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ABSTRACT High-mobility wireless communication systems have attracted growing interests in recent
years. For the deployment of these systems, one fundamental work is to build accurate and efficient
channel models. In high-mobility scenarios, it has been shown that the standardized channel models,
e.g., IMT-Advanced (IMT-A) multiple-input multiple-output (MIMO) channel model, provide noticeable
longer stationary intervals than measured results and the wide-sense stationary (WSS) assumption may be
violated. Thus, the non-stationarity should be introduced to the IMT-A MIMO channel model to mimic
the channel characteristics more accurately without losing too much efficiency. In this paper, we analyze
and compare the computational complexity of the original WSS and non-stationary IMT-A MIMO channel
models. Both the number of real operations and simulation time are used as complexity metrics. Since
introducing the non-stationarity to the IMT-AMIMO channel model causes extra computational complexity,
some computation reduction methods are proposed to simplify the non-stationary IMT-A MIMO channel
model while retaining an acceptable accuracy. Statistical properties including the temporal autocorrelation
function, spatial cross-correlation function, and stationary interval are chosen as the accuracy metrics for
verifications. It is shown that the tradeoff between the computational complexity and modeling accuracy can
be achieved by using these proposed complexity reduction methods.

INDEX TERMS IMT-A MIMO channel model, non-stationary IMT-A MIMO channel model, model
complexity analysis, statistical properties, complexity reduction methods.

NOMENCLATURE
(·)∗ Complex conjugation operation.
λ Wavelength.
b·c Floor function.
max(·) Maximum.
ρ Polarization.
τn Normalized delay of the n-th (n = 1, · · · ,N )

cluster.

The associate editor coordinating the review of this manuscript and

approving it for publication was Walid Al-Hussaibi .

E{·} Statistical expectation operator.
a (t) Distance between the last bounce/scatterer and

mobile station (MS) at time t .
c (t) Distance between base station (BS) and the first

bounce/scatterer at time t .
L Mean value of the number of newly generated

clusters.
M Number of rays within each cluster.
N Number of clusters.
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Pn Power of the n-th cluster.
S Number of transmitter (Tx) antenna elements.
sASA Log-normal distributed random variable (RV) of

angle spread of arrival (ASA).
sASD Log-normal distributed RV of angle spread of

departure (ASD).
sDS Log-normal distributed RV of delay spread (DS).
sSF Log-normal distributed RV of shadow fading

(SF).
sK Log-normal distributed RV of Rician K-factor.
T The number of time samples.
U Number of receiver (Rx) antenna elements.
v, θv Speed and mobile direction of MS, respectively.
vc, θc Speed and mobile direction of mobile scatterer,

respectively.
φn,m Angle of departure (AoD) related to the m-th

(m = 1, · · · ,M ) ray within the n-th cluster.
8m,n Random initial phases related to the m-th ray

within the n-th cluster.
υn,m Doppler frequency component related to them-th

ray within the n-th cluster.
ϕn,m Angle of arrival (AoA) related to the m-th ray

within the n-th cluster.

I. INTRODUCTION
The deployments of wireless communication systems in
trains or vehicles have become more popular in recent years.
They aim at providing continuous wireless access services
even in high-mobility scenarios. To design and explore the
wireless communication systems in high-speed trains (HSTs)
or vehicle-to-vehicle (V2V) applications, it is fundamental to
investigate the underlying propagation channel characteris-
tics and to develop accurate and efficient models to mimic
the realistic wireless channels.

Most of the existing standardized channel models assume
that channels satisfy the wide-sense stationary (WSS)
assumption. However, measurement results [1]–[9] have
proved that the measured stationary intervals, defined as the
maximum time over which the WSS assumption is valid,
for high-mobility scenarios are much shorter than those of
standardized channel models. Therefore, it is crucial to take
non-stationarity into account in developing channel mod-
els for high-mobility scenarios [10]–[17]. As an example,
in [18] we proposed a non-stationary IMT-A multiple-input
multiple-output (MIMO) channel model to investigate the
time evolution of wireless channels in high-mobility sce-
narios by considering small-scale time-variant parameters.
Supported by a comprehensive analysis of the simulation
results, it was demonstrated that the proposed non-stationary
IMT-AMIMO channel model can accurately mimic the char-
acteristics of high-mobility channels [18].

Realistic channel models should be sufficiently accurate in
modeling the underlying channel characteristics while retain-
ing an acceptable computational complexity of generating
the channel coefficients. Therefore, two criteria including

the modeling accuracy and the efficiency should be both
considered in evaluating the performance of any developed
channel models. In general, introducing the non-stationarity
will increase the complexity of the channel model, which
are crucial for system-level simulation or other applica-
tions. However, the computational complexity brought by the
non-stationarity has not been discussed in existing research
work.

In the literature, the complexities of some channel mod-
els have been investigated. In [19], the complexities of
correlation-based and geometric-based stochastic MIMO
channel modeling methods were compared. It was shown
that when the numbers of antenna elements increase to
4×4 MIMO or higher, the geometric method requires less
descriptive parameters than correlation-based method [19].
In [20], the computational complexities of drop-based radio
channel simulation were calculated based on the WINNER
II channel model. However, to the best of our knowledge,
the computational complexities of the standardized IMT-A
MIMO channel model have not been well-quantized and
thoroughly investigated.

To reflect real channels as accurately as possible,
channel models become very complicated, especially with
a large system bandwidth and a large number of antenna
elements [21].With multiple links and numerous drops, using
complicated channel models for the system-level simula-
tions would require large time consumption and computa-
tion resources. Thus, the accuracy-complexity tradeoff must
be considered in the modeling procedure. Recently, some
complexity reduction methods were proposed to ensure the
implementation efficiency of channel models. Thus, some
complexity reduction methods were proposed to ensure the
implementation efficiency of the channel models. In [22],
an alternative implementation called non-uniform scatter-
ing cross section was proposed to efficiently implement the
GBSM. In [23], three different levels of modeling complex-
ity were defined in order to limit the computational effort
for the extensive simulations of a stochastic radio chan-
nel model. In [24], a low-complexity algorithm exploiting
the low-dimensional subspace spanned by multidimensional
prolate spheroidal sequences was presented for the com-
puter simulation of GBSMs. A similar approach was also
used in [25] to overcome the complexity constraint in the
geometry-based modeling of diffuse components. In [26],
the IMT-A MIMO channel model was extended to a device-
to-device (D2D) channel and the Doppler response-based fast
fading channel generation was proposed to reduce the simu-
lation time. Several potential simplifications of the GBSMs
to reduce the complexity with minimal impact on accu-
racy were investigated in [27]. For urban micro-cellular
scenarios, the authors in [28] proposed an improved IMT-
A GBSM which can reduce the complexity without losing
much accuracy. In [29], a vehicular channel emulator based
on field-programmable gate array (FPGA) is implemented
for real-time performance evaluation of IEEE 802.11p
transceivers.
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The introduction of the non-stationarity to the channel
model causes extra complexity due to the periodic update
of time-variant parameters. A cluster-based non-stationary
vehicular channel model was developed with low computa-
tional complexity in [30]. A complexity reduction method
aiming at determining the minimum number of the rel-
evant clusters was applied to the real-time emulation of
non-stationary channels in [31]. A compact channel emu-
lation scheme with low complexity on a FPGA platform
was developed and validated in [32]. In [33] and [34], real
time channel emulation methods and signal processing algo-
rithmswere introduced for non-stationary vehicular scenarios
based on geometry-based stochastic channel models. The
non-stationary fading process was partitioned into a sequence
of local stationarity regions and a subspace projection of the
propagation path parameters was adopted to compress the
time-variant channel impulse response.

Quantizing the complexity of channel models is useful
for the fast system-level simulations and real-time imple-
mentation of emulators. On basis of this work, the time-
consuming steps can be found and then the computational
complexity can be reduced. In [18], the accuracy of the non-
stationary IMT-A MIMO channel model has been verified
but the complexity has not been assessed. For practical appli-
cations of the non-stationary IMT-A MIMO channel model,
the resulting increase of the computational complexity should
be evaluated andmethods to reduce this complexity need to be
provided.

Reflecting on the aforementioned research gaps, in this
paper we analyze the complexity of the original WSS
IMT-A MIMO channel model by using the number of real
operations (ROs) and simulation time as metrics. Based on
our previous work [18], the complexity of the developed
non-stationary IMT-A MIMO channel model is compared
with that of the original WSS IMT-A MIMO channel model.
Furthermore, some complexity reduction methods are pro-
posed to improve the efficiency of the non-stationary IMT-A
MIMO channel model for system-level simulations.

The novelty and main contributions of this paper are
summarized as follows.

(1) We derive and compare the computational complexi-
ties of the original WSS and non-stationary IMT-A MIMO
channel models. Two metrics, i.e., the number of ROs and
simulation time, are used to quantize the complexity of the
channel models. The impacts of introducing non-stationarity
into the IMT-A MIMO channel model on its computational
complexity are thoroughly evaluated.

(2) To simplify the non-stationary IMT-A MIMO chan-
nel model, two complexity reduction methods are proposed
to offer a better tradeoff between the model accuracy and
complexity. The proposed methods are useful to improve the
efficiency of non-stationary IMT-A MIMO channel models
and can provide guidance for the simplification of other non-
stationary channel models.

(3)We further analyze the tradeoff between the accuracy
and complexity of various simplified non-stationary IMT-A

TABLE 1. Required number of ROs for typical mathematical
operations [19].

MIMO channel models by adjusting different channel model
parameters.

In this study, the complexity of the original and
non-stationary IMT-A MIMO channel models are qualified.
The impacts of the introduction of non-stationarity on the
computational complexity of channel models are evaluated.
The proposed complexity reduction methods can be used to
improve the efficiency of the non-stationary IMT-A MIMO
channel model and to provide references to applications of
other non-stationary channel models.

The remainder of this paper is organized as follows.
The computational complexities of the original WSS and
non-stationary IMT-A MIMO channel models are analyzed
in Section II and Section III, respectively. The comparison
results are shown in Section IV. The complexity reduction
methods are proposed in Section V. Finally, the conclusions
are drawn in Section V.

II. COMPUTATIONAL COMPLEXITY ANALYSIS OF THE
ORIGINAL WSS IMT-A MIMO CHANNEL MODEL
In this section, we analyze the complexity of generating
time-variant MIMO channel coefficients in the original WSS
IMT-A MIMO channel model in terms of the required num-
ber of ROs, following the coefficients generation procedure
detailed in [35]. The analysis of computational complexity is
in terms of the number of real operations (ROs) introduced in
[19] and [20]. The number of ROs of anymathematical opera-
tions is calculated based on four basic operations, namely real
addition, real multiplication, real division, and table lookup,
with each operation requiring one RO [19]. Table lookup
is to find values in a precalculated and stored table with a
simple array indexing operation, which can save significant
processing time. Complex number and other mathematical
operations are transformed into or approximated by these
four basic operations. For example, complex multiplication
is corresponding to the multiplication between two complex
numbers, which requires 6 ROs (4 real multiplications and
2 real addition). It should be noted that multiplying a real
number x by the imaginary unit j, i.e., jx, does not need any
RO because no result is calculated. Similarly, the complex
division requires 11 ROs and the complex addition needs
2 ROs. Table 1 illustrates the required number of ROs for
several mathematical operations.
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Please note that in the following analysis, only the process-
ing required for generating time-variant samples for a single
link is considered. All the pre-processing like correlation
matrix factorization or lookup table generation is excluded
from the examination. If a system-level simulation is consid-
ered, i.e., there are K (K > 1) links in the system, then the
total number of ROs should be obtained by multiplying K by
the reported RO numbers per link. The path loss (PL), which
determines the signal-to-noise ratio (SNR), is described by
different models according to the scenarios and line-of-sight
(LoS) conditions, as summarized in Table A1-2 in [35].
The number of ROs for calculating the path loss is between
6 and 29, which is the same for both the original and the
non-stationary IMT-A MIMO channel models. Then, it is
excluded from the complexity comparison, as in [19] and
[20]. The number of ROs required for single-link channel
coefficient generation in the original WSS IMT-A MIMO
channel model is clarified as follows.

A. GENERATION OF CORRELATED LARGE
SCALE PARAMETERS (LSPS)
In the original WSS IMT-A MIMO channel model, there are
five LSPs, includingDS,ASA,ASD, SF, andRicianK -factor.
All these LSPs follow log-normal distributions and they can
be generated following the procedure described in [36].

First, the cross-correlation between these Z = 5
LSPs is generated independently to the LSPs by a linear
transformation, i.e.,

s̃Z×1 =
√
CZ×Z ξZ×1 (1)

where CZ×Z is the correlation matrix as defined in [35].
Correlation matrix factorization is excluded from the com-
plexity analysis because the matrix will not vary from link
to link and the factorization can be pre-processed. Note that
ξZ×1 is a vector of Z independent zero-mean Gaussian RVs,
while s̃Z×1 =

[
s̃DS, s̃ASA, s̃ASD, s̃SF, s̃K

]T . From Table 1,
generating a Gaussian RV requires 72 ROs. Therefore, 72 ×
5 = 360 ROs are required to generate the vector ξZ×1. The
multiplication of a matrix of the square roots of the 5×5 cor-
relation matrix by a 5×1 vector requires 5×5 real multiplica-
tions and 5×4 real additions. As a result, the required number
of ROs is

CLS_corr = (72+ 5+ 4)×5 = 405. (2)

Then, we need to transform the elements of ξZ×1 into
log-normal distributed RVs. The log-normal distributed RV
of the DS is given by

sDS = 10(σDS s̃DS+µDS) (3)

where µDS is the logarithmic mean of the distribution of
DS and σDS is the logarithmic standard deviation of the
distribution of DS. Similarly, the log-normal distributed RV
of the ASA/ASD is given by

sASA/ASD = 10(σASA/ASD s̃ASA/ASD+µASA/ASD) (4)

where µASA/ASD is the logarithmic mean of the distribu-
tion of ASA/ASD and σASA/ASD is the logarithmic standard
deviation of the distribution of ASA/ASD. The log-normal
distributed RV of the SF is given by

sSF = 10(σSF s̃SF/10) (5)

where σSF is the logarithmic standard deviation of the
distribution of SF. Finally, the log-normal distributed RV of
K -factor is given by

sK = 10(σK s̃K+µK /10) (6)

where µK is the logarithmic mean of the distribution of
SF and σK is the logarithmic standard deviation of the
distribution of K -factor.
Note that calculating 10x = ex ln 10 needs 17 ROs (15 for

calculating the exponential, 1 for multiplexing, and 1 for
logarithm). Then, 2 ROs are needed to calculate x for sDS and
sASA/ASD, and 3 ROs for sK . For sSF, calculating x requires
2 ROs (division and multiplication). Thus, transforming ele-
ments of ξZ×1 into 5 log-normal distributed RVs requires

Ctrans = 5× 17+ 3×2+ 2+ 3 = 96. (7)

The total number of the ROs required to generate the
correlated LSPs in the original WSS IMT-A MIMO channel
model is

CLS = CLS_corr + Ctrans = 501. (8)

B. GENERATION OF SMALL SCALE PARAMETERS (SSPS)
1) GENERATE DELAYS
The delay of the n-th cluster follows an exponential
distribution and it can be expressed as

τn
′
= −rτστ ln (Xn) (9)

where rτ is the delay distribution factor, στ is the DS, and
Xn is a uniform distributed RV. Calculations of (9) require
1 logarithm and 2 real multiplications, in addition to 5 ROs to
generate the uniform distributed RV Xn. The delays τn′ can be
subtracted by the smallest one and then sorted in a descending
order to get normalized delays τn. The normalization process
costs 1 RO for each delay, while the descending order costs
(N − 1)2 ROs. Thus, the number of ROs required to generate
the delays is

Cτ = (2+ 1+ 5+ 1)N+(N − 1)2=N 2
+7N+1. (10)

2) GENERATE CLUSTER POWERS
The cluster powers are calculated by

Pn = exp
(
−τn

rτ − 1
rτστ

)
10−

Zn
10 (11)

where Zn is a Gaussian RV representing the per cluster
shadowing term. Calculating the left exponential costs 4 ROs
(2 multiplications, 1 division, and 1 subtraction) and 15 ROs
for the exponential function. 1 RO (multiplication) is required
to multiply the left term and the right term.
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Calculating the expression 10−
Zn
10 costs 1 real division,

17 ROs for 10x , and 72 ROs to generate the Gaussian RV Zn.
The power will be normalized so that the sum of all cluster
powers is equal to one. This normalization process costsN−1
real additions and N real divisions. Therefore, the number of
ROs to generate the cluster powers is

CP=(4+15)+(17+1+72)+1+N+(N − 1)=2N+109.

(12)

3) GENERATE AOAS AND AODS
In the original WSS IMT-AMIMO channel model, the power
azimuth spectrum (PASs) are modeled as the following
wrapped Gaussian distributions for all the scenarios except
for the indoor hot spot (InH) one

ϕn
′
=

2σAoA

√
− ln

(
Pn

maxPn

)
C

. (13)

For the InH scenario, the PAS is modeled as the following
Laplacian distribution

ϕn
′
=

2σϕ

√
− ln

(
Pn

maxPn

)
C

(14)

where C is a tabulated scaling factor and σAoA = σϕ/1.4 is
the standard deviation of the AoA. The maximum operation
needs N −1 ROs, which only needs to be carried out once for
all clusters. In both cases, calculating ϕn′ costs 2 real divi-
sions, 1 logarithm, 1 square root, and 2 real multiplications,
totaling 6 ROs per cluster.

To introduce random variation, we have

ϕn = Xnϕn′ + Yn + ϕLoS (15)

where Xn is a uniform distributed RV within the discrete set
of {1, -1}, Yn is a Gaussian distributed RV, and ϕLoS is the
LoS direction defined in the network layout. From Table 1,
Xn needs 5 ROs and Yn needs 72 ROs. In (15), 1 multiplica-
tion and 2 additions are also required. Thus, to generate ϕn,
we need (5+ 72+ 1+ 2) = 80 ROs per cluster.
The AoA of them-th ray of the n-th cluster is calculated by

using

ϕn,m = ϕn + cAoAαm (16)

where cAoA is the tabulated cluster azimuth spread of arrival
angles and αm is the tabulated offset angle. Only 2 ROs
(1 multiplication and 1 addition) are needed for each ray.
Therefore, the required number of ROs is

Caz=(N − 1)+2 ((6+80)N+2NM)=173N+4MN − 1.

(17)

4) RANDOM COUPLING OF RAYS WITHIN CLUSTERS
The random coupling of AoDs φn,m to AoAs ϕn,m can be
realized by assigning a RV with a uniform distribution to the

M rays within a cluster n, or within a sub-cluster in case of
two strongest clusters. Thus, the required number of ROs is

Ccoup = 5MN . (18)

Finally, from (10), (12), (17), and (18), the total number of
ROs to generate SSPs is

CSS = Cτ + CP + Caz + Ccoup

= N 2
+ 182N + 9MN + 109. (19)

C. GENERATION OF INITIAL CHANNEL COEFFICIENTS
The required number of ROs for generating the initial (first)
channel coefficients in the original WSS IMT-A MIMO
channel model can be calculated as

Ccc = C8 + CFP + CH (20)

where C8, CFP, and CH represent the required numbers of
ROs for random initial phases 8m,n, field pattern (FP), and
channel coefficient matrix H, respectively.

1) DRAW RANDOM INITIAL PHASES AND FIELD PATTERNS
For each ray m of each cluster n and for four
different polarization combinations, random initial phases{
8VV
n,m,8

VH
n,m,8

HV
n,m,8

HH
n,m
}

need to be drawn. The ini-
tial phases have a uniform distribution within [−π, π).
According to Table 1, the generation of uniform distributed
RVs costs 5 ROs. Thus, we can get

C8 = 5ρ2MN . (21)

Here, ρ is related to polarization, i.e., ρ = 2 in case of dual
polarization and ρ = 1 in case of single polarization.
The measured FPs could have different representations

and therefore interpolation complexities as well. Usually,
we can use linear interpolation of complex samples takenwith
pre-defined resolution (typically 1◦) [20]. Its computational
complexity, per polarization, will be determined with two
real subtractions, one real division, two complex additions,
and one multiplication between a real number and a complex
number, totaling 2 + 1 + 2 × 2 + 2 × 1 = 9 ROs. Then,
the complexity of generating the field pattern can be written
as

CFP = 9 (U + S) ρMN . (22)

2) GENERATE CHANNEL COEFFICIENTS FOR EACH CLUSTER
n AND EACH Rx AND Tx ELEMENT PAIR u, s
For the N − 2 weakest clusters and uniform linear arrays
(ULAs), the channel coefficients are given by [35]

hu,s,n (t)

=

√
Pn

×

M∑
m=1


[
FRx,u,V

(
ϕn,m

)
FRx,u,H

(
ϕn,m

) ]TAn,m

[
FTx,s,V

(
φn,m

)
FTx,s,H

(
φn,m

) ]
exp

[
j2πλ−1

(
dssin

(
φn,m

)
+dusin

(
ϕn,m

))]
exp

[
j2πυn,mt

]
.
(23)
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Here, An,m is used to represent the polarization matrix.
In case of dual polarization,

An,m =

[
exp

(
j8VV

n,m
) √

κ−1 exp
(
j8VH

n,m
)

√
κ−1 exp

(
j8HV

n,m
)

exp
(
j8HH

n,m
) ]

(24)

which requires 4 exponentials, 1 square root, 1 real division,
and 2 real multiplications. It should be noted that κ is the
cross polarization ratio (XPR) which is determined by the
scenario [35]. Thus, the required number of ROs to calculate
An,m is 4×15+1+1+2×2 = 66 ROs. Then, calculating the
first row (multiplication between the three matrices) in (23)
needs 6 complex multiplications and 3 complex additions,
which requires 6× 6+ 3× 2 = 42 ROs.
If ρ = 1, the polarization matrix An,m is reduced to

exp
(
j8n,m

)
, which requires 15 ROs to obtain the expo-

nential. Then, the first row in (23) will be reduced to[
FRx,u

(
ϕn,m

)]T [exp (j8n,m
)] [

FTx,s
(
φn,m

)]
, which requires

2 complex multiplications, i.e., 2× 6 = 12 ROs.
The second row in the curly brackets of (23) requires

2 sines, 4 real multiplications, 1 real division, 1 real addition,
and 1 exponential, i.e., 2× 7+ 4+ 1+ 1+ 15 = 35 ROs.

The third row in the curly brackets of (23) is exp
[
j2πυn,mt

]
where υn,m is the Doppler frequency component of ray n,m
and given by

υn,m = λ
−1v cos

(
ϕn,m − θv

)
. (25)

Thus, it requires 1 real subtraction, 1 cosine, 3 real multipli-
cations, 1 real division, and 1 exponential, i.e., 1 + 8 + 3 +
1+ 15 = 28 ROs per ray per cluster.

To multiply the first, second, and third rows together in
(23), we need two complex multiplications need 6× 2 = 12
ROs per ray per cluster. To sum up the channel coefficients of
M rays,M−1 complex additions are required, corresponding
to 2(M − 1) ROs per cluster.

Thus, for the N − 2 weakest clusters, the number of ROs
to produce their channel coefficients is

CH_weak = (N − 2)US

×((66+ 42+ 35+ 28+ 12)M

+ 2 (M − 1)), if ρ = 2; (26a)

CH_weak = (N − 2)US

×((15+ 12+ 35+ 28+ 12)M

+ 2 (M − 1)), if ρ = 1. (26b)

For the two strongest clusters, there are three sub-clusters
with fixed delay offsets {0, 5, 10 ns} in each cluster. Twenty
rays of a cluster are mapped to these sub-clusters. Rays with
different delay offsets are not added together. So, 2 real
additions are reduced. Thus, when computing the sum of rays,
the number of ROs to generate the channel coefficients of the
two strongest clusters is

CH_strong = 2US

×((66+ 42+ 35+ 28+ 12)M

+ 2 (M − 3)), if ρ = 2; (27a)

CH_strong = 2US

×((15+ 12+ 35+ 28+ 12)M

+ 2 (M − 3)), if ρ = 1. (27b)

The total number of ROs required for generating the
channel coefficient matrix is

CH = CH_weak + CH_strong

= (185M − 2)USN − 8US, if ρ = 2; (28a)

CH = CH_weak + CH_strong

= (104M − 2)USN − 8US, if ρ = 1. (28b)

Then, (20) can be calculated as

Ccc = (185M − 2)USN − 8US

+ 18 (U + S)MN + 20MN , if ρ = 2; (29a)

Ccc = (104M − 2)USN − 8US

+ 9 (U + S)MN + 5MN , if ρ = 1. (29b)

Therefore, the computational complexity to generate the ini-
tial (first) channel response in terms of the number of ROs
is

Cinitial = CLS + CSS + Ccc. (30)

In case of dual polarization or single polarization,

Cinitial

= 501+ N 2
+ 182N + 29MN + 109+ (185M − 2)USN

− 8US + 18(U + S)MN , if ρ = 2; (31a)

Cinitial

= 501+ N 2
+ 182N + 14MN + 109+ (104M − 2)USN

− 8US + 9(U + S)MN , if ρ = 1. (31b)

D. GENERATION OF WSS CHANNEL COEFFICIENTS FOR
MULTIPLE TIME SAMPLES
The operations for generating the initial channel coefficients
are only implemented once, and the channel parameters
including the cluster number, the powers, delays, AoAs and
AoDs of clusters will not change with time in the original
WSS IMT-A MIMO channel model. With time evolution,
only the third row of (23) needs to be updated, which cor-
responds to 26 ROs per time sample. Besides, one complex
multiplication with 6 ROs is needed to multiply the third
row to the other parts. To sum up the channel coefficients of
different rays in (23), 2(N−2)(M−1)US ROs are required for
theN−2 weakest clusters, while 4(M−3)US ROs are needed
for the two strongest clusters. Thus, the additional number of
ROs required for each time sample updating is

CWSS_t = USNM (28+ 6)+ 2 (N − 2) (M − 1)US

+ 4 (M − 3)US

= 36USNM − 2USN − 8US. (32)

If we need to generate channel responses for T different
time samples, the total complexity of the original WSS
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IMT-A MIMO channel model is

CWSS = Cinitial + (T − 1)CWSS_t. (33)

III. COMPUTATIONAL COMPLEXITY ANALYSIS OF THE
NON-STATIONARY IMT-A MIMO CHANNEL MODEL
Generating the channel response for the first time
instance also needs Cinitial ROs for the non-stationary
IMT-A MIMO channel model. In the original WSS
IMT-A MIMO channel model, only the third row in (23),
exp

[
j2πυn,mt

]
needs to be updated for each time sample. The

non-stationary IMT-MIMO channel model [18] was proposed
to investigate the time variation of wireless channels in high
mobility scenarios. We considered small scale time-varying
parameters such as the number of clusters, delays and the
powers of clusters, AoDs, and AoAs. The number of clus-
ters was described by a Markov birth-death (B-D) process.
Delays, AoDs, and AoAs of clusters changed according to
the geometric relationship between BS, MS, and clusters.
The cluster powers were calculated assuming a single slope
exponential power delay profile. Therefore, cluster number,
powers, delays, and angles of clusters are all time-variant
and need to be regenerated. In this section, we will analyze
the computational complexity of the non-stationary IMT-A
MIMO channel model.

A. UPDATE THE TIME-VARIANT CLUSTER NUMBER
In the non-stationary channels, because of the movement of
the MS and/or the surrounding scatterers, the number of clus-
ters is time-variant. The instantaneous number of clusters can
be calculated based on the B-D process [37]. Here, we clas-
sify the clusters into two kinds: newly generated clusters and
survived (remained) clusters. The complexity of computing
the cluster number is analyzed as follows.

1) SURVIVED CLUSTERS AT TIME INSTANCE t
Observing a time series of channel impulse responses (CIRs),
each cluster remains at time instance t = tk+1 with the
probability

Pr
(
δP,k (t)

)
= e−λRδP,k (t) (34)

where λR is the recombination rate [37]. The channel fluctua-
tion δP,k (t) is a means of measuring the changes taking place
in the scattering environments and it can be defined as

δP,k (t) = δMC,k (t)+ δMS,k (t) (35)

where δMC,k (t) and δMS,k (t) denote the fluctuations caused
by the scatterer and MS movement, respectively.

δMC,k (t) = Pcvc (tk+1 − tk) (36)

and

δMS,k (t) = v (tk+1 − tk) (37)

where Pc is the percentage of moving scatterers and tk is the
time of the k-th time sample (instance).

To judge which cluster can survive at the next time instance
t = tk+1, we need to generate Ntotal (tk) uniform distributed
RVs within [0, 1], requiring 5 ROs per cluster.Ntotal (tk) is the
total cluster number at t = tk+1. After comparing Pr (t) with
these RVs, we can decide whether a cluster remains or not.
Thus, the total complexity to get the number of the survived
clusters is

CSurNum (t) = (5+ 1)Ntotal (tk) . (38)

In [18], the expectation of the total cluster number, also
defined as the initial number, is given by

E{Ntotal (tk)} = N (t0) =
λG

λR
= N . (39)

Here, λG is the generation rate [37]. Thus, the mean number
of ROs to compute the survived cluster number is

CSurNum = 6N . (40)

2) CALCULATE THE NUMBER OF THE NEWLY
GENERATED CLUSTERS NNewNum

(
t
)

According to the non-stationary channel modeling procedure
in [18], NNewNum (t) follows the Poisson distribution whose
mean value and variance are both equal to

L = E {NNewNum (t)} =
λG

λR
(1− Pr (t)) . (41)

To generate a Poisson RV, we use the method of Ahrens and
Dieter as described in [38], and derive the mean number of
ROs for generating a Poisson RV is

CNewNum = 7 (L + 1) (42)

which is also the mean complexity to calculate the number of
the newly generated clusters.

B. GENERATION OF NON-STATIONARY SSPS
1) UPDATE TIME-VARIANT CLUSTER DELAYS
For the newly generated clusters, the delays are calculated
by using the same method as that in the initial channel
response generation. Thus, similar to (10), the mean number
of required ROs for generating delays for newly generated
clusters is

CNewDel = L2 + 7L + 1. (43)

According to (39) and (41), the mean number of the survived
clusters is

E{NSurNum (t)}=E{Ntotal (t)} − E{NNewNum (t)}=N − L.

(44)

For each survived cluster, the time-varying delay τn (tk)
can be expressed as

τn (t) =
(c (t)− c (t0))+ (a (t)− a (t0))

c0
+ τ̃n (tk) . (45)

Here, the distance between BS and the first bounce/scatterer,
c (t) =

√
c2 (t0)+(vct)2−2c (t0) vct cos

(
π+φn,m (t0)−θc

)
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and the distance between the last bounce/scatterer and MS,
a (t) =

√
a2 (t0)+ (vt)2−2a (t0) vt cos

(
ϕn,m (t0)−θv

)
need

to be calculated. Computation of each distance needs 2 real
square operations, 5 real multiplications, 2 real subtractions,
1 real addition, and 1 cosine, totaling 18 ROs.

As shown in [18], the delay of the virtual link τ̃n can be
calculated using a first-order filtering algorithm as

τ̃n (tk) = e(tk−1−tk )/ε τ̃n (tk−1)+
(
1− e(tk−1−tk )/ε

)
X (46)

where X ∼ U
(
DLoS
c0
, τmax

)
. c0 is the speed of light, DLoS

is the distance of the LoS path, τmax is the maximum delay,
and ε is a parameter that depends on the coherence of a
virtual link and scenario. 5 ROs are required to generate the
uniform RV X , while 16 ROs are needed for the exponential
part e(tk−1−tk )/ε. Computing the right part of (46) requires
2 real multiplications, 1 real addition, and 1 subtraction. Thus,
5+ 16+ 4 = 25 ROs are needed for generating τ̃n (tk).
Computing the delay of each survived cluster τn (t) needs

4 extra real additions and 1 real division in (45). Thus,
the total number of ROs required is 18 × 2 + 25 + 5 = 65.
As a result, updating the delays of all the survived clusters
needs CSurDel = 65(N − L) ROs in average.

2) UPDATE TIME-VARIANT CLUSTER POWERS
Generating the powers of all the clusters follows the proce-
dure of the original WSS IMT-A MIMO channel model and
can be finished by replacing τn by τn (t) in (11). The mean
number of clusters is still equal to N , so the mean number of
ROs required is the same as that in (12).

3) UPDATE TIME-VARIANT ANGULAR PARAMETERS
The time-variant angular parameters of the newly generated
clusters need to be generated by the same procedure in
Section II. According to (17), the required number of ROs
is

CNewAngGen = 173L + 4ML − 1. (47)

After the angular parameter generation for the newly gen-
erated clusters, the random coupling from AoDs to AoAs can
be realized with CNewCoup = 5ML ROs. Thus, the number of
ROs required for generating and coupling angular parameters
for all newly generated clusters is

CNewAng = CNewAngGen + CNewCoup

= 173L + 9ML − 1. (48)

The AoDs and the AoAs of each survived cluster need to be
regenerated according to the equations (26) and (33) in [18].
The arc-cosine operation can be finished by using a lookup
table with the same number of ROs as the cosine function.
Then, 39 ROs are needed for computing the AoD or AoA
of one ray. The total number of ROs to generate the angular
parameters for survived clusters is

CSurAng = 2×39M (N − L) = 78M (N − L) . (49)

For the survived clusters, the coupling between AoDs and
AoAs would not be updated.

C. GENERATION OF NON-STATIONARY CHANNEL
COEFFICIENTS FOR MULTIPLE TIME SAMPLES
The time-variant channel coefficients of the non-stationary
IMT-A MIMO channel model can be generated by substitut-
ing the time-varying channel parameters in (23). The random
initial phases 8n,m (t) and FPs are still fixed, so C8 and
CFP can be ignored in the complexity analysis. For the non-
stationary IMT-AMIMO channel model, in (23), onlyAn,m is
time-invariant while all other parameters need to be updated,
i.e., 65 ROs can be ignored when ρ = 2 and 15 ROs can
be reduced when ρ = 1 per ray per antenna pair. According
to (29), the total complexity to regenerate the instantaneous
channel coefficient is

Ccc_t = 119USNM − 2USN − 8US, if ρ = 2; (50a)

Ccc_t = 89USNM − 2USN − 8US, if ρ = 1. (50b)

Then, the total complexity per time sample to update all
the time-variant parameters and to generate the channel coef-
ficients of the non-stationary channel model can be expressed
as

CNonSta_t = (CNewNum + CSurNum)+ (CNewDel + CSurDel)

+CP +
(
CNewAng + CSurAng

)
+ Ccc_t. (51)

If T samples at temporal domain are generated and all
parameters are updated for each sample, the total complexity
of the non-stationary IMT-A MIMO channel model is

CNonSta = Cinitial + (T − 1)CNonSta_t. (52)

The computational complexities of different steps for the
original WSS and non-stationary IMT-A MIMO channel
models are summarized in Table 2.

IV. COMPLEXITY COMPARISON OF ORIGINAL WSS AND
NON-STATIONARY IMT-A MIMO CHANNEL MODELS
Based on the analysis in Sections II and III, the complexities
of the original WSS IMT-A MIMO channel model and the
non-stationary IMT-A MIMO channel model will be com-
pared. A rural macro (RMa) scenario is considered with the
same parameter set as in [18], which is listed in Table 3.
The speeds of the MS and mobile scatterer are 90 m/s and
30 m/s, respectively. The sampling interval was chosen as
1 transmission time interval (TTI), i.e., tsample = 1 ms. For
the convenience of comparing with measured data in [1],
the central frequency was selected as 930 MHz.

The first two columns of Table 4 give the complexity
comparison of these two models in the considered scenario.
Numerical results of the ROs for different stages are listed.
It can be observed that the processing related to channel coef-
ficient matrix generation dominates the global complexity.

Fig. 1 shows the complexity comparison of the original
WSS and non-stationary IMT-AMIMO channel models with
different antenna pair numbers (U × S). In total, 100 time
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TABLE 2. Computational complexities of the original WSS and non-stationary IMT-A MIMO channel models.

TABLE 3. Parameter setting for complexity analysis.

samples are generated. The complexity increases linearly
with the antenna pair number for both models. In Fig. 2,
the complexity results are illustrated as a function of the time
sample number T for the original WSS and non-stationary
IMT-A MIMO channel models. With the increase of time
samples, the required ROs increase linearly for both models.
The intercepts of two curves (Cinitial) are the same, while
the slopes, corresponding to the ROs for generating channel
coefficients per time sample, are different.

Fig. 3 shows the complexity comparison result of these two
models, i.e., the ratio of the RO number of the non-stationary
IMT-A MIMO channel model (CNonSta) to that of the orig-
inal WSS IMT-A MIMO channel model (CWSS). When
T = 1, the same RO number is required to generate the initial
sample in both models. With increasing T , the ratio becomes
larger because the non-stationary IMT-A MIMO channel

model needs more ROs to generate channel coefficients.
When T → ∞, the result tends to be the asymptotic value,
i.e., CNonSta_t/CWSS_t = 3.05 in this case.
In the meanwhile, we record the MATLAB chan-

nel coefficient computing time for generating channel
coefficients with 10000 sets of 4×4 channel matrices. The
parameter setting is the same as that in Table 3. The PC we
used to run the simulations has Intel Core i7, 4x2.93 GHz
CPU, and 16 GB RAM. The computing times for the original
WSS IMT-A MIMO channel model and the non-stationary
IMT-A MIMO channel model are 0.3810 s and 1.1519 s,
respectively. Correspondingly, the simulation time of the
non-stationary IMT-A MIMO channel model is about 3.38
times of that of the original WSS IMT-A MIMO channel
model.

According to the complexity analysis in terms of the
required number of ROs and simulation time, it is shown that
the computational complexity of the non-stationary IMT-A
MIMO channel model is several times of that of the original
WSS IMT-A MIMO channel. Even with the original IMT-A
channel model, vast time consumption is needed for imple-
menting the system-level simulations because multiple BSs
and MSs and numerous drops are required. The introduction
of non-stationarity will aggravate this problem. Thus, it is
necessary to reduce the complexity of the proposed non-
stationary IMT-AMIMO channel model without losing much
accuracy for practical applications.
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TABLE 4. Example complexity comparison of the original WSS IMT-A MIMO channel model, the non-stationary IMT-A MIMO channel model, and the
simplified non-stationary IMT-A MIMO channel models in the considered HST scenario.

FIGURE 1. Complexity comparison of the original WSS and non-stationary
IMT-A MIMO channel models with different antenna pair numbers in the
considered HST scenario.

V. COMPLEXITY REDUCTION METHODS
In this section, two complexity reduction methods for the
non-stationary IMT-A MIMO channel model are presented.
The first method is to fix some channel parameters in the
non-stationary channel models and the second one is to
reduce the updated rate of all these time-variant parameters
in the simulation. The purpose of these methods is to reduce
the complexity while keeping the statistical properties as
accurate as possible. The number of ROs is still used to
analyze the computational complexity. For accuracy metrics,
we consider several statistical properties including the spatial
CCF, temporal ACF, and stationary interval. The spatial CCF
and temporal ACF are two important one-dimensional (1D)
correlation functions, which are widely used in the evaluation
and optimization of communication systems [32]. Stationary
interval is used to measure the time interval in which the
statistics of the channel do not change significantly.

FIGURE 2. Complexity comparison of the original WSS and non-stationary
IMT-A MIMO channel models with different time samples in the
considered HST scenario.

A. FIXING SOME TIME-VARIANT CHANNEL PARAMETERS
In [27] and [28], parameters such as cluster number and delay
spread in different drops were fixed for different drops to
improve the computational efficiency of the GBSMs. In the
non-stationary IMT-A MIMO channel model, all the time-
variant parameters including the cluster number, powers,
delays, AoDs, and AoAs need to be updated for each time
sample t (t = 0, · · · ,T − 1). In order to reduce the model
complexity, some channel parameters can be viewed as static
during the generation process of the non-stationary channel
coefficients. We firstly analyze the impacts of these time-
variant parameters on different statistic properties and then
evaluate the complexity reduction and accuracy degradation
resulted by fixing different channel parameters.

1) STATISTICAL PROPERTIES
The spatial CCF can reflect the correlation property in the
space domain. ForWSS channels, CCF is only determined by
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FIGURE 3. Complexity comparison between the original WSS and
non-stationary IMT-A MIMO channel models with different time samples
in the considered HST scenario.

the relative BS andMS antenna element spacings, i.e.,1ds =∣∣ds1 − ds2 ∣∣ and 1du = ∣∣du1 − du2 ∣∣. However, in the non-
stationary IMT-A MIMO channel model, it depends on not
only the relative antenna spacings, but also time t . The
local spatial CCF of the n-th cluster can be expressed
as [39], [40]

ρs1u1s2u2,n (t,1ds,1du)

= E
{
hu1,s1,n (t) h

∗
u2,s2,n (t)

}
=

1
M

M∑
m=1

E
{
Pn (t) ejk1ds sin(φn,m(t))ejk1du sin(ϕn,m(t))

}
.

(53)

According to equation (53), the local spatial CCF at time
sample t is affected by the AoDs φn,m(t) and AoAs ϕn,m(t).
The local temporal ACF of the n-th cluster can be

expressed as [39], [40]

rn (t,1t)

= E
{
hu,s,n (t) h∗u,s,n (t −1t)

}
= e−λR(v1t+Pcvc1t)

×
1
M

M∑
m=1

E
{
Pn(t)Aϕn,m (t,1t)Bφn,m (t,1t)Cϕn,m (t,1t)

}
(54)

where

Aϕn,m (t,1t) = ej2πλ
−1du[sin(ϕn,m(t))−sin(ϕn,m(t+1t))], (55a)

Bφn,m (t,1t) = ej2πλ
−1ds[sin(φn,m(t))−sin(φn,m(t+1t))], (55b)

Cϕn,m (t,1t) = e−j2πλ
−1vcos(ϕn,m(t)−θv)(t)

× ej2πλ
−1vcos(ϕn,m(t+1t)−θv)(t+1t). (55c)

The local temporal ACF is affected by the AoDs φn,m(t),
AoAs ϕn,m(t), and two parameters related with the B-D
process, Pc and λR.

The stationary interval can be calculated using averaged
power delay profiles (APDPs) which is expressed as [1]

Ph (tk , τ ) =
1

NPDP

k+NPDP−1∑
k

|hu,s (tk , τ ) |2 (56)

where hu,s (tk , τ ) =
∑N

n=1 hu,s,n (tk) δ(τ − τn) and NPDP
is the number of power delay profiles to be averaged. The
correlation coefficient between two APDPs can be calculated
as

c (tk ,1t) =

∫
Ph (tk , τ )Ph (tk +1t, τ ) dτ

max{
∫
Ph (tk , τ )2 dτ,

∫
Ph (tk +1t, τ )2 dτ }

.

(57)

Then, the stationary interval can be given by

Ts(tk ) = max{1t|c(tk ,1t)≥cthresh} (58)

where cthresh is a given threshold of the correlation coefficient.
From (56), (57), and (58), the stationary interval is related to
the powers, delays, AoAs, and AoDs of the clusters.

2) COMPLEXITY REDUCTION ANALYSIS
In the non-stationary IMT-A MIMO channel model, the B-D
process is used to calculate the instantaneous number of
clusters. With the parameters in Table 3, each cluster remains
from a time sample to the following one with the probability
Premain = 0.9986, which can be calculated by (34). Then,
according to (41), the mean number of newly generated clus-
ters L = 0.029 in the selected scenario. It means the cluster
number would change slowly even with high mobile speed,
e.g., 90 m/s. Thus, we can neglect the B-D process and fix the
number of clusters in the following analysis.

If the B-D process is not considered, the ROs for generating
the cluster number can be neglected, and the number of ROs
needed for generating channel coefficients per time sample
is shown in Table 4. Neglecting the B-D process can reduce
about 0.04% of the ROs per time sample compared with
the non-stationary IMT-A MIMO channel model with all
time-variant parameters.

In the original WSS IMT-A MIMO channel model,
the powers of the clusters are determined by the delay values.
Therefore, the powers will be time-invariant when the delays
of the clusters are fixed. Table 4 also lists the number of ROs
for the non-stationary IMT-A MIMO channel model with
fixed delays and powers of clusters. Only the generation of the
time-variant angular parameters is preserved. It can be seen
that fixing the delays and powers of the clusters can reduce
0.95% of the ROs per time sample for this example.

If there are no moving scatterers near the BS, the AoDs
can be viewed as time-invariant. Then the ROs for regenerat-
ing time-variant angular parameters can be reduced by half.
At the same time, the field pattern at the Tx side is fixed, and
9SρMN ROs can be removed from the channel coefficient
generation. As a result, 13.56% of ROs can be reduced as
illustrated in Table 4. The same complexity reduction can be
obtained when the AoAs are time-invariant.
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If AoDs and AoAs are both fixed, the ROs for gener-
ating time-variant angular parameters are no longer neces-
sary. At the same time, the first row and second row of
(23) are fixed, and the number of ROs for generating the
non-stationary channel coefficients is the same as that of the
original WSS IMT-A MIMO channel model. As illustrated
in Table 4, 67% of the ROs can be reduced.

3) ACCURACY DEGRADATION ANALYSIS
To judge the accuracy degradation brought by complexity
reduction methods, the errors between the statistic properties
of the non-stationary IMT-A MIMO channel model and that
of the simplified non-stationary model are evaluated. Simula-
tions are carried out with the parameter set of Table 3. Carrier
frequency, speed of MS, and threshold of the correlation
coefficient are selected according to the measurement setup
in [1] and are listed as follows: fc = 930 MHz, v = 90 m/s,
and cthresh = 0.8.

The measure of the errors between the spatial CCF of the
non-stationary IMT-A MIMO channel model and that of the
simplified model is the mean-square error (MSE) defined by
[41], which can be express as (59)

ECCF,n (t)

=
1

du,max

1
ds,max

∫ du,max

0

∫ ds,max

0
[ρs1,u1s2,u2,n (t, du, ds)

− ρ̃
s1,u1
s2,u2,n (t, du, ds)]

2d (du) d (ds) . (59)

Here, du,max and ds,max denote the appropriate distances
over which the CCF is of interest at the receiver and trans-
mitter side, respectively. Here, ρs1,u1s2,u2 (t, du, ds) is the spatial
CCF of the n-th cluster in the non-stationary IMT-A MIMO
channel model, and ρ̃s1,u1s2,u2 (t, du, ds) is the approximate CCF
of the n-th cluster in the simplified model. du and ds are the
antenna element spacings at the BS and MS, respectively.

If only the spatial CCF at theMS side is taken into account,
the MSE can be rewritten as

ECCF,n (t) =
1

du,max

∫ du,max

0
[ρu1u2,n (t, du)

− ρ̃u1u2,n (t, du)]
2d (du) . (60)

In our following analysis, du,max = 10λ.
Similarly, the measure of the error between the exact ACF

and the ACF of the simplified non-stationary IMT-A MIMO
channel model is the MSE defined by

EACF,n (t)=
1

1tmax

∫ 1tmax

0

[
rn (t,1t)− r̃n (t,1t)

]2d (1t)
(61)

where 1tmax denotes an appropriate time interval [0,1tmax]
over which the ACF is of interest. In our following analysis,
the value 1tmax = 0.1 s turns out to be suitable. In (61),
rn(t,1t) is the ACF of the n-th cluster in the non-stationary
IMT-A MIMO channel model, while r̃n (t,1t) is the ACF in
the simplified non-stationary model.

TABLE 5. Accuracy degradation and complexity reduction of the
proposed non-stationary IMT-A MIMO channel model by fixing different
channel parameters.

FIGURE 4. The empirical CCDFs of stationary intervals for the original
WSS IMT-A MIMO channel model and the proposed non-stationary IMT-A
MIMO channel model with all time-variant parameters, only time-variant
delays and powers, and only time-variant angular parameters.

Table 5 lists the MSEs of ACF and CCF (n = 1) with
different fixed channel parameters. With regard to the speed
of MS and mobile scatterers, the appearance and disappear-
ance of the clusters do not happen very frequently in the
environments. Generally, the survival time of the cluster is
longer than the stationary interval, so neglecting the B-D
processwill only introduce very small errors to the considered
statistical properties. Although fixing the angular parameters
can reduce about 2/3 of the complexity, it will also bring large
errors to the statistical properties.

Fig. 4 illustrates the empirical complementary cumulative
distribution functions (CCDFs) of stationary intervals for the
measured HST channel data and the original WSS IMT-A
MIMO channel model. The measurement data reported in [1]
are used for comparison. The results of the non-stationary
IMT-A MIMO channel model with all time-variant param-
eters, only time-variant delays and powers, and only time-
variant angular parameters are also shown. It can be observed
that our non-stationary IMT-A MIMO channel model can
provide better agreement with the measured data than the
original WSS IMT-A MIMO channel model. Fig. 4 shows
that the time-variant angular parameters have a greater impact
on the stationary intervals compared with the time-variant
delays and powers. It means that fixing angular parameters
would result in larger stationary intervals than fixing delays
and powers. The MSEs between different CCDF curves are
also listed in Table 5.

Based on the numerical results, fixing the number, delays,
and powers of the clusters can only reduce less than 1% of the
ROs while bringing small errors to the statistical properties.
At the same time, fixing angular parameters will severely
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degrade the accuracy of the non-stationary IMT-A channel
model while reducing 67% of the complexity. Thus, one
should be very cautious to set the angular parameters time-
invariant in the non-stationary IMT-AMIMO channel model.
It is recommended that the selection of fixing parameters
should be determined by the considered environment. For
example, if the scatterers near the BS are static, then the AoDs
of the clusters can be viewed as time-invariant. Moreover,
the B-D process can be neglected if the environment changes
slowly.

For comparison, the scheme proposed in [28] was also
analyzed. In [28], the large-scale fading parameters are uncor-
related and fixed, which can reduce 501 ROs for generating
the initial sample in comparison to our scheme. Besides,
in [28], the cluster number and the delays are fixed which
can reduce 846 ROs in comparison to our scheme that needs
to generate time-variant parameters for each sample. As illus-
trated in Table 4, in total, 87498 ROs are required to update
time-variant parameters and generate channel coefficients
matrix per time sample for the non-stationary IMT-A MIMO
model. Thus, only about 0.96% (846/87498) of ROs for each
sample can be reduced with the scheme proposed in [28].

B. REDUCING THE UPDATE RATES OF TIME-VARIANT
PARAMETERS
The previous analyses assume that the channel parameters
need to be updated for every time sample in the non-stationary
IMT-AMIMO channel model. However, as mentioned above,
in realistic propagation environments the channel parameters
satisfy the WSS condition over the stationary interval, which
means that it is not necessary to update those parameters
for each time sample. From Fig. 4, the measured stationary
intervals are longer than 10 ms for 80% cases [1]. The update
rate of channel parameters can be reduced in order to lower
the computational complexity.

1) COMPLEXITY REDUCTION ANALYSIS
Assume tsample is the sampling interval between two consec-
utive time samples in the non-stationary IMT-AMIMO chan-
nel model. In general, the sampling interval is determined
by the wavelength, the mobile speed, and the oversampling
factor (number of time samples per half wavelength). Asmen-
tioned in Section IV, the sampling interval tsample = 1 ms.
The update interval tupdate is defined as the time interval for

updating the time-variant parameters:

tupdate = Qtsample (62)

which means that the time-variant channel parameters are
updated every Q time samples. The channel parameters keep
time-invariant within the update interval, and only the third
row of (23) needs to be regenerated. Thus, the complexity for
generating non-stationary channel coefficients are reduced to

CNonSta (Q) = Cinitial +

⌊
T − 1
Q

⌋
CNonSta_t

+

(
T − 1−

⌊
T − 1
Q

⌋)
CWSS_t. (63)

FIGURE 5. Complexity increase of the non-stationary IMT-A MIMO
channel model with different update intervals compared with the original
WSS IMT-A MIMO channel model.

TABLE 6. MSEs of statistic properties for the non-stationary IMT-A MIMO
channel model with different update intervals.

Through increasing the update intervals, the complexity
of the non-stationary IMT-A MIMO channel model can be
effectively reduced. Fig. 5 compares the complexities of the
non-stationary IMT-A MIMO channel models with different
tupdate values with that of the original WSS IMT-A MIMO
channel model. The computational complexity increase is
defined as

CompInc(tupdate)=
CNonSta

(
tupdate

)
−CWSS

CWSS
×100%. (64)

For comparison, channel coefficients with 10000 sets
of 2×2 channel matrices are generated, i.e., T = 10000.
It is shown that if all the parameters are updated for each
time sample, then the RO number of the non-stationary
IMT-A MIMO channel model increases 211.16% compared
with that of the original WSS IMT-A MIMO channel model
as shown in Table 4. In Fig. 5, the complexity of the non-
stationary IMT-A MIMO channel model increases 21.1%
when tupdate = 10tsample. When tupdate → ∞, the non-
stationary IMT-A MIMO channel model will degrade to the
original WSS IMT-A MIMO channel model, i.e., all the
channel parameters are time-invariant.

2) ACCURACY DEGRADATION ANALYSIS
Reducing the update rate of time-variant parameters may
affect the accuracy of the non-stationary IMT-AMIMO chan-
nel model. In Table 6, the MSEs of the spatial CCFs and
temporal ACFs with different update intervals are listed.
With increasing update intervals, it can be observed that
the MSEs of channel statistical properties will also increase.
If the update interval is chosen as 10 ms, the MSEs of the
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statistical properties are quite small. In this case, the com-
putational complexity of the non-stationary IMT-A MIMO
channel model only increases 21.1% compared with that of
the originalWSS IMT-AMIMO channel model. If we choose
50 ms as the update interval, the MSEs of spatial CCFs
and temporal ACFs are larger but the RO number of the
non-stationary IMT-A MIMO channel model only increases
4.2% compared with that of the original WSS IMT-A MIMO
channel model.

Compared to the way of fixing the channel parameters,
this method, i.e., reducing the update rates of time-variant
parameters can efficiently reduce the complexity without
losingmuchmodel accuracy. It should be noted that, when the
update interval is too large, the MSEs of CCFs and ACFs will
increase quickly. Thus, the update interval should be decided
according to the stationary interval, and the tradeoff between
the modeling complexity and accuracy requirements should
be taken into account.

C. SIMPLIFICATION PROCEDURE FOR THE
NON-STATIONARY IMT-A MIMO CHANNEL MODEL
The simplification procedure for the non-stationary IMT-A
MIMO channel model can be carried out as follows.

(1) Choose the time-variant channel parameter set accord-
ing to the simulation requirements.

(2) Extract the stationary interval values in a specified
scenario from simulated or measured results.

(3) Determine the update interval of the time-variant chan-
nel parameters according to the stationary interval values.

(4) Compute the complexity of the simplified non-
stationary IMT-A MIMO channel model and check if it sat-
isfies the complexity requirement.

(5) Compute the channel statistical properties and check
the accuracy requirement.

(6) Update the time-variant parameters according to
the update interval and generate non-stationary channel
coefficients for different time instances.

VI. CONCLUSION
In this paper, we have analyzed the complexities of the
original WSS and the non-stationary IMT-A MIMO channel
models in terms of the RO number and simulation time. The
non-stationary IMT-A MIMO channel model can mimic the
channel characteristics better in high-mobility scenarios, but
at the cost of an extra computational complexity. Simula-
tion results have demonstrated that the complexity of the
non-stationary IMT-A MIMO channel model increases lin-
early with the increase of the numbers of generated time
samples and antenna pairs, and is several times of that of
the original WSS IMT-A MIMO channel model. To further
improve the efficiency of the non-stationary IMT-A MIMO
channel model, two complexity reduction methods have been
proposed. The first method is to keep some channel param-
eters time-invariant when generating non-stationary chan-
nel coefficients. The accuracy degradation and complexity
reduction of fixing different time-variant channel parameters

have been compared. The second method is to increase the
update interval of time-variant parameters. The update inter-
val should be carefully chosen according to the stationary
interval to ensure small errors of the produced channel sta-
tistical properties. Finally, the simplification procedure for
the non-stationary IMT-A MIMO channel model has been
provided.
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