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Abstract—In this paper, we study the effects of the variations
of the propagation delay over large-scale antenna-arrays used
in massive multiple-input multiple-output (MIMO) wideband
communication systems on the statistical properties of the
channel. Due to its simplicity and popularity, the Elliptical
geometry-based stochastic channel model (GBSM) is employed
to demonstrate new non-stationary properties of the channel
in the frequency and spatial domains caused by the drift
of delays. In addition, we show that the time of travel of
multi-path components (MPCs) over large-scale arrays may
result in overlooked frequency and spatial decorrelation effects.
These are theoretically demonstrated by deriving the space-time-
frequency correlation functions (STFCFs) of both narrowband
and wideband Elliptical models. Closed-form expressions of the
array-variant frequency correlation function (FCF), power delay
profile (PDP), mean delay, and delay spread of single- and
multi-confocal Elliptical models are derived when the angles of
arrival (AOAs) are von Mises distributed. In such conditions,
we find that the large dimensions of the antenna array may
limit the narrowband characteristic of the single-ellipse model
and alter the wideband characteristics (PDP and FCF) of the
multi-confocal Elliptical channel model. Although we present
and analyze numerical and simulation results for a particular
GBSM, similar conclusions can be extended to other GBSMs.

Keywords – Massive MIMO, channel modeling, spatial non-
stationarity, array-variant delay.

I. INTRODUCTION

MIMO technologies using large-scale antenna-arrays, i.e.,
massive MIMO, are considered promising technologies to
cope with the increasing demand of data rate and reliable
communications in the future. Arrays counting on hundreds or
even thousands of antenna-elements can provide large spectral
efficiency and reliability through spatial multiplexing, spatial
modulation, diversity, and other MIMO techniques [1]–[4].

However, to achieve some of the benefits of massive MIMO
such us increased angular resolution and diversity, antenna-
elements of the array cannot be packed as much as desired
[5]. Thus, massive MIMO deployments often result in antenna
arrays spanning long distances beyond the stationary region of
the channel. Measurements have demonstrated that this may
lead to the so called near-field effects and non-stationary prop-
erties of the channel along the array [6]–[11]. These effects
include array-variant angles of arrival (AOAs), propagation
delays, received power, MPCs (dis)apperance and others.

In order to efficiently assess and design new communica-
tion systems that rely on realistic properties of the channel,
existing models designed for former communication systems
[12]–[15] have been improved or redesigned accounting for
these new non-stationary effects over the array [7], [16]–[22].
State-of-the-art massive MIMO channel models considered
near-field effects by including high-order wavefronts such
as spherical or parabolic wavefronts. Besides, they include
clusters visibility over the array through visibility regions [7],
(dis)appearance or (re)appearance Markov processes [16]–
[19]. Smooth variations over the array of the clusters’ average

power were introduced in [17] and [18] by employing log-
normal spatial processes. However, previous works neglected
[16], [17], [19] or did not studied [20], [21] the effects of the
time-delay required by signals traveling over a large array
on the channel’s statistical properties. Although this delay
drift over the array is present in conventional small arrays,
it is usually neglected due to the small bandwidth and array
dimensions used in former MIMO communication systems.

In this paper, we will prove that delay drifts render the
channel’s transfer function non-stationary over the array and
introduce overlooked decorrelation effects in the frequency
domain as the array grows large. As long as these decor-
relation effects may be regarded as artifacts of the channel
model, we will show that the drift of delays may lead existing
GBSMs towards their limits of operation. In addition, we will
also demonstrate that delay drifts may result into spatial non-
stationary properties of the channel over the frequency domain
when the bandwidth considered is very large.

Since the drift of delays is present regardless of the wave-
front considered, e.g., plane or spherical, and we have not
included cluster disappearance or shadowing over the array
in this study, the effects mentioned are not caused by the
type of wavefront, nor the cluster evolution along the array.
Hence, to the best of the authors’ knowledge, this can be
considered a novel effect that has not been studied so far in
literature separately. Moreover, as these effects depend on the
geometrical configuration of the scatterers in the channel, e.g.,
Elliptical or One-Ring, and they may have an impact on the
performance of new massive MIMO communication systems,
hence they need to be considered for properly extending
existing MIMO GBSMs to large-scale antenna-arrays.

This paper is organized as follows: in Section II, the ellip-
tical GBSMs is introduced, including the delay drift over the
array in the channel impulse response (CIR). In Section III, we
derive the array-variant STFCF, PDP, mean delay, and delay
spread of the channel and study the effects of the delay drift
on them. In Section IV, we present and analyze numerical
and simulation results of the statistical properties derived in
Section III. Finally, conclusions are drawn in Section V.

II. DELAY DRIFT IN THE ELLIPTICAL GBSM

Due to the simplicity and popularity of the model, we
employ the geometrical Elliptical scattering model in this
study. This model is widely used for theoretical and practical
purposes (see [23]). For the reader’s convenience, the model
is depicted in Fig. 1, where only one ellipse is depicted for
clarity. The transmitter (Tx) and receiver (Rx) are equipped
with uniform linear arrays (ULAs) tilted βT and βR with
respect to (wrt) the x-axis, respectively. The transmitting
(receiving) ULA is formed by MT (MR) antenna elements
with inter-element spacing δT (δR). The pth transmitting
and qth receiving antenna-elements are denoted as AT

p and
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Fig. 1. Elliptical scattering model for an MT ×MR MIMO channel.

AR
q , respectively. As in most massive MIMO systems, the

size of the arrays is large compared to the wavelength, i.e,
(MT −1)δT � λ0 and (MR−1)δR � λ0 with λ0 the carrier
wavelength. Moreover, the motion of the Rx is uniform with
constant speed v forming an angle αv wrt the x-axis.

The center of the arrays are located at the foci of a set
of L concentric ellipses all with the same focal distance
f ′, and semi-mayor and semi-minor axes lengths a′� and b′�,
respectively, with � = 1, 2, . . . ,L. Every ellipse counts on
N� scatterers randomly distributed over its perimeter, denoted
as Sn� in the figure. Scatterers of the �th ellipse are defined
by their angle of departure (AOD) αT

n� and angle of arrival
(AOA) αR

n� measured from the Tx and Rx array centers,
respectively. In this model, it is usually considered that the
signal radiated by AT

p is bounced only once by Sn� before it
reaches AR

q . Thus, this signal experiences a total propagation
delay τqp,n� = (DT

p,n�+DR
q,n�)/c0, where c0 denotes the speed

of light, and DT
p,n� and DR

q,n� denote the distances from AT
p

to Sn� and that from Sn� to AR
q , respectively.

A. Channel Impulse Response (CIR) of the Channel Model

The wideband CIR between the AT
p and AR

q is represented
by the channel matrix H(t, τ) = [hqp(t, τ)]MR×MT

with p =
1, 2, . . . ,MT and q = 1, 2 . . . ,MR. The CIR is calculated as

hqp(t, τ) =

L∑
�=1

c� lim
N�→∞

1√
N�

×
N�∑
n=1

ap,n�bq,n� e
j(2πfn�t+θn�)δ(τ − τqp,n�)

(1)

with j =
√−1, c� denoting the gain of the �th path and θn�

denoting the phase shift produced by the nth scatterer in the
�th ellipse, which is usually considered uniformly distributed
over the interval (0, 2π], i.e., θn� ∼ U(0, 2π). Here, we
assume that the total received power is normalized such that∑L

�=1 c
2
� = 1. The Doppler frequencies fn� and sub-path gains

ap,n�, bq,n� can be calculated as

fn� = fmax cos(α
R
n� − αv) (2)

ap,n� = ejkδp cos(αT
n�−βT ) (3)

bq,n� = ejkδq cos(αR
n�−βR) (4)

where fmax = v/λ0 and k = 2π/λ0 denote the maximum
Doppler frequency and the wavenumber, respectively. The

terms δp = (MT −2p+1)δT /2 and δq = (MR−2q+1)δR/2
denote the distances from AT

p and AR
q to the center of the Tx

and Rx arrays, respectively. Note that the propagation delay
τqp,n� from AT

p to AR
q via the nth scatterer of the �th path

in (1) depends on the antennas q and p, and the scatterer. In
order to simplify the analysis of the delay drift over the array,
we will consider a first-order approximation as

τqp,n� = τ0,� − τp cos(α
T
n� − βT )− τq cos(α

R
n� − βR) (5)

where τ0,� is the reference delay of the �th path from the
transmitting to the receiving array centers, τi = δi/c0, for
i = {p, q}, denotes the propagation delay from the center of
the corresponding array to the ith antenna element. Therefore,
the terms τp cos(α

T
n� − βT ) and τq cos(α

R
n� − βR) in (5) are

employed to model the delay difference experienced by the
signal radiated from AT

p and received by AR
q wrt τ0,�. Note

that, as δp/c0 and δq/c0 are small in conventional systems,
previous models assumed a constant delay that is independent
of the antenna-element as τqp,n� = τ0,�.

The geometrical relationship between the AOA and the
AOD in the elliptical model is [23]

αT
n� =

⎧⎪⎨
⎪⎩

g(αR
n�) if 0 < αR

n� � α0,�

g(αR
n�) + π if α0,� < αR

n� � 2π − α0,�

g(αR
n�) + 2π if 2π − α0,� < αR

n� � 2π
(6)

where

g(αR
n�) = arctan

[
(k2� − 1) sin(αR

n�)

2k� + (k2� + 1) cos(αR
n�)

]
(7)

and

α0,� = π − arctan

(
k2� − 1

2k�

)
(8)

where the term k� = a�/f denotes the inverse of the
eccentricity of the l-th ellipse.

In the following, to describe both isotropic and non-
isotropic scattering, the AOA is modeled by the flexible von
Mises distribution. The probability density function of this
distribution is defined as

f(x) =
1

2πI0(κ)
eκ cos(x−μ) (9)

for x ∈ (0, 2π]. The term I0(·) denotes the zero-order
modified Bessel function of the first kind, μ ∈ (0, 2π] denotes
the mean angle and κ ≥ 0 the concentration parameter
that controls the angular spread around μ. The von Mises
distribution reduces to U(0, 2π) for κ = 0 and it approximates
the Gaussian distribution with standard deviation σ = 2/

√
κ

for large values of κ [23].

B. Massive MIMO Channel Transfer Function

The time-variant channel transfer function is obtained as
the Fourier transform of hqp(t, τ) in (1) wrt τ as

Hqp(t, f) =

L∑
�=1

c� lim
N�→∞

1√
N�

×
N�∑
n=1

ap,n�bq,n� e
j(2πfn,�t+θn�)e−j2πfτqp,n� .

(10)
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Substituting (5) into (10) and rearranging terms,

Hqp(t, f) =
L∑

�=1

c� lim
N�→∞

1√
N�

×
N�∑
n=1

(ap,n�bq,n�)

(
1+ f

f0

)
ej(2πfn�t+θn�)e−j2πfτ0,�

(11)

where f0 is the carrier frequency, i.e., c0 = λ0f0. Note that
in conventional MIMO channel models, the term

(
1 + f/f0

)
is usually approximated as 1 but, as it will be shown, the
additional term f/f0 introduced by the delay drift over the
array has an impact in the correlation properties of the channel
in the frequency domain.

III. STATISTICAL PROPERTIES OF THE CHANNEL MODEL

The STFCF of the CIR is defined as Γqp,q′p′(Δt, f, ν) =
E[H∗

qp(t, f)Hq′p′(t + Δt, f + ν)], with E[·] denoting the
expectation operator. In this case, it can be calculated as

Γqp,q′p′(Δt, f, ν) =
L∑

�=1

c2�e
−j2πντ0,�×

lim
N�→∞

1

N�

N�∑
n=1

E
[
a2pp′,n�b

2
qq′,n�e

j2πfn�Δt
]
αR

n�

(12)

where

app′,n� = ej
π
c0

cos(αT
n�−βT )[Δpp′ (f0+f)+δpν] (13)

bqq′,n� = ej
π
c0

cos(αR
n�−βR)[Δqq′ (f0+f)+δqν] (14)

with Δpp′ = (p − p′)δT and Δqq′ = (q − q′)δR denoting
the relative distance between AT

p and AT
p′ and that between

AR
q and AR

q′ , respectively. Note that it has been assumed
uncorrelated scattering in the derivation of (12), i.e., it has
been considered that multipath components with different
delays are uncorrelated. Also, notice in (13) and (14) the
cross-product of the absolute and relative parameters, e.g.,
Δqq′(f0+f) and δpν. The first product indicates that the space
correlation function (SCF) depends on the frequency f and the
second that the frequency correlation function (FCF) depends
on the antenna index, i.e., the absolute position over the array.
Hence, the delay drift considered here results in cross non
wide-sense stationary (WSS) properties of the channel along
the array and in the frequency domain. These cross non-
stationary properties will be studied in the following sections.

A. Frequency-Variant SCF

The SCF of the �th path is calculated by setting the
parameters ν = 0 and Δt = 0 in (12)–(14) as

ρ�(δT , δR, f) =
L∑

�=1

c2� r̂�(δT , δR, f) (15)

where the term r̂�(δT , δR, f) denotes the SCF associated to
the �th path and it is obtained as

r̂�(δT , δR, f) = lim
N�→∞

1

N�
×

N�∑
n=1

E
[
ej

2π(f0+f)
c0

[Δpp′ cos(α
T
n�−βT )+Δqq′ cos(α

R
n�−βR)]

]
.

(16)

In the limit N� →∞, r̂�(δT , δR, f) approximates [23]

r̂�(δT , δR, f) =

∫ π

−π

ej
2π
c0

(f0+f)Δpp′ cos(α
T
� −βT )

× ej
2π
c0

(f0+f)Δqq′ cos(α
R
� −βR)pαR

�
(αR

� )dα
R
�

(17)

where the AOA αR
n,� has been substituted by αR

� with
probability density function pαR

�
(αR

� ). Notice that the term
c0/(f0+f) in (16) and (17) represents the wavelength at fre-
quency f0+f . Since the spatial correlation between different
links decreases with the distance between antennas normalized
to the wavelength, positive (negative) values of f increase
(decrease) correlation between links. Note that this frequency
dependence applies to arrays irrespective of their dimensions.
Nonetheless, this effect might be of particular interest for
millimeter-Wave (mm-Wave) communication systems that are
expected to operate using large bandwidths.

When the AoA follows a von Mises distribution, closed-
form expressions can be obtained for the one-side SCF. For
instance, the receive-side SCF in (17) can be obtained using
[24, Eq. 3.338-4] as

r̂�(0, δR, f) =
1

I0(κ)
I0

⎛
⎝{

κ2
� −

(
2πf ′Δqq′

c0

)2

+j4κ
πf ′Δqq′

c0
cos(βR −mR

α,�)

}1/2
) (18)

where f ′ = f0 + f . Clearly, for narrowband systems where
f/f0 	 1, then f ′ ≈ f0 in the previous expression, which
reduces to the conventional receive-side SCF [23], i.e.,

r̂�(0, δR, f) ≈ 1

I0(κ)
I0

⎛
⎝{

κ2
� −

(
2πΔqq′

λ0

)2

+j4κ
πΔqq′

λ0
cos(βR −mR

α,�)

}1/2
)
.

(19)

B. Array-Variant FCF

For large arrays and conventional bandwidths, the approxi-
mation 1+ f/f0 ≈ 1 is still valid, but the terms δpν and δqν
in (13) and (14) cannot be neglected. Thus, the FCF obtained
as Rqp(ν) = Γqp,qp(0, 0, ν) depends on the position along the
arrays as

Rqp(ν) =
L∑

�=1

c2�e
−j2πντ0,�×

lim
N�→∞

1

N�

N�∑
n=1

E
[
a2pp,n�b

2
qq,n�

]
.

(20)

Notice that the FCF is expressed as the product of two terms
as Rqp(ν) = r(ν) · r̃qp(ν). The outer term in (20) is the FCF
of a tapped-delay Elliptical channel model in conventional
MIMO systems, i.e.,

r(ν) =
L∑

�=1

c2�e
−j2πντ0,� . (21)
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On the other hand, the inner term in (20) describes the
frequency correlation introduced by the �th path. Thus, the
path-level FCF is defined here as

r̃qp,�(ν) = lim
N�→∞

1

N�
×

N�∑
n=1

E
[
ej

2πν
c0

[δp cos(αT
n�−βT )+δq cos(αR

n�−βR)]
]
.

(22)

In the limit as N� →∞, r̃qp,�(ν, δT , δR) is given by [23]

r̃qp,�(ν) =

∫ 2π

0

pαR
�
(αR

� )e
j 2πν

c0
[δp cos(αT

�−βT )+δq cos(αR
�−βR)] dαR

� .

(23)

Surprisingly, according to (22) and (23), two signals of
different frequencies bounced by the same ellipse of scatterers,
i.e., rays from the same path, are not necessarily frequency-
correlated. This implies that the FCF of a single-path model
is not constant, unlike conventional MIMO models. This new
effect can be explained as different rays bounced by the same
ellipse but different scatterers travel different distances for
antenna-elements of the array that are located far from the
focus of the ellipse. We will show that this difference cannot
be neglected when large-scale arrays are considered.

In some cases, it is possible to find the relationship between
the length of the array and the decorrelation caused by the
delay drift. For instance, let us consider the uplink of a
massive MIMO system in which the base station (receiver) is
composed of many antennas and the users (transmitters) are
equipped with just a few antennas, i.e., (MT−1)δT ν/c0 	 1.
Thus, it can be seen in (23) that the FCF of the �th path is
constant as long as δq · ν = C�, with C� denoting a positive
real constant. Consequently, the bandwidth where the path-
level FCF is over a threshold (typically 0.5), i.e., the single-
path coherence bandwidth Bc,�, is inversely proportional to
the antenna position over the array, i.e, Bc,�(q) = C�/δq .
Clearly, the constant C� depends on the correlation threshold
considered and the specific characteristics of the scatterers
such as their distribution in the angular domain.

When the AoA follows the von Mises distribution, it is
possible to obtain the path-level FCF in (23) using a similar
procedure to the one used to obtain (18), i.e.,

r̃q,�(ν) =
1

I0(κ)
I0

⎛
⎝{

κ2 −
(
2πδqν

c0

)2

+j4κ
πδqν

c0
cos(βR −mR

α,�)

} 1
2

⎞
⎠ .

(24)

Obvioulsy, for signals of the same frequency (ν = 0), the
correlation is equal to 1 no matter the position over the array.

C. Array-Variant Average Power Delay Profile

We will now study the array-variant average PDP for a
multi-confocal Elliptical channel model and the first two
central moments of the delay, i.e., the mean delay defined
as τm,qp = E[τqp] and the delay spread defined as τrms,qp =√

E[τ2qp]− τ2m,qp. The PDP can be obtained as the inverse
Fourier transform of the FCF as

Sτ (τ) =

∫ ∞

−∞
Rqp(ν)e

j2πντ dν. (25)

Note that Rqp(ν) in (20) is the product of two functions. Then,
applying the convolution theorem of the Fourier transform, it

can be demonstrated that the PDP can be expressed as a linear
combination of the path-level PDPs as

Sτ,qp(τ) =

L∑
�=1

c2� Sτ,qp,�(τ − τ0,�) (26)

where Sτ,qp,�(τ) is the inverse Fourier transform of r̃qp,�(ν) in
(23). For simplicity in the following analysis, we will assume
here that only the Rx incorporates a large number of antennas.
The path-level PDP can be obtained as

Sτ,q,�(τ) =

⎧⎪⎨
⎪⎩

p
αR
�
(αR

�,1)+p
αR
�
(αR

�,2)

|τq|
√

1−(τ/τq)2
|τ | < τq

0 otherwise

where αR
�,1 = βR + arccos(−τ/τq) and αR

�,2 = βR −
arccos(−τ/τq). The mean delay is obtained as the weighted
sum of the path-level mean delays as

τ̄q =

∫ ∞

−∞
τSτ,q(τ) dτ

=
L∑

�=1

c2�

∫ τ0,�+τp

τ0,�−τp

τSτ,q,�(τ − τ0,�) dτ

=
L∑

�=1

c2� (τ0,� − τ̄�,q).

(27)

where τ̄�,q denotes array-variant path-level mean delay drift.
When the AOA follows the von Mises distribution with given
mean direction of arrival and angular spread, the path-level
mean delay τ̄�,q can be computed as

τ̄�,q =

∫ τ0,�+τq

τ0,�−τq

τSτ,q,�(τ) dτ =
τq cos(β

R −mR
α,�)I1(κ�)

I0(κ�)
.

(28)

Although (28) indicates that the path-level mean delay drifts
over the array, the total mean delay τ̄q may remain inde-
pendent of the antenna element depending on the angular
distribution of the scatterers for every path. For instance,
when most paths are concentrated in the angular domain in
clusters, i.e., κ� → ∞, and they satisfy βR − mR

α,� = 0

or βR − mR
α,� = π for � = 1 . . .L, the mean delay drift

is maximized in absolute value and it tends to |τq|. On the
other hand, if we consider the mean AOA of these clusters
distributed as mR

α,� ∼ U(0, 2π], the mean delay drift is
reduced to zero as the lead-lag effect of signals coming from
different directions balances positive and negative delays’
drifting. For the von Mises distribution with given mean AOA
and angular spread, the total delay spread can be obtained as

τrms,q =

∫ ∞

−∞
(τ − τ̄q)

2Sτ,q(τ) dτ

=

L∑
�=1

c2�

{(
τ0,� − τ̄q

)2 − 2
(
τ0,� − τ̄q

)
τ̄�,q

− τ2q
κ�I0(κ�)

[
κ�

[
I0(κ�) + I2(κ�)

]
cos2(βR −mR

α,�)

2

+I1(κ�) sin
2(βR −mR

α,�)
]}1/2

.

(29)

Similarly, the distribution of mR
α,� determines the drift of the

delay spread over the array. Besides, it can be seen from (28)
and (29) that a uniform distribution of the path-level AOA,
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i.e., κ� = 0, leads to zero-drift of the mean delay τ̄q and it
maximizes the delay spread drift τrms,q . On the other hand, a
very concentrated distribution, i.e., κ� → ∞, maximizes the
mean delay drift for a given mR

α,�, but it tends to reduce the
delay spread drift to zero.

D. Limits of the Elliptical GBSM for Massive MIMO Systems

One of the most important features of the elliptical GBSM
lies upon describing independent time dispersive and fre-
quency dispersive channels. In this kind of channels, the dis-
tributions of AOA and delays are independent, i.e., αT

� = αT ,
αR
� = αR, and τn� = τ�. In conventional MIMO systems,

this assumption is equivalent to consider that the STFCF can
be separated into the product of the FCF and the space-time
correlation function (STCF), which represents an important
simplification of the channel. However, since the delay and
the AOA are intrinsically related in arrays of large dimensions
as indicated by (5), such channels are necessarily dependent
time dispersive and frequency dispersive. This can be seen by
dropping the path index � on the right-side of (12), i.e.,

Γqp,q′p′(Δt, f, ν) = lim
N→∞

1

N

N∑
n=1

E
[
a2pp′,nb

2
qq′,n ej2πfnΔt

]
︸ ︷︷ ︸

STCF and path-level FCF

×
L∑

�=1

c2�e
−j2πντ0,�

︸ ︷︷ ︸
FCF

.

(30)

Since the terms a2pp′,n and b2qq′,n depend on the frequency
separation ν, the STFCF cannot be separated as intended.
Consequently, the delay drift over large arrays breaks the
assumption of time dispersive and frequency dispersive inde-
pendence. Notice that for narrowband systems, i.e., f/f0 	 1,
and small antenna arrays, i.e., (MT − 1)δT ν/c0 	 1, the
STFCF is separable and the channel becomes independent
time dispersive and frequency dispersive as expected.

For the von Mises distribution of the AOA, it can be readily
seen in (24) that the iso-correlation curves satisfy the equation
δq ·ν = C with C denoting a real positive constant. From (24),
the constant C can be calculated as

C =
c0
2π

(
κ2 −

[
I−1
0 (ρI0(κ))

]2)1/2

(31)

with I−1
0 (·) the inverse of I0(·) and ρ the correlation threshold

considered in the coherence bandwidth Bc. For instance, for
κ = 0 and ρ = 0.5, then C = 1.936 GHz. This value of
C can be interpreted as the maximum bandwidth for which
the elliptical channel model could be used to simulate a two-
antenna ULA MIMO system without introducing additional
frequency decorrelation at the extremes of the ULA. Obvi-
ously, for a 100-antenna ULA, this bandwidth decreases by a
factor 100, i.e., it becomes 19.36 MHz.

IV. RESULTS AND ANALYSIS

In this section, we will study the statistical properties
obtained in Section III for both narrowband (single-) and
wideband (multi-)confocal Elliptical models. Due to the high
dimensionality of (17) and (23), the study of the SCF and FCF
only in the Rx’s side will be shown here by setting δT = 0,
i.e., considering that the Tx is composed by a single antenna.
In the following, theoretical results refer to the numerical

Fig. 2. Absolute value of the SCF for a single ellipse channel model for
different values of κ (f0 = 2 GHz, MT = 1, MR = 2, δR = λ0/2,
βR −mR

α = π/2).

evaluation of the corresponding expressions in Section III and
the Monte Carlo method is used to obtain simulation results.

A. Narrowband Model Results (Single-Ellipse)

To illustrate the dependence of the SCF r̂�(0, δR, f) in (18)
on the frequency f , Fig. 2 shows two samples of its absolute
value at 1.5 GHz and 2.5 GHz. The SCF is asymmetrical
around f = 0, as noted in Section III-A, because the spatial
correlation increases at lower frequencies due to the reduction
of the normalized distance between antennas δR/λ0 and
vice versa. Moreover, for low values of the frequency, i.e.,
|f | 	 f0, the SCF can be considered frequency-independent.
Although the effect is relatively small, it can be observed that
the decorrelation effect is more pronounced for higher values
of κ, i.e., for lower angular spreads.

In Fig. 3, the array-variant FCFs of a single-path r̃q,�(ν)
in (24) for different values of the von Mises κ parameter
are presented. As the ULA is about 50λ0 long, the extremes
of the array are approximately located at -25λ0 and 25λ0.
The FCFs are obtained at the receiving antennas AR

50, AR
75,

and AR
100, i.e, at the center, midpoint, and one extreme of

the antenna-array. As it would be expected for a narrowband
channel model, the FCF is almost constant over the whole

Fig. 3. Absolute value of the FCF along the array for a single-path channel
for different values of κ (f0 = 2 GHz, δR = λ0/2, MT = 1, MR = 100,
βR −mR

α = π/2).
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Fig. 4. Array-variant PDP for a wideband multi-confocal Elliptical channel
model (f0 = 2 GHz, MT = 1, MR = 100, δR = λ0/2, βR = 0,
τrms = 30 ns).

band for small-size arrays, i.e., around AR
50. However, signals

of different frequencies become less correlated as the antenna-
element considered is further away from the array’s center
or ellipse’s focus. This clearly indicates that a single-ellipse
channel model becomes increasingly frequency-selective over
the array. Unlike wideband channel models, this phenomenon
is caused by the delay drift over the array and not by multiple
paths (ellipses) in the channel. Note also that the frequency
decorrelation over the array is more pronounced for low values
of κ, i.e., for larger values of the angular spread. Thus, these
results also indicate a dependency of the FCF with respect to
the path-level distribution of the AOA.

B. Wideband Model Results (multi-confocal Elliptical)

In this section we will consider a wideband channel model
by employing multiple ellipses whose associated delays are
randomly distributed according to an exponential distribution,
i.e., fτ (x) = 1/τrms exp[−x/τrms] for x ∈ [0,∞). As the
impact of the delay drift is more important in environments
whose delay spreads are similar to the maximum delay
drift over the array, hence we have used τrms = 30 ns,
which is slightly higher than the typical values for indoor
environments, e.g., propagation scenarios A1 (indoor office)
and B3 (indoor hotspot), and for some outdoor environments,
e.g., propagation scenario D1 (rural macro-cell), in WINNER-
II models [13]. The simulation results were obtained by gen-
erating 103 exponentially distributed delays and 102 scatterers
per delay with AOAs following a von Mises distributions
of random parameters. The PDP is obtained through the
empirical probability distribution function of (5) and the FCF
as its Fourier transform. The gains associated to every path
(ellipse) are deterministic variables meeting the condition∑L

�=1 c
2
� = 1, e.g., c� = 1/

√L.
In Fig. 4, the PDPs of the channel at the center (AR

50) and
at one extreme of the array (AR

100) are presented for different
spreads of the clusters’ mean AOAs. In the two cases studied,
the mean AOAs are distributed as mR

α,� ∼ U(0, 2π) and
mR

α,� ∼ U(0, π/6). Moreover, the concentration parameters
are distributed as κ� ∼ U(0, 10), corresponding to a range of
angular spreads from 18 to 104 degrees approximately.

First, it can be observed that the PDPs at AR
100 are shifted

and spread and, as a result, they cover negative values of the
excess delay. As delays are measured relative to the center

Fig. 5. Array-variant FCF for a wideband multi-confocal Elliptical channel
model (f0 = 2 GHz, MT = 1, MR = 100, δR = λ0/2, βR = 0,
τrms = 30 ns).

of the array, negative values indicate that there are scattered
signals reaching one extreme of the array before reaching its
center. For high spreads of mR

α,�, whereas the PDPs at AR
100

and AR
50 are significantly different in the region τ < |τq|

approximately, both are very similar for higher values of τ .
The similarities for τ > |τq| are due to the balancing effect
of negative and positive drifts of the signals scattered by
different ellipses, i.e., signals of low delay drifted towards
positive delays are balanced by those of higher delay drifted
towards negative values. This does not occur for the lowest
part of the PDP (τ < |τq|) due to a boundary effect, i.e.,
lowest-delay signals drifted toward negative delays cannot be
balanced by those of lower delay as they do not exist. The
similarity between the PDPs for τ > |τq| is only possible
because it has been assumed that mR

α,� ∼ U(0, 2π). Under this
assumption, the mean delay of the channel is not modified as
it was shown in Section III. On the other hand, when mR

α,�

are distributed over a smaller interval, there is a net drift of
the PDP over the array and the spreading is less pronounced,
as it can be seen in Fig. 4. This is caused by the concentration
of clusters towards specific directions, which eliminates the
balance effect of positive and negative drifts over the array.

In Fig. 5, the FCFs of the channel at the center and at
one extreme of the array (AR

1 ) are presented for different
spreads of the clusters’ mean AOA mR

α,�. As it can be seen, the
differences between the FCF at the center and at one extreme
of the array are accentuated when mR

α,� ∼ U(0, 2π) and they
are smaller when mR

α,� ∼ U(0, π/6). In agreement with the
analysis of (27)–(29) and Fig. 4, a larger spread of mα,�

results in a larger spread of the PDP over the array, hence
the reduction in the coherence bandwidth of the channel. On
the other hand, as it has been argued, a small spread of mα,�

leads to a drift of the PDP, which is reflected in the phase of
the FCF, but it cannot be noticed in its absolute value.

V. CONCLUSION

In this paper, the impact of the delay drift in the statistical
properties of both narrowband and wideband massive MIMO
channel models has been studied. It has been shown that delay
drifts can cause non-stationary properties of the channel in the
frequency and spatial domains. It has also been demonstrated
that the correlation between signals of different frequencies
depends on the position along the array and that is largely
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affected by the size of the array in massive MIMO systems.
Closed-form expressions of the FCF and SCF for a specific
massive MIMO GBSM have been obtained and analyzed.
Moreover, we have shown that the spread of the clusters’
mean AOA determines whether the PDP is subject to a net
delay drift or to a spreading effect. Finally, we can conclude
that extending conventional MIMO GBSMs to model massive
MIMO channels requires to consider the delay drift as a
source of decorrelation.
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