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AbstrAct

In modern wireless communication sys-
tems, wireless channel modeling has always 
been a fundamental task in system design and 
performance optimization. Traditional channel 
modeling methods, such as ray-tracing and geom-
etry-based stochastic channel models, require 
in-depth domain-specific knowledge and techni-
cal expertise in radio signal propagations across 
electromagnetic fields. To avoid these difficulties 
and complexities, a novel generative adversarial 
network (GAN) framework is proposed for the 
first time to address the problem of autonomous 
wireless channel modeling without complex the-
oretical analysis or data processing. Specifically, 
the GAN is trained by raw measurement data to 
reach the Nash equilibrium of a MinMax game 
between a channel data generator and a channel 
data discriminator. Once this process converges, 
the resulting channel data generator is extracted 
as the target channel model for a specific applica-
tion scenario. To demonstrate, the distribution of 
a typical additive white Gaussian noise channel is 
successfully approximated by using the proposed 
GAN-based channel modeling framework, thus 
verifying its good performance and effectiveness.

IntroductIon
Wireless channel modeling has always been 
a fundamental task for theoretical research and 
practical implementation of modern wireless com-
munication systems. The upcoming fifth gener-
ation (5G) wireless communication systems will 
support machine-to-machine, device-to-device, and 
vehicle-to-vehicle communications, and will have 
more application scenarios for vertical industries, 
such as enhanced mobile broadband (eMBB), 
massive machine type communications (mMTC), 
and ultra-reliable and low-latency communica-
tions (URLLC) [1, 2]. Accurate channel models 
help us understand the exact physical impacts of 
different wireless channels on transmitted radio 
signals, which is the crucial knowledge enabling us 
to design and deploy effective and feasible com-
munication technologies for different propagation 
channels in real application environments.

In the literature, tremendous efforts have 
been devoted to developing effective methods 

for accurate channel modeling. In [3], a princi-
pal component analysis (PCA)-based method was 
proposed for characterizing and modeling multi-
ple-iInput multiple-output (MIMO) channels. This 
approach can extract some hidden features and 
structures from measured channel data, which are 
used to effectively reconstruct the amplitude and 
phase of channel impulse response (CIR) together 
with detailed information of measurement envi-
ronments and antenna configurations. In [4], the 
spatial correlation and channel capacity of 2D and 
3D MIMO channel models were compared. The 
results illustrated the importance and challenges 
of channel modeling in performance evaluation of 
3D MIMO systems. In [5], some clustering tech-
niques and big data algorithms were analyzed and 
applied to clustered channel modeling with mas-
sive measurement data. These traditional channel 
modeling methods require in-depth domain-spe-
cific knowledge and technical expertise in radio 
signal propagation across electromagnetic fields. 
The corresponding models are usually:
• Very complex with many parameters
• Not applicable to predict statistical properties 

of wireless channels
• Not flexible to be transferred for other com-

munication environments
To address those constraints and limitations 

of traditional channel modeling methods, neu-
ral networks and machine learning techniques 
are considered as potential universal solutions for 
different 5G application scenarios and commu-
nication environments. Specifically, neural net-
works are very effective for approximate arbitrary 
functions and hidden features. Machine learning 
algorithms have been developed to predict wire-
less channel characteristics [6], and to optimize 
system capacity and service coverage [7] in mas-
sive MIMO systems. In addition, thanks to the 
latest developments of fog/edge computing tech-
nologies [8-9], more intelligent and sophisticated 
methods and algorithms can be executed effec-
tively in local or neighboring environments with 
very relevant measurement data, system parame-
ters, and network resources. In this article, based 
on the concept of the generative adversarial net-
work (GAN) [10, 11], we propose and analyze 
an intelligent universal channel modeling method, 
which uses two artificial neural networks (ANNs) 
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as the channel data generator and the channel 
data discriminator in the GAN-based framework 
for autonomous wireless channel modeling with-
out any domain-specific knowledge or technical 
expertise. In particular, the GAN is trained by 
channel measurement data to reach the Nash 
equilibrium of a MinMax game between the gen-
erator and the discriminator. Once this process 
converges, the resulting channel data generator 
is the target channel model learned from the raw 
measurement data in a specific application sce-
nario. As an example, the distribution of a typical 
additive white Gaussian noise (AWGN) channel is 
successfully approximated by using our proposed 
GAN-based channel modeling framework, which 
completely avoids the theoretical analysis and 
complex processing of raw measurement data in 
traditional channel modeling methods. 

The rest of this article is organized as follows. 
Several traditional channel modeling methods 
are reviewed. The GAN-based channel modeling 
framework is proposed and analyzed, followed by 
a discussion of key technical challenges. A typical 
AWGN channel is used to evaluate the perfor-
mance and effectiveness of the proposed GAN-
based channel modeling framework. Finally, we 
conclude this article.

trAdItIonAl  
chAnnel ModelIng Methods

Stored Channel Impulse Responses: One of 
the realistic channel modeling methods is to use a 
sophisticated channel sounder [12] to measure a 
variety of channel parameters, including direction 
of departure (DoD), direction of arrival (DoA), time 
delay, Doppler shift, and so on. These key param-
eters are then combined to form the CIRs, which 
will play a key role in wireless network design and 
performance optimization. Usually, channel mea-
surement campaigns are time-consuming and limit-
ed to a few dedicated measurement environments, 
which is expensive and not flexible.

Deterministic Channel Models: Deterministic 
wireless channel models are based on the channel 
parameters calculated from the communication 
environments and propagation law of electromag-
netic waves. Ray-tracing techniques are the most 
popular deterministic channel modeling methods, 
where all waves are modeled as rays that behave as 
in geometrical optics. Refinements are used at the 
modeling phase (approximation to diffraction, diffuse 
scattering, etc.). In this way, ray-tracing techniques 
can simulate reflection, diffraction, refraction, and 
scattering by using the information of exact com-
munication environments. Hence, the parameters of 
almost every propagation path can be derived theo-
retically to obtain the channel model.

Stochastic Channel Models: The geome-
try-based stochastic channel model  (GSCM) [13] 
is a representative stochastic channel modeling 
method. A GSCM is obtained by using the funda-
mental laws of reflection, diffraction, and scatter-
ing of electromagnetic waves in an environment 
of many scatterers under a certain distribution. 
GSCMs have been widely used due to their con-
venience for theoretical analysis and mathematical 
tractability. Besides, GSCMs can reproduce the 
stochastic characteristics of different categories of 
wireless channels over time, frequency, and space. 

GSCMs can also be described by some selected 
parameters, such as angle of departure (AoD) and 
angle of arrival (AoA). These parameters are ran-
domly chosen according to a particular distribu-
tion. However, GSCMs are very complex when 
a large number of random parameters are used. 
In such cases, GSCMs are especially difficult and 
time-consuming for link-level simulations. 

Normally, channel models are developed by 
either simulations or measurements. Obviously, 
simulation-based methods are usually cheaper 
than measurement-based methods, but the per-
formance of the former approach is greatly con-
strained by many unrealistic assumptions and 
neglected subtle details about the type, size, and 
location of different scatterers in specific commu-
nications environments. The latter approach is 
often used to capture and analyze wireless chan-
nel characteristics, as well as to evaluate and val-
idate various simulation results. This is because 
measurement results contain all the details in real 
communication environments, and they are gen-
erated on site in real time, and thus of great value 
to professional researchers and engineers. Gener-
ally speaking, channel measurement campaigns 
need a carefully configured channel sounder for 
different channel types (i.e., static and dynamic 
channels). Other physical phenomena that should 
be considered are:
• Nonlinear transfer functions of active devices
• Frequency-dependent antenna patterns
• Coupling effects among adjacent antenna 

elements
Typically, a channel measurement campaign has 
two phases, the development phase and the pro-
duction phase. The first phase is mainly to evalu-
ate the performance of the channel sounder and 
the corresponding models. Some important sys-
tem parameters and data collection protocols are 
then carefully tuned and optimized. The second 
phase is mainly to capture massive raw measure-
ment data. This large volume of data is fully ana-
lyzed to derive key channel parameters, and their 
distributions and correlations. Finally, the resulting 
channel models are represented by CIRs or prob-
ability density functions (PDFs) according to the 
actual requirements in the design and analysis of 
wireless communications systems.

gAn-bAsed  
chAnnel ModelIng FrAMework

As discussed earlier, accurate channel measure-
ments for massive MIMO systems in dynamic 
application scenarios are very difficult, time-con-
suming, and expensive. It is even harder to fully 
analyze big measurement data and quickly esti-
mate a comprehensive set of various channel 
parameters, which require sophisticated scientific 
knowledge, in-depth technical know-how, and 
extensive practical experiences in wireless com-
munications and electromagnetic fields. Different 
from complex traditional approaches, this article 
proposes a GAN-based channel modeling frame-
work, as shown in Fig. 1, in order to minimize the 
need for domain-specific knowledge and tech-
nical expertise in wireless communications and 
signal propagation across electromagnetic fields. 

Channel Real Samples: This is the database 
of raw measurement data obtained from prac-
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tical experiments and measurement campaigns. 
As specified in [12], a parallel channel sounder 
is developed and used for MIMO channel mea-
surements in different application scenarios. Mas-
sive raw data is shared at a free-access website 
for 5G research communities (www.wise.sh). The 
samples in this big database contain a variety of 
MIMO channel characteristics in real measure-
ment environments and at different frequency 
bands. 

Channel Data Generator: By using latent ran-
dom variables, this unit tries its best to generate 
fake samples as real as possible, compared to the 
real samples collected from wireless channels. It 
directly learns the distribution of CIRs and can 
capture the key characteristics of a target wire-
less channel. A channel data generator is usual-
ly represented by an ANN, which has powerful 
ability in function approximation and is trained 
to generate fake channel samples that minimize 
the probability of the channel data discriminator’s 
correct answer.

Channel Data Discriminator: By using 
another ANN, this unit is trained to distinguish 
between the real samples (from a target wire-
less channel) and the fake samples (from the 
channel data generator). It aims to maximize 
the probability of assigning correct labels to 
these examples. Together with the channel data 
generator, which tries to minimize the probabil-
ity that the channel data discriminator makes a 
right decision through adversarial training, both 
units jointly accomplish the complicated chan-
nel modeling task through a MinMax game, 
which has an optimization objective of mini-
mum loss. 

The channel data generator and discrimi-
nator in this GAN-based framework are con-
currently trained in order to minimize the loss. 
In the continuous battle between these two 
important units, the discriminator becomes 
smarter and more captious, while the gener-
ator produces better and better fake samples 
that are more and more identical to the real 
ones. This training process stops when the dis-
criminator can no longer distinguish fake sam-
ples or real samples (i.e., two error probabilities 
are equally 50 percent). Finally, the equilibrium 
between the generator and the discriminator is 
achieved. The channel data generator is then 
extracted as the target channel model, which is 
purely learned from this GAN-based framework 
without any domain-specific knowledge or tech-
nical expertise. 

technIcAl chAllenges

The proposed GAN-based channel modeling 
framework simplifies the process of wireless chan-
nel modeling. However, several technical chal-
lenges need to be addressed.

Channel Data Acquisition: As discussed 
above, we take advantage of the aforementioned 
channel sounder to collect real-world channel 
data for adversarial training between the chan-
nel data generator and the channel data dis-
criminator. However, this approach has several 
limitations:
• In practical channel measurement cam-

paigns, raw data collection and pre-process-
ing are time-consuming and expensive. If 
any errors are found in the measured data, 
it takes the same amount of effort, cost, and 
time to conduct all the measurements again. 

• Due to the physical limitations in some com-
munication environments, the corresponding 
channel measurement campaigns may have 
stringent requirements on the size, weight, 
and power supply of a channel sounder. 

• When channel measurement requirements 
are very specific and sophisticated, it is more 
challenging and expensive to conduct channel 
measurement campaigns with higher accuracy. 
Convergence: Unlike the relatively simpler 

learning problems such as classification have a 
clear concept of “right” and “wrong,” training a 
generative model like GAN is far more complicat-
ed because it is often unclear how “good” a sam-
ple from the model is, although it indeed has a 
loss function to watch. This is because GANs are 
in fact two models competing with each other, 
so they will both try to achieve the lowest loss 
while augmenting the other model’s loss. More-
over, GANs are usually trained by using gradient 
descent algorithms, which are good at identify-
ing the low value of a loss function, rather than 
the Nash equilibrium of a non-convex game. 
Thus, these algorithms may not converge when 
the Nash equilibrium is required for training the 
GANs. Another difficulty in training GANs is that 
the generator finds one sample that fools the dis-
criminator, and then keeps on generating simple 
variations of that sample without learning to gen-
erate more distinct samples. This situation may 
occur when a particular gradient descent algo-
rithm gets stuck in a local minimum.

Recently, feature matching is being considered 
as a promising technique for encouraging the con-
vergence of training GANs [11]. It solves the insta-

Figure 1. The GAN-based wireless channel modeling framework.

The channel data 

generator and discrimi-

nator in this GAN-based 

framework are trained 

concurrently in order 

to minimize the loss. In 

the continuous battle 

between these two 

important units, the 

discriminator becomes 

smarter and more 

captious, while the gen-

erator produces better 

and better fake samples 

that are more and more 

identical to the real 

ones.



IEEE Communications Magazine • March 2019 25

bility problem of GANs by setting a new goal for 
the generator to avoid overtraining the correspond-
ing discriminator. On one hand, the generator is 
required to generate data following the statistics of 
actual data. On the other hand, the discriminator 
is trained to identify the statistics that are worth 
matching with, instead of simply maximizing the 
output of it. Specifically, after training, the genera-
tor can match the average value of the features on 
an intermediate layer of the discriminator. This is an 
ideal choice for the generator, since the discrimi-
nator is trained to identify the most discriminative 
features between actual data and the fake samples 
generated by a model. Figure 2 shows the cumu-
lative distribution function (CDF) of the number 
of iterations for the GAN framework to converge 
when it is trained with or without feature match-
ing. It is obvious that training the GAN with feature 
matching (green dashed curve) converges much 
faster than the latter (red solid curve). 

Model Generalization: The final channel 
data generator is extracted as the target chan-
nel model from the converged GAN through 
adversarial training with the raw measurement 
data. However, the learned channel model can 
only characterize the distribution of key channel 
parameters in specific measurement campaigns 
and communication environments. This target 
channel model cannot be generalized to other 
communication environments with different signal 
propagation conditions. For example, an indoor 
channel model with rich multipath parameters is 
not suitable for an outdoor urban environment.

Since the GAN-based channel model (i.e., the 
channel data generator) is essentially an ANN, a 
transfer learning strategy [14] can be applied to 
generalize the channel model for different com-
munication scenarios. In practice, we can derive 
a GAN-based channel model from a very large 
channel measurement dataset, which takes a vari-
ety of communication scenarios into consider-
ation during the measurement campaigns, and 
then use this trained model as an initialization for 
the particular scenario of interest.

Explainability: Deep learning techniques have 
been very successfully applied to solve computer 
vision problems. However, it is widely questioned 
why they work and what the hidden layers have 
learned. To find the answers, researchers have visu-
alized the hidden layers of an image recognition 
neural network to learn the mechanism by which 
they work. Similarly, we could know more about 
what the hidden layers of the channel data genera-
tor have learned by comparing the outputs of hid-
den layers with parameters of propagation effects 
of the parametric channel modeling methods.

PerForMAnce evAluAtIon
To evaluate the performance and effectiveness 
of the proposed GAN-based channel modeling 
framework, an AWGN channel is chosen in the 
simulation, and a large amount of real samples 
are prepared for the training process.

key PArAMeters

As shown in Fig. 1, the proposed GAN framework 
consists of a channel data generator and a channel 
data discriminator. The architectures and key param-
eters of the generator and discriminator are given in 
Table 1. The learning rate is to control the speed of 

stochastic gradient descent, which is a typical train-
ing algorithm of neural networks. The decay rate is 
used to control the learning rate during the train-
ing process. We use rectified linear units (ReLUs) 
as the activation function, leveraging its ability to 
avoid gradient vanishing. The minibatch size is set 
as 32 for the channel data generator and channel 
data discriminator. Moreover, the discriminator has 
3 hidden layers, and each of them has 100 neurons, 
more than the corresponding numbers set in the 
channel data generator. This is because the discrimi-
nator needs stronger computational power to distin-
guish real samples from fake samples.

nuMerIcAl results

For an AWGN channel, the envelope of the chan-
nel response is modeled to have a Gaussian dis-
tribution. In this sense, the effectiveness of our 
learned channel model is verified by comparing 
its PDF to that of the AWGN channel. We train 
the GAN framework with the real samples gen-
erated from a Gaussian distribution with a mean 
of 4 and a standard deviation of 0.5. The channel 
data generator is extracted as an approximation 
of the real AWGN channel when the GAN finally 
converges. Ideally, it converges when the channel 
data discriminator fails to distinguish real samples 
from fake samples, that is, the probabilities that the 
channel data discriminator assigns correct labels to 
both real and fake samples are equally 50 percent.

In the beginning of training process, the gen-
erator produces a very different distribution from 
the real data, as shown in Fig. 3. However, it final-
ly learns to approximate the true channel PDF 
quite closely before converging to a more com-
pact distribution focused on the mean of the real 
distribution. After training, the two distributions 
are presented in Fig. 4. It seems that the gener-
ated distribution is much narrower than the real 
distribution. An intuitive explanation is that the 
channel data discriminator is looking at individual 
samples from the real channel data and from the 
channel data generator. If the generator happens 

Figure 2. The CDF of the number of iterations that the GAN model takes to 
converge.
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to produce the mean value of the real data, this 
specific sample is quite likely to fool the discrim-
inator. Sometimes, the generator collapses to a 
parameter setting and results in a very narrow dis-
tribution of points, which is one of the main fail-
ure modes of GANs [11].

Fortunately, minibatch discrimination allows 
the discriminator to analyze multiple samples at 
once during the training process [11]. Minibatch 
discrimination improves sample diversity where 
the discriminator is able to look at an entire batch 
of samples in order to decide whether they come 
from the generator or a real measurement data-
set. Finally, Fig. 5 compares the PDFs of the real 
channel samples and the generated channel sam-
ples. It demonstrates that the proposed GAN-
based framework can effectively offer a fairly good 
approximation of the real channel model, without 
any domain-specific knowledge or technical exper-
tise in wireless communications and data analysis.

lessons And oPPortunItIes 
This research presents a novel approach to apply-
ing GANs to addressing the challenging problem 
of autonomous wireless channel modeling, with-
out domain-specific knowledge, complex theo-

retical analysis, or sophisticated data processing. 
Through the process of design and experimen-
tation with this GAN-based framework, we have 
learned some valuable lessons and identified a 
few potential opportunities for fellow researchers:
• The architecture of GAN should not be too 

deep. The neural network of the discrimi-
nator should have more hidden layers, thus 
being more powerful in computation capa-
bility than the generator.

• It is difficult to properly train the GAN and 
ensure its convergence. The trick is to pay 
much more attention to the configuration 
of the loss function, as well as the training 
process of the discriminator.

• As to the hyper-parameters in Table 1, a 
small learning rate is always a safe choice for 
training the GAN. Besides, the learning rate 
decay technique is quite helpful during the 
training process.

• While the minibatch discrimination technique 
is used, it is better to keep a relatively small 
batch size in order to make sure the training 
process will converge. 

• ReLU is a desirable activation function that 
can reduce the likelihood of the gradient 
vanishing and the gradient’s non-saturation, 
thus greatly accelerating the convergence of 
Stochastic Gradient Descent (SGD). 

• SGD is the preferred optimization algorithm 
for the channel data discriminator, while the 
Adam algorithm [15] is good for the channel 
data generator.

• Last but not least, this proposed GAN-based 
channel modeling framework is scalable 
and can be extended to large-scale appli-
cation scenarios such as MIMO by utiliz-
ing MIMO inputs and outputs. In order to 
accommodate this extension, the structures 
of the input layer and output layer should be 
changed according to the MIMO configura-
tion of the neural network model. 

conclusIon
In this article, a GAN-based wireless channel mod-
eling framework has been proposed and analyzed. 
Different from traditional methods using complex 
theoretical analysis and sophisticated data processing 
to derive key channel parameters from real measure-
ment data, our new method does not require any 
domain-specific knowledge or technical expertise, 
and can obtain the target channel model by direct-
ly learning from massive raw channel data with a 
GAN, which aims to achieve the Nash equilibrium of 
a MinMax game between a channel data generator 
and a channel data discriminator. Taking an AWGN 
channel as a simple example, the PDF of generated 
channel samples has been compared with that of 
the real channel data. The results have demonstrated 
that the proposed GAN-based channel modeling 
framework can offer a fairly good approximation of 
the real wireless channel. Our future work includes 
more experiments with real MIMO channel datasets 
generated from previous measurement campaigns 
(www.wise.sh).
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Figure 4. The PDFs of the real channel response samples and the generated 
channel response samples without minibatch discrimination.

Figure 5. The PDF of the real channel response samples and the generated 
channel response samples with minibatch discrimination.


