to fulfill necessi-
tate that they go beyond the concept of models 
for network design and exploit the large availabil-
ity of “data.” In this context, a paradigm shift for 
the efficient design of B5G networks is necessary 
to leverage AI and ML in order to take advan-
tage of big data analytics to enhance the situa-
tional awareness and overall network operation 
of future networks. AI can parse through massive 
amounts of data generated from multiple sources 
such as wireless channel measurements, sensor 
readings, and drones and surveillance images to 
create a comprehensive operational map of the 
massive number of devices within the network. 
It can be exploited to optimize various functions, 
such as fault monitoring and user tracking, across 
the wireless network. Resource management 
mechanisms based on AI will be able to operate 
in a fully online manner by learning the states of 
the wireless environment and the network’s users 
in real time. Such mechanisms will be able to con-
tinuously improve their own performance over 
time, which in turn will enable more intelligent 
and dynamic network decision making.

In order to substantiate the potential of using 
ANNs for the design of communication networks, 
we consider the optimization of a typical thresh-
old-based demodulator for Poisson channels, 
which find applications in optical and molecular 
communication networks that are known to be 
difficult to model in the presence of inter-sym-
bol interference (ISI). We compare the typical 
approach employed in communications, where the 
system/channel model is assumed to be perfectly 
known, and the optimal demodulation threshold 
is obtained by minimizing the analytical expression 
of the error probability that accounts for the ISI, 
against a data-driven approach, where nothing is 
known about the channel model and ANNs are 
used in order to learn the best demodulator, and 
thus the optimal demodulation threshold without 
prior information on the system model. As far as 
the data-driven approach is concerned, the ANN is 
trained by using supervised learning. In particular, 
we use the Bayesian regularization back propaga-
tion method, which updates the weights and biases 
of the ANN by using the Levenberg-Marquardt 
optimization algorithm. Figure 3 shows the optimal 
demodulation threshold for two values of ISI (small 
and large values) in different signal-to-noise ratios 
(SNRs). In both cases, we note that a data-driven 
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approach provides the same demodulation thresh-
old and consequently the same error probability, 
by dispensing the system designer to perfectly 
know the system/channel model.

ProActIve wIreless networkIng for  
onlIne softwAre network orchestrAtIon

Recently, the industry has witnessed the increas-
ing maturity of software-defined networking 
(SDN) and network function virtualization (NFV), 
which constitute fundamental enabling technolo-
gies to realize the 5G Public-Private Project (5G 
PPP) vision of software/programmable network-
ing. With the evolution of SDN and NFV, 5G cel-
lular networks have advocated a revolutionary 
concept called network slicing (NS). Instead of 
building dedicated networks for different services, 
NS allows operators to intelligently create custom-
ized network pipes to provide optimized solutions 
for different services that require diverse function-
alities, performance metrics, and isolation crite-
ria. Specifically, mobile edge computing, edge 
caching, and so on have potentially evolved to 
replace its forwarding-only functionality to an area 
equipped with storage, memories, and computa-
tional power capabilities. Enabling future cellular 
architectures with NS is a fundamental necessity 
for optimal network orchestration and for offer-
ing services with such diverse requirements, nota-
bly enhanced mobile broadband (eMBB), which 
needs bandwidth-consuming and throughput-driv-
ing to new services such as ultra-reliable and 
low-latency communications (uRLLC) and massive 
machine-type communications (mMTC). Today’s 
networks and even 5G networks are conceived, 
designed, and optimized based on the reaction 
principle, which passively responds to incoming 
demands and serves them when requested. This 
principle is not adequate for the new service 
capabilities that future networks need to provide. 
The future networks will be heterogeneous soft-
ware-defined networks. Even different services 
are logically independently operated; their data 
traffic will finally be mixed, which can result in 
a highly dynamic and unmanageable manner to 
the reaction principle. Besides, for future net-

works, the requirements of some services cannot 
be fulfilled by the current reaction principle. For 
example, uRLLC applications may not accept the 
delay associated with this reaction principle. On 
the other hand, future networks need prediction 
capabilities, which enable them to anticipate the 
future and proactively allocate network resourc-
es. In a proactive approach, rather than passive-
ly responding to incoming demands and serving 
them when requested, network architectures with 
NS can predict traffic patterns and determine 
future off-peak times on different spectrum bands 
so that incoming traffic demands can be properly 
allocated over a given time window. Predicting 
users’ behaviors will result in better utilization of 
network resources and will allow us to optimally 
allocate end-to-end network slices in an online 
fashion. This paradigm shift from reactive to pro-
active network design can only be made possible 
with the aid of AI and ML techniques.

AI AlgorIthMs And APPlIcAtIons for 
b5g networks

dIstrIbuted Ml AlgorIthMs for b5g networks
In current communications applications, signal pro-
cessing and ML algorithms are typically executed 
centrally. An archetype architecture is the cloud 
radio access network (C-RAN), where joint estima-
tion and data processing for all network devices is 
performed at a central unit (e.g., the cloud). In the 
presence of a large number of devices and commu-
nication limitations on the fronthaul/backhaul links, 
however, various network functions should be exe-
cuted locally or with minimal information exchange 
with the cloud. Therefore, of central importance 
is the provisioning of a decentralized functional 
architecture, which adapts dynamically to network 
requirements [15]. As shown in Fig. 4, a lightweight 
deep learning model can be applied to cloud, fog, 
and edge computing networks. The cloud network 
is the data and computing center, the fog network 
includes many nodes, and the edge network con-
tains enormous numbers of end users and devices. 
In parallel, there is the need for decentralized learn-
ing, classification, and signal processing algorithms, 
which seamlessly adapt to the number and the 
type of the information sources, considering the 
available communication bandwidth. In the pres-
ence of a dynamic edge computing architecture, 
the advantages of decentralized and centralized 
algorithms should be combined, thereby trading 
off complexity, latency, and reliability. This requires 
integration and further development of methods 
for data fusion, compression, and distributed deci-
sion making.

In the distributed setting, there is also the need 
to develop solutions that are capable of learning 
the relationships between the network entities 
and their time evolution. Since dynamic network 
inference is a complex task in general, scalable 
solutions are required. Therefore, it is necessary to 
evaluate the potential of online learning methods, 
including kernel-based adaptive filters, high-dimen-
sional set-theoretic algorithms, and other robust 
statistical estimation methods. Additional examples 
include Bayesian approaches in conjunction with 
approximate inference methods, such as approxi-
mate message passing and generalizations therein.

FIGURE 3. Optimal demodulation threshold for small and large values of ISI.
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Ml AlgorIthMs for ultrA-fAst trAInIng And Inference

ML algorithms are mostly designed for systems 
and applications that do not need to achieve 
high-frequency performance. Unfortunately, this 
is not the case in the context of B5G networks, 
which must ensure high data processing rates for 
ultra-low latency. This imposes a strict require-
ment on the speeds of training and, particularly, 
inference of ML models. Therefore, one big chal-
lenge is to develop ML algorithms with ultra-fast 
training and inference capability for future wire-
less communications.

There are two potential directions to acceler-
ate ML training speed. One is implementing ML 
algorithms in hardware, which should result in 
low power consumption and high efficiency. The 
other option is to reduce the complexity of ML 
algorithms while keeping a reasonable accuracy.

lIghtweIght Ml AlgorIthMs for  
unIversAl eMbedded systeMs

Existing ML algorithms mainly focus on computer 
vision, natural language processing, and robotics 
with powerful graphics processing unit (GPU) or  
central processing unit (CPU) enabled computing 
to operate in real time. However, communication 
systems are full of resource-constrained devices, 
for example, embedded and Internet of Things 
(IoT) systems. Therefore, the ML algorithms for 
communications should not only learn complex 
statistical models that underlie networks, consum-
ers, and devices, but also effectively work with 
embedded devices having limited storage capabil-
ities, computational power, and energy resources. 
It is challenging but highly rewarding to develop 
lightweight ML algorithms, especially deep learn-
ing models, for embedded systems.

In this aspect, one potential direction will be 
the combination of ML and distributed comput-
ing frameworks such as fog computing and edge 
computing. Another important research direction 
is the investigation of a high-level ML develop-
ment library and toolbox.

AI/Ml for b5g networks In  
stAndArds And study grouPs

Although the convergence of AI/ML and commu-
nication networks is rapidly progressing, it is still 
in an early stage. As the various sensors, devices, 
applications, and systems connected in B5G net-
works will produce a variety of formats and sizes 
of data to be transmitted, it is extremely complex 
to standardize ML algorithms for B5G networks. 
No standard or baseline ML algorithm has been 
established, and it is unclear for the whole com-
munication community which types of ML algo-
rithms suit the B5G systems best.

Recently, there have been some preliminary 
works on applying AL/ML to B5G networks in 
standards organizations including the International 
Telecommunication Union (ITU) and Third Gener-
ation Partnership Project (3GPP), as well as other 
study groups such as FuTURE, telecom infra proj-
ect (TIP), and 5G PPP, as shown in Table 1. ITU 
started a focus group on “Machine learning for 
future networks including 5G (ML5G)” (https://
www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/
default.aspx, accessed 26 June 2018) by ITU-T 

Study Group 13 at its meeting in Geneva, 6–17 
November 2017. The focus group will draft tech-
nical reports and specifications for ML for future 
networks, including interfaces, network architec-
tures, protocols, algorithms, and data formats. The 
three working groups are “Use cases, services and 
requirements,” “Data formats & ML technologies,” 
and “ML-aware network architecture.” A 3GPP 
standards group developed an ML function that 
could allow 5G operators to monitor the status 
of a network slice or third-party application per-
formance on “Zero Touch & Carrier Automation 
Congress” (http://www.tech-invite.com/3m29/
tinv-3gpp-29-520.html, accessed 26 June 2018) in 
Madrid, 22 March 2018. The network data ana-
lytics function (NWDAF) forms a part of 3GPP’s 
5G standardization efforts and could become 
a central point for analytics in the 5G core net-
work. Note that the NWDAF is still in the early 
stages of standardization, but could become an 
interesting place for innovation. A white paper 
named “Wireless Big Data for Smart 5G” (http://
www.future-forum.org/en/, accessed  26 June 
2018) was published on the FuTURE Forum in 
November 2017. This white paper is a collection 
of pioneering research works on big data for 5G 
in China, in both academia and industry. It pro-
posed the concept of “smart 5G” and believed 
that the 5G network needs to embrace new and 
cutting-edge technologies such as wireless big 
data and AI to efficiently boost both spectrum 
efficiency and energy efficiency, improve the user 
experience, and reduce the cost. TIP launched 
a project group, “AI and applied machine 
learning” (http://telecominfraproject.com/
introducing-the-tip-artificial-intelligence-and-ap-
plied-machine-learning-project-group/, accessed 

FIGURE 4. Application of deep learning in cloud, fog, and edge computing 
networks.
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26 June 2018), in November 2017. It will apply 
AI and ML to network planning, operations, and 
customer behavior identification to optimize ser-
vice experience and increase automation. The 
objective is to define and share reusable, proven 
practices, models, and technical requirements for 
applying AI and ML to reduce the cost of plan-
ning and operating telecommunications networks, 
understand and leverage customer behavior, and 
optimize service quality for an improved expe-
rience. 5G PPP has also launched its efforts on 
combining AI with wireless communications, such 
as CogNet (http://www.cognet.5g-ppp.eu/cog-
net-in-5gpp/, accessed 16 September 2019). It 
aims to build an intelligent system of insights and 
action for 5G network management. These devel-
opments in standards and study groups aim to use 
AI for physical layer and network management, 
which will greatly boost the performance of wire-
less networks.

conclusIons And future chAllenges
In this article, we have investigated how AI and 
ML can be used to efficiently solve the unstruc-
tured and seemingly intractable problems in 
future B5G wireless communication networks. 
A comprehensive survey of recent advances on 
the combination of AI/ML and wireless networks 
has been provided, including channel measure-
ments, modeling, and estimation, physical layer 
research, and network management and optimi-
zation. Challenges and potential future research 
directions have been discussed. AI algorithms and 
their applications to B5G networks have been 
introduced. An overview of developments for 
applying AI/ML to B5G systems carried out by 
standard organizations and study groups has also 
been provided.
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