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Summary

This paper studies the peak-to-average power ratios (PAPRs) in multicarrier modulation (MCM) systems with

seven different orthogonal bases, one Fourier base and six wavelet bases. It is shown by simulation results that the

PAPRs of the Fourier-based MCM system are lower than those of all wavelet-based MCM (WMCM) systems. A

novel threshold-based PAPR reduction method is then proposed to reduce the PAPRs in WMCM systems. Both

numerical and simulation results indicate that the proposed PAPR reduction method works very effectively in

WMCM systems. Copyright # 2006 John Wiley & Sons, Ltd.
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1. Introduction

The principle of multicarrier modulation (MCM) is to

split the data stream into multiple subcarriers and

hence, capable of reducing the frequency-selective

fading into flat fading. This provides a great immunity

to multipath dispersion and can easily handle high

data rate transmissions by increasing the number of

subcarriers [1]. Thanks to these advantages, MCM

systems have been considered as a potential candidate

for the next generation wireless communications. One

of the most important MCM schemes is to employ

the Fourier base as the orthogonal base, resulting in

the well-known orthogonal frequency division multi-

plexing (OFDM). OFDM has widely been used in

wireless communication systems, such as digital vi-

deo broadcasting (DVB), digital audio broadcasting

(DAB), and wireless local area networks (WLANs).

The following questions may arise: Is the Fourier

base the best orthogonal base? Is there any other
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orthogonal base that performs better? Recently,

MCM schemes with different orthogonal bases were

studied in References [2–5], where it was believed

that the wavelet packet bases can be a good alternative

to the Fourier base. According to Reference [3],

discrete wavelet transform-based OFDM (DWT-

OFDM) provides much higher spectrum efficiency

than discrete Fourier transform-based OFDM (DFT-

OFDM). This is due to the fact that DWT-OFDM does

not need guard intervals and pilot tones, as required by

DFT-OFDM. It was shown in Reference [4] that the

bit error rate (BER) performance of a DWT-OFDM

system can be better than that of a DFT-OFDM system

under certain channel conditions.

The occurrence of high peaks in transmitted signals

is often a major problem in MCM systems. To

mitigate this problem, we can possibly either increase

the dynamic range of corresponding parts of the

communication system or clip the signals. The latter

yields an undesirable intercarrier and out-of-band

radiation [6]. From this perspective, it is desirable to

avoid using signals with high peaks. The peak-to-

average power ratios (PAPRs) of MCM signals with

different orthogonal bases can be quite different. To

the best of authors’ knowledge, however, the compar-

ison of the PAPRs for Fourier-based MCM systems

and wavelet-based MCM (WMCM) systems has not

been done so far. The motivation of this paper is to fill

the gap.

In the present paper, we first compare the PAPRs of

MCM systems with the Fourier base and six wavelet

bases. Simulation results show that the PAPRs of the

Fourier-based MCM system are always lower than the

PAPRs of the WMCM systems. This observation

holds regardless of the wavelet types and the digital

modulation schemes. In order to reduce the PAPRs

of WMCMs, we further propose a novel threshold

method. Both numerical and simulation results

justify that the proposed PAPR reduction method is

very effective in reducing the PAPRs of WMCM

systems, with only a slight degradation of the BER

performance.

The rest of this paper is organized as follows.

Section 2 briefly reviews the Fourier and wavelet

bases of MCM systems. In Section 3, the definition

of the PAPR is given. Section 4 demonstrates the

PAPR comparisons of MCM systems with different

orthogonal bases. The influence of digital modulation

schemes and subcarrier numbers on the PAPRs in

MCM systems is also studied in this section. Section 5

presents a novel PAPR reduction method. Finally, the

conclusions are drawn in Section 6.

2. Orthogonal Bases of MCM Systems

The Fourier base is a commonly used orthogonal base

in MCM systems, while wavelet packet bases have

attracted attention only recently. It is well known that

a wavelet transform stems from a Fourier transform.

Therefore, these two different kinds of transforms also

share some common properties.

2.1. Fourier Base

Fourier’s representation of functions as a superposi-

tion of sines and cosines has become ubiquitous for

both the analytical and numerical solutions of differ-

ential equations. This also applies to the analysis and

treatment of communication signals. The Fourier

transform works by translating a function in the

time domain into a function in the frequency domain.

The signal can then be analyzed for its frequency

contents. The Fourier transform is applicable to

slowly changing signals. The DFT and the inverse

DFT functions can be expressed as:

Ak ¼
1ffiffiffiffi
N

p
XN�1

n¼0

Bne�jwnk ðk ¼ 0; 1; . . . ;N � 1Þ ð1Þ

Bn ¼
1ffiffiffiffi
N

p
XN�1

k¼0

Ake
jwkn ðn ¼ 0; 1; . . . ;N � 1Þ ð2Þ

respectively.

It has been shown that the inverse DFT can be

considered as an orthogonal modulation of MCM,

since they have the same expression [1]. The trans-

mitted MCM signal with a Fourier base sðnÞ can be

expressed as:

sðnÞ ¼ 1ffiffiffiffi
N

p
XN
m¼1

XN�1

z¼0

xzðmÞejwnz ð3Þ

where N denotes the total number of subchannels and

xzðmÞ represent the transmitted symbols (BPSK or

8ASK symbols in this paper) in the zth subchannel.

2.2. Wavelet Base

Wavelet transforms can be derived from Fourier trans-

forms. The most interesting dissimilarity between

these two kinds of transforms is that the individual

wavelet functions are localized in space, while
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Fourier’s sine and cosine functions are not. The space

localization feature, along with wavelets’ localization

of frequency, makes many wavelet functions perform

better in impulse interference cancellation scenarios.

This is also a part of the important reasons why we

prefer using wavelet bases to modulate symbols in

MCM systems.

In the following, let us denote the nonnegative

integers by Zþ ¼ 0; 1; 2; . . .f g. The wavelet packet

functions wn(t) (n 2 Zþ) are defined by the following

recursive functions:

w2nðtÞ ¼
ffiffiffi
2

p X
k2Zþ

hðkÞwnð2t � kÞ ð4Þ

w2nþ1ðtÞ ¼
ffiffiffi
2

p X
k2Zþ

gðkÞwnð2t � kÞ ð5Þ

where h(k) and gðkÞ ¼ ð�1ÞkhðL� 1 � kÞ stand for a

pair of quadrature mirror filters (QMFs) of length L.

This means that the sequences h(k) and g(k) corre-

spond to the discrete impulse responses of a QMF

bank with perfect reconstruction. The function w0(t) is

the unique fixed point of the two-scale Equation (4)

with n¼ 0 and is exactly the scaling function from a

multiresolution analysis (MRA). Similarly, the wave-

let function w1ðtÞ can be obtained from Equation (5)

with n¼ 0. The wavelet packets fwnðtÞg, n 2 Zþ, have

the following two useful properties:

hwnðt � jÞ;wnðt � kÞi ¼ �j;k; j; k 2 Zþ ð6Þ

hw2nðt � jÞ;w2nþ1ðt � kÞi ¼ 0; j; k 2 Zþ ð7Þ

Equation (6) indicates that each individual wavelet

packet function is orthogonal with all its nonzero

translations. This feature is actually utilized to elim-

inate inter-symbol interference (ISI). From Equation

(7), it is clear that every pair of packets from the same

parent packet is orthogonal at all translations. There-

fore, the wavelet packets fwnðtÞg (n 2 Zþ) are a set of

orthogonal functions.

In WMCM, the baseband signal ckf g is obtained

from the wavelet reconstruction algorithm and can be

given by:

c
ðjÞ
k ¼ 1ffiffiffi

2
p

X
l

gðn� 2lÞcðj�1Þ
l þ hðn� 2lÞdðj�1Þ

l

h i

ð8Þ

where fcðjÞk g and fdðjÞk g are the kth symbols in the jth

subband. If the Haar wavelet is used, then the follow-

ing relations hold:

gð0Þ ¼ gð1Þ ¼ 1; gðkÞ ¼ 0; k > 1 ð9Þ

hð0Þ ¼ �hð1Þ ¼ 1; hðkÞ ¼ 0; k > 1 ð10Þ

The transmitted baseband signals are again trans-

formed into subband signals using the wavelet decom-

position algorithm and can be expressed as:

c
ðj�1Þ
k ¼ 1ffiffiffi

2
p

X
l

rð2k � lÞcðjÞl ð11Þ

d
ðj�1Þ
k ¼ 1ffiffiffi

2
p

X
l

�ð2k � lÞcðjÞl ð12Þ

where rðkÞf g and �ðkÞf g are the decomposition se-

quences of wavelets. Similarly, in case of the Haar

wavelet, we have

rð�1Þ ¼ rð0Þ ¼ ��ð�1Þ ¼ �ð0Þ ¼ 1 ð13Þ

rðkÞ ¼ �ðkÞ ¼ 0; k ¼ others ð14Þ

The decomposition and reconstruction processes of

wavelet functions are shown in Figure 1, where ‘#’

means the decomposition and ‘"’ indicates the recon-

struction.

3. The PAPR

Figure 2 demonstrates a simple MCM system. The

high PAPR of uncoded MCM signals is a major

barrier to the widespread acceptance of MCM. It is

well known that the peak transmit power is often

limited, either by regulatory or application con-

straints. This has the effect of reducing the average

Fig. 1. The decomposition and reconstruction of wavelet
functions.

PAPRS IN MULTICARRIER MODULATION SYSTEMS 313

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:311–318



power allowed by MCM, which in turn reduces the

range of MCM transmissions [7]. Thus, to maintain

spectral efficiency, a linear amplifier with a large

dynamic range is required. As a result, however, the

power efficiency which influences the BER perfor-

mance of MCM systems will be degraded signifi-

cantly. Therefore, we must find a good tradeoff

between the PAPRs and the BER performance of

MCM systems.

Assume xðnÞ is a signal obtained after an orthogo-

nal modulation. Then, the PAPR is defined as:

PAPR ðdBÞ ¼ 10 log10

maxnf xðnÞj j2g
Ef xðnÞj j2g

¼ maxð xðnÞj j2; n ¼ 0; 1; . . . ; K � 1Þ
1
K

PK�1
n¼0 xðnÞj j2

ð15Þ

where E denotes the statistical average operator.

4. PAPR Simulation Results and
Discussions

In this section, the PAPRs of MCM systems with

seven different orthogonal bases are investigated. One

is a Fourier base. The other six are all wavelet bases

with different types and parameters, that is, the Haar

wavelet, the Daubechies wavelets (db4 and db10), the

Biorthogonal wavelets (bio3.3 and bio5.5), and the

Symlets wavelet (sym10). Note that we have denoted

the Daubechies wavelets by db�, where � represents

the order. We chose �¼ 4 and �¼ 10 in this paper.

Analogously, the Biorthogonal wavelets are denoted

as bioNrNd, where r and d stand for reconstruction and

decomposition, respectively. Here, we selected two

cases: Nr¼Nd¼ 3 and Nr¼Nd¼ 5.

It is widely accepted that different digital modula-

tion schemes can result in different PAPRs. Figure 3

shows the comparison of the PAPRs of MCM systems

employing the seven different orthogonal bases by

using the BPSK modulation scheme. The correspond-

ing PAPR results of MCM systems with the 8ASK

modulation scheme are illustrated in Figure 4. In both

figures, the total number of subcarriers was fixed to be

N¼ 64. It is obvious from Figures 3 and 4 that the

PAPRs of the Fourier-based MCM system are always

the lowest, no matter of the chosen digital modulation

scheme. Among the six kinds of wavelet bases, the

Fig. 2. A multicarrier modulation (MCM) system.

Fig. 3. The peak-to-average power ratio (PAPR) comparison
of MCM systems with BPSK when the subcarrier number

is 64.

Fig. 4. The PAPR comparison of MCM systems with 8ASK
when the subcarrier number is 64.
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Haar wavelet results in the lowest PAPRs, while the

Symlets wavelet the highest. The PAPRs for the

Daubechies wavelets are even lower than those for

the biorthogonal wavelets. For the Daubechies wave-

lets, dbK, the bigger the value of K, the higher the

PAPRs. For the Biorthogonal wavelets, the PAPRs of

bio3.3 are in average higher than those of bio5.5.

According to Reference [8], however, the MCM

system with the Haar wavelet has the worst BER

performance if the PAPRs cannot exceed the dynamic

range of the linear amplifier. For the Daubechies

wavelets, db�, the bigger the value of �, the better

the BER performance we get.

Figures 5 and 6 show us the PAPR curves of MCM

systems with BPSK and 8ASK, respectively, when the

subcarrier number N ¼ 128. From both figures, simi-

lar conclusions to those obtained from Figures 3 and 4

can be drawn by comparing the PAPRs for different

orthogonal bases. The comparison of Figure 3 and

Figure 5 tells us that the larger number N of sub-

carriers in average increases the PAPRs in MCM

systems with the BPSK scheme. By comparing

Figures 4 and 6, we can also conclude that the PAPRs

are in average increased with the increase of the

subcarrier number in MCM systems with 8ASK.

5. A Novel PAPR Reduction Method

Wavelet transforms have a property that they always

concentrate energies on parts of signals with sharp

changing rates. This property has widely been used in

image processing, such as wavelet de-noising [9–11].

Next, we will show how to utilize this property to

reduce the PAPRs in WMCM systems with a little

reconstruction lost.

By taking the advantage of the fact that the wavelet

transforms concentrate energies on only a certain

number of bases, we can choose an energy threshold

T and define a new sequence y(n) with the relation to

the signal sequence x(n), n ¼ 0; 1; . . . ; K � 1, as

follows:

yðnÞ ¼ 0; if xðnÞj j2< T

xðnÞ; if xðnÞj j2� T

�
ð16Þ

Assume the energies of M bases are smaller than the

given threshold T. Then, let us define another new

sequence x1ðiÞ:

x1ðiÞ ¼ yðnÞ; when yðnÞ 6¼ 0 ð17Þ

for i¼ 0, 1, . . . , K�M� 1 and n¼ 0, 1, . . . , K� 1. It

follows that the new PAPR can be calculated, simi-

larly to Equation (15), as follows:

PAPR0ðdBÞ ¼ 10 log10

maxif x1ðiÞj j2g
Ef x1ðiÞj j2g

¼ maxðjx1ðiÞj2; i ¼ 0; 1; . . . ; K �M � 1Þ
1

K�M

PK�M�1
i¼0 jx1ðiÞj2

ð18Þ

Let us choose the threshold T in such a way that it is

less than the average signal power, that is,

Fig. 5. The PAPR comparison of MCM systems with BPSK
when the subcarrier number is 128.

Fig. 6. The PAPR comparison of MCM systems with 8ASK
when the subcarrier number is 128.
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T < ð1=KÞ
PK�1

n¼0 xðnÞj j2 holds. Obviously, we have

the following relation

1

K

XK�1

n¼0

xðnÞj j2 <
1

K �M

XK�M�1

n¼0

x1ðnÞj j2 ð19Þ

The comparison of Equations (15), (18), and (19)

makes clear that

PAPR > PAPR0 ð20Þ

holds. Therefore, the PAPR value is effectively re-

duced by using this threshold method. The confronted

task now is to choose a proper value for the threshold

T. From Equations (16) and (17), it is obvious that the

higher the value of T, the larger the value of M. This

implies that the PAPRs will be reduced more. On the

other hand, the higher value of T results in more

distortions on transmission signals. Consequently,

much more information will get lost and the BER

performance will be degraded. Given a value of T,

different wavelet bases perform differently in redu-

cing PAPRs due to their own characteristics. In this

paper, we chose the Haar wavelet as an example to

investigate the PAPRs and BER performance of MCM

systems employing the above described PAPR reduc-

tion method.

It is relatively simple to design the receiver side of

MCM systems with the proposed PAPR reduction

method. Only an additional forward transfer channel

is required to carry the label information of subspaces

whose energies were set to be zero. Then, we have to

pad zeros to the subspaces which are made zero at the

transmitter side. After the serial to parallel transfor-

mation, the DWT can be proceeded to get deorthogo-

nal signals.

In our simulation, the average power of one multi-

carrier symbol was set to be 1. Additionally, BPSK

was used as a digital modulation scheme. Then,

choosing the threshold T¼ 0.3, we compare the

PAPRs of the Haar WMCM systems with and without

the PAPR reduction method in Figure 7. In the

employed WMCM system, the total number of sub-

channels was set to be N¼ 512. Figure 7 clearly

illustrates that the PAPRs are reduced greatly by using

the proposed threshold method. In the figure, R1¼ 1.1

dB and R2¼ 1.4 dB were chosen as two examples to

show us the possible reduction values of PAPRs.

Figure 8 demonstrates the BER performance compar-

ison of the Haar WMCM systems with and without the

PAPR reduction method. We have assumed that the

power amplifier always works in its linearity range.

From this figure, we can find that the BER perfor-

mance is degraded only slightly by employing the

threshold method to reduce PAPRs in the WMCM

system. For example, the BER only increases from

0.6� 10� 4 to 10� 4 when the signal-to-noise ratio

(SNR) is 12 dB. At the BER¼ 10� 4, we need to pay

an extra 0.5 dB power by using the PAPR reduction

method. It is important to mention that the BER is

increased with the increase of the SNR. Therefore, we

must find a good tradeoff between the PAPRs and the

BER performance. A further study is performed con-

cerning the influence of different values of T on the

Fig. 7. The PAPR comparison of Haar WMCM systems with
and without the PAPR reduction method.

Fig. 8. The BER comparison of Haar WMCM systems with
and without the PAPR reduction method.
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PAPRs and the BER performance of WMCM systems.

Detailed investigations show that the larger value of T

will result in smaller PAPRs and higher BERs. Never-

theless, the proposed threshold method turned out to

be a promising and effective method to reduce the

PAPRs in WMCM systems.

6. Conclusion

In the present paper, we have studied the PAPRs in

MCM systems with seven different orthogonal bases.

One orthogonal base is the well-known Fourier base

and the other six are all based on wavelet packets with

different wavelet types and parameters. Simulation

results show that the Fourier-based MCM outperforms

the WMCM in terms of the PAPRs.

A novel PAPR reduction method has been proposed

to reduce the PAPRs of WMCM systems. We have

also investigated the BER performance difference of

the WMCM systems with and without the PAPR

reduction method assuming that the power amplifier

works in the linearity range. Simulation results show

that the proposed threshold method can significantly

reduce the PAPRs of WMCM systems by paying the

price of slight BER performance degradation. It is

important to stress here that the power amplifier has

been assumed to work in the linearity domain. If the

values of the original PAPRs exceed the dynamic

range of the power amplifier, we will get much worse

BER performance, which may be even worse than the

BER performance using the proposed threshold

method. In this case, we can gain even more from

the PAPR reduction method. This highlights the

advantage of the proposed threshold method in

WMCM systems.
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