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a b s t r a c t

In this paper, we propose two subspace-projection-based precoding schemes, namely, full-
projection (FP)- and partial-projection (PP)-based precoding, for a cognitive radiomultiple-
input multiple-output (CR-MIMO) network to mitigate its interference to a primary
time-division-duplexing (TDD) system. The proposed precoding schemes are capable of
estimating interference channels between CR and primary networks, and incorporating
the interference from the primary to the CR system into CR precoding via a novel sensing
approach. Then, the CR performance and resulting interference of the proposed precoding
schemes are analyzed and evaluated. By fully projecting the CR transmission onto a null
space of the interference channels, the FP-based precoding scheme can effectively avoid
interfering the primary system with boosted CR throughput. While, the PP-based scheme
is able to further improve the CR throughput by partially projecting its transmission onto
the null space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A cognitive radio (CR) [1–4] system may coexist with
a primary network on an either interference-free or
interference-tolerant basis [5,6]. For the former case, the
CR system only exploits the unused spectra of the primary
network. While, for the latter case, the CR system is al-
lowed to share the spectra assigned to primary network
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under the condition of not imposing detrimental interfer-
ence on the primary network. Therefore, the interference
from the CR network to the primary system (CR-primary
interference) should be carefully managed and canceled in
order to protect the operation of the primary system. Var-
ious interference mitigation (IM) techniques applicable to
CR networks have been reported in [7]. As for multiple an-
tenna CR networks, transmit beamforming [8–12] and pre-
coding in [13–15] are effective approaches to proactively
cancel the CR-primary interference. On one hand, it steers
the CR transmission to avoid interfering with the primary
network. On the other hand, it exploits the diversity or the
multiplexing gain of the CR system to enhance the reliabil-
ity or efficiency of the CR network.

However, in [8–15], perfect or partial channel state
information (CSI) of CR interference channels to primary

1874-4907/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.phycom.2012.04.007
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Fig. 1. A CR MIMO transmitter–receiver pair coexists with a primary TDD system.

network (CR-primary interference channels) is required at
the CR transmitter (Tx) side to guarantee no/constrained
interference to the primary system. Therefore, extra sig-
naling between primary and CR networks is inevitable to
obtain the CSI, which jeopardizes the applicability of these
beamforming and precoding schemes. A more practical
precoding scheme—sensing projection (SP)-based precod-
ing, which learns the CSI using subspace estimation [16]
and does not require a priori CSI, has been proposed for
a CR multiple-input multiple-output (MIMO) link coexist-
ing with a primary time-division-duplexing (TDD) system
in [17,18]. However, such a precoding scheme does not
account for the interference from primary Txs to the CR
receiver (Rx) (primary-CR interference), which leads to a
CR throughput loss. In [19,20], it is proposed to remove
the primary-CR interference at the CR Rx via null-space Rx
beamforming, which sacrifices the CR throughput as well.
Moreover, the CR network in [19,20] has to work in a TDD
mode alignedwith the primary system in order to facilitate
the null-space Rx beamforming.

In this paper, two enhanced SP-based precoding sche-
mes, namely, full-projection (FP)- and partial-projection
(PP)-based precoding, are proposed for CR MIMO systems
by incorporating the primary-CR interference. As the name
suggests, the FP-based scheme nulls the CR transmission
by fully projecting the transmission onto the estimated
null space of the CR-primary interference channels. Instead
of removing the primary-CR interference using null-space
Rx beamforming, the proposedprecoding schemes account
for the primary-CR interference via sensing. This, on one
hand, improves the CR throughput, and on the other hand,
introduces more flexibility into the CR deployment, i.e.,
the CR network does not have to work in a TDD mode as
in [19,20]. The PP-based precoding can further improve the

CR throughput by projecting the CR transmission onto a
subspace that partially spans the estimated null space of
the CR-primary interference channels. As a result, the CR
throughput is further improved at the cost of introducing
extra interference to the primary network.

The remainder of this paper is organized as follows. The
system model is given in Section 2. The working principle
of the SP-based precoding is introduced in Section 3. Then,
we propose two new precoding schemes in Section 4.
The performance of the proposed precoding schemes is
evaluated in Section 5. Finally, we conclude the paper in
Section 6.

Notation: Vectors are denoted by bold-face lower-case
letters, e.g., x, and bold-face upper-case letters are used
for matrices, e.g., X. For a matrix X, Tr{X},XH , and XĎ

denote its trace, Hermitian transpose and pseudoinverse,
respectively. E{·} stands for the statistical expectation
operator. Cx×y denotes the space of x × y matrices with
complex entries.

2. Systemmodel and problem formulation

We consider a CR system shown in Fig. 1, where a CR
Tx–Rx pair shares the same spectrum with a primary TDD
network. Multiple antennas are mounted at the CR nodes
and possibly at each of the primary users. The CR Tx, CR
Rx, primary base station (BS) and the kth primary user
are equipped with Mt ,Mr ,Mbs and Mk (k = 1, . . . , K)
antennas, respectively. Block-fading channels are assumed
for the primary and CR systems.

For a narrowband transmission, the received symbol at
the CR Rx can be expressed as

y = HFs + n + z (1)
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Fig. 2. System diagram for the proposed precoding schemes.

where y ∈ CMr×1 is the received signal vector at the CR Rx,
s ∈ CMt×1 and F ∈ CMt×Mt are the transmit information
vector with E{ssH} = I and precoding matrix of the CR
Tx, respectively, H ∈ CMr×Mt is the channel matrix from
the CR Tx to CR Rx, whose elements are independent and
identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and variance σ 2

H , and n ∈ CMr×1

stands for the additive white Gaussian noise (AWGN)
vector with zero mean and covariance matrix E{nnH

} =

σ 2
n I. Moreover, z ∈ CMr×1 denotes the interference from

the primary network to CR Rx. It can be expressed as

z =


Hurxu, during primary uplink
Hdrxd, during primary downlink (2)

where Hur ∈ CMr×
K

k=1 Mk and Hut ∈ CMt×
K

k=1 Mk (see
Fig. 1) represent the interference channels from all the K
active primary users to CR Rx and to CR Tx, respectively,
during primary uplink. Similarly, Hdr ∈ CMr×Mbs in
(2) together with Hdt ∈ CMt×Mbs (see Fig. 1) stand
for the interference matrices from the primary BS to
CR Rx and to CR Tx during primary downlink. All these
interference matrices (Hur,Hut,Hdr and Hdt) have i.i.d.
complex Gaussian random elements with zero mean and
covariances σ 2

ur, σ
2
ut, σ

2
dr and σ 2

dt, respectively. Moreover,
xu ∈ C

K
k=1 Mk×1 and xd ∈ CMbs×1 are the transmitted

signal vectors of all the K primary users and primary BS,
respectively. We define the interference covariancematrix
as Z , E{zzH}.

3. Principle of SP-based precoding

The precoding problem for CR transmission can be
expressed as the following optimization problem [14]

max
F

log2 det

I +

HFFHHH

σ 2
n


(3)

subject to Tr{FFH} ≤ Pcr (4)

Tr{GkFFHGH
k } ≤ Γk k = 1, . . . , K . (5)

In (5), Gk ∈ CMk×Mt is the channel matrix from the
CR Tx to the kth primary user. Thus, the channel matrix
from the CR Tx to all primary users becomes HH

ut =

[GT
1, . . . ,G

T
K ]

T due to channel reciprocity. The constraints
on the CR transmission power and the maximum allowed
interference perceived at each primary user are given by
(4) and (5), respectively.

The projected channel singular value decomposition
(SVD) or P-SVD precoding has been proposed in [14] as a
suboptimal solution for the optimization problem (3)–(5).
It can be expressed as

F = U⊥


(µI − 3−1

⊥
)+

 1
2 (6)

where (·)+ , max(0, ·), µ denotes the power level for
a water-filling (WF) algorithm, and U⊥ and 3⊥ originate
from the SVD of the effective CR channel matrix H⊥

H⊥ , H(I − UGUH
G ), (7)

with H⊥ = V⊥3
1/2
⊥

UH
⊥
, and UG in (7) is from another SVD

HH
ut = VG3

1/2
G UH

G , which is estimated via sensing in the SP
precoding [17,18] as shown in Fig. 2. It is worth noting that
the P-SVD precoding given in (6) actually guarantees that
Tr{GkFFHGH

k } = 0 (k = 1, . . . , K), i.e., no interference
is introduced to primary users. This eventually tightens
the constraint (5). Therefore, the P-SVD precoding is a
suboptimal solution for the optimization problem (3)–(5).

By analogy with the multiple signal classification tech-
nique [16], the signal covariance matrix is decomposed
into signal and noise subspaces to estimate UG, that is

R̂ut =
1
LS

LS
i=1

rut(i)rHut(i) (8)

= Û3̂ÛH (9)

= ÛG3̂GÛH
G + Ûn3̂nÛH

n . (10)

In (16), rut(i) = Hutxu(i)+n(i) is the ith received symbol at
the CR Tx, and its estimated covariance matrix is denoted
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as R̂ut. An eigenvalue decomposition is then performed on
R̂ut in (17), where 3̂ = diag(λ1, . . . , λMt ) is a diagonal
matrix with descendingly ordered eigenvalues of R̂ut and
Û ∈ CMt×Mt contains the corresponding eigenvectors. The
matrix R̂ut is further decomposed into interference and
noise components in (18) with ÛG and Ûn being the first
Kp = rank(Hut) and the remaining (Mt − Kp) columns of
Û, respectively, and 3̂G and 3̂n being their corresponding
eigenvalue matrices. A rank estimate for Kp can be carried
out by using, e.g., an Akaike information criterion (AIC)
or minimum description length (MDL) estimator [21]. The
sensing phase is followed by a CR transmission, where a
precoding matrix obtained from (6) is applied.

The merit of the SP precoding over the P-SVD approach
is that no CSI is required due to the interference space
estimation in (16)–(18). However, both of the precoding
algorithms in [17,18] do not consider the interference from
the primary network to the CR receiver, which eventually
leads to rate loss for the CR link.

4. Proposed precoding schemes

In this section, we elaborate the CR precoding during
the primary downlink.1 When incorporating the primary-
CR interference, the precoding problem for the CR Tx
during the primary downlink can be expressed as follows

max
F

log2 det

I +

HFFHHH

Z + σ 2
n I


(11)

subject to Tr{FFH} ≤ Pcr (12)

Tr{GkFFHGH
k } ≤ Γk, k = 1, . . . , K . (13)

The constraints on the CR transmission power and the
maximum allowed interference perceived at each primary
user are given by (12) and (13), respectively. In (13), Gk ∈

CMk×Mt is the channel matrix from the CR Tx to the kth
primary user. Thus, the channel matrix from the CR Tx to
all primary users becomes HH

ut = [GT
1, . . . ,G

T
K ]

T due to
channel reciprocity.

Then, the precoding matrix for CR transmission during
the downlink can be written as [22]

Fd = Ud

(µdI − 3−1

d )+
 1
2 (14)

whereµd is the power level for the water-filling algorithm
and Ud is obtained through the following eigenvalue
decomposition (EVD)

Ud3dUH
d = HH

⊥
(Z + σ 2

n I)
−1H⊥

= (I − UGUH
G )HHH(Z + σ 2

n I)
−1H(I − UGUH

G ). (15)

Similar to the P-SVD precoding, the precoding matrix
given by (14) is a suboptimal solution for the optimization
problem (11)–(13) due to the fact that it tightens the
constraint (13) by forcing Γk to 0.

1 A similar precoding for the primary uplink can be easily obtained,
which is ignored here for brevity.

In (15), the effective CR channel matrix is defined
as H⊥ , H(I − UGUH

G ), where UG is estimated by
decompositing the CR received signal covariance matrix
into signal and noise subspaces. It can be expressed as

R̂ut =
1
LS

LS
i=1

rut(i)rHut(i) (16)

= Û3̂ÛH (17)

= ÛG3̂GÛH
G + Ûn3̂nÛH

n . (18)

In (16), rut(i) = Hutxu(i)+n(i) is the ith received symbol at
the CR Tx, and its estimated covariance matrix is denoted
as R̂ut. An EVD is then performed on R̂ut in (17), where 3̂ =

diag(λ1, . . . , λMt ) is a diagonal matrix with descendingly
ordered eigenvalues of R̂ut. It is further decomposed into
interference and noise components in (18) with ÛG and Ûn
being the first Kp = rank(Hut) and the remaining (Mt −Kp)

columns of Û, respectively, and 3̂G and 3̂n being their
corresponding eigenvalue matrices.

It can be seen from (14) and (15) that in order to
obtain the CR precoding matrix, the interference-plus-
noise covariance matrix Rur , Z + σ 2

n I needs to be
estimated at the CR Rx, besides the estimation of the
interference subspace UGUH

G at the CR Tx.

4.1. Full-projection-based precoding

To enable the estimation of UGUH
G and Rur, we propose

an enhanced precoding scheme, which is demonstrated in
Fig. 2. Each CR cycle consists of sensing and transmission
phases. We name the CR transmission during the primary
downlink as T1 and uplink as T2. For T1, the space UGUH

G is
estimated at the CR Tx during the primary uplink according
to (16)–(18) over LS1 symbols. The estimation of Rur is
performed at the CR Rx at the beginning of the primary
downlink for a batch of LS2 symbols via a procedure similar
to (16). After obtaining these two estimates, the CR Tx
starts transmission T1 using the precodingmatrix obtained
by (14). Then T2 follows immediately after T1 but right
before the sensing phase for the next CR cycle. The CR
precoding matrix for T2 can be obtained by other two
sensing sessions concurrent with the sensing phase for T1.
This precoding scheme fully projects its transmission onto
the estimated null space of the CR-primary interference
channels. Therefore, it is termed as FP precoding.

It can be seen fromFig. 2 that the proposed FP precoding
scheme shifts the CR cycle of the SP precoding rightwards
in time. By doing this, several benefits are obtained.
Firstly, introducing CR Rx sensing phases improves the
CR throughput by incorporating the interference-plus-
noise covariance matrix into precoding. Secondly, shifting
the CR cycle diverts part of the CR transmission from
the primary downlink to the uplink which reduces the
time that primary Rxs expose themselves to CR-primary
interference. This is beneficial to the primary network,
since primary users are usually more susceptible to
interference than the primary BS.

Theoretically, the proposed FP precoding can com-
pletely mitigate the CR-primary interference if there is no
error in the interference space estimation (18). However,
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its IM ability degrades rapidly when the CR interference-
to-noise ratio, INR , σ 2

ut/σ
2
n , drops below a threshold.

This is due to the fact that in (18) some components in the
noise subspace may swap with those in the interference
subspace when the noise amplitude σn is relatively large
compared to the interference channel gain σut. This phe-
nomenon is known as a subspace swap2 [25].

For low INR, the interference subspace has a high
probability to swap with the noise subspace. When a
subspace swap happens, (15) can be rewritten as

Ud3dUH
d ≈ (I − ÛnÛH

n )HHH(Z + σ 2I)−1H(I − ÛnÛH
n )

= ÛGÛH
GH

H(Z + σ 2I)−1HÛGÛH
G (19)

whichmeans that Fd andHH
ut span the same space. Thus, the

average CR-primary interference at low CR INR becomes

IFPl = E{Tr{HH
utFdF

H
d Hut}} ∝ Pcrσ 2

ut. (20)

This suggests that the average interference power at
primary users is proportional to the channel gain between
CR and primary users at low CR INR.

The average CR-primary interference in the high CR INR
regime can be expressed as

IFPh = E{Tr{HH
utÛd(µdI − 3−1

d )+ÛH
d Hut}} (21)

= E{Tr{HH
ut(Ûd − Ud)(µdI − 3−1

d )+

× (Ûd − Ud)
HHut}} (22)

≈ E{Tr{HH
ut(X

HHut)
ĎNHUd(µdI

− 3−1
d )+Ud

HN(HH
utX)ĎHut}} (23)

= σ 2
n PcrE{Tr{HH

ut(X
HHut)

Ď(HH
utX)ĎHut}} (24)

=
σ 2
n Pcr
LS1

Tr{Qu} (25)

where (22) is due to the fact that HH
utUd = 0; (23) is

obtained using the fact that Ûd − Ud ≈ −(XHHut)
ĎNHUd

for high INR [26] with X , [xu(1), xu(2), . . . , xu(LS1)],
and N , [n(1),n(2), . . . ,n(LS1)]; (24) follows from the
independence of XHHut and N and E{NHYN} = σ 2

n Tr{Y}I
for any matrix Y. Note that Qu , E{xuxHu } in (25) is
the transmit covariance matrix for the primary user. An
interesting fact can be observed from (25) that at high CR
INR the average CR-primary interference does not depend
on the interference channel Hut. It is proportional to the
channel noise σ 2

n and inversely proportional to the sensing
length LS1.

4.2. Partial-projection-based precoding

The PP precoding works in a similar manner to the
above proposed FP precoding except for the selection of
the interference space. For the downlink CR precoding, a
subspace ÛmÛH

m partially spanning the interference space
is obtained by choosing m eigenvectors corresponding to

2 The lower bound on the probability of the subspace swap has been
investigated in [23,24].

the first m largest eigenvalues of 3̂ in (17), where m can
be determined according to various criteria. One candidate
criterion is
Mmin
i=m+1

λi

m
i=1

λi

≤ rt/d (26)

with Mmin , min(Mt ,
K

k=1 Mk). We call rt/d the trivial
over dominant interference ratio (TDIR). This selection
process chooses m dominant interference subchannels to
form an estimate of the interference space and ignores
the other (Mmin − m) trivial ones. Finally, substituting the
estimated subspace ÛmÛH

m for ÛGÛH
G , the precoding matrix

Fd for the downlink CR transmission can be obtained via
(14). However, we may fail to find a value of m satisfying
(26). In this case, the proposed FP precoding is used.

The joint probability density function (PDF) of the
ordered eigenvalues λ , [λ1, λ2, . . . , λMmin ] of R̂ut, with
λ1 ≥ λ2 ≥ · · · ≥ λMmin ≥ σ 2

n is [27]

fλ(λ1, λ2, . . . , λMmin)

=
1

PpMmin
fλ̃

×


λ1 − σ 2

n

Pp
,
λ2 − σ 2

n

Pp
, . . . ,

λMmin − σ 2
n

Pp


(27)

where Pp is the transmission power of each primary user
antenna and fλ̃(λ̃1, λ̃2, . . . , λ̃Mmin) with λ̃1 ≥ λ̃2 ≥ · · · ≥

λ̃Mmin is given by

fλ̃(λ̃1, λ̃2, . . . , λ̃Mmin)

=

Mmin
i=1

e−λ̃i λ̃
Mmax−Mmin
i

Mmin−1
i=1


Mmin
j=i+1

(λ̃i − λ̃j)
2


Mmin
i=1

(Mmax − i)!
Mmin
i=1

(Mmin − i)!

(28)

with Mmax , max(Mt ,
K

k=1 Mk). Therefore, the probabil-
ity for the occurrence of (26) is

pm =


S
fλ(λ1, λ2, . . . , λMmin) dλ1 dλ2 · · · dλMmin (29)

where S , {(λ1, λ2, . . . , λMmin)| (26) ∩ λ1 ≥ λ2 ≥ · · · ≥

λMmin ≥ σ 2
n }.

In other words, for the PP precoding scheme the
probabilities of using the ‘genuine’ PP (m satisfying (26)
exists) and using FP are pm and (1 − pm), respectively.
Therefore, the CR Tx uses (1 − pm)

K
k=1 Mk + pmm

and
K

k=1 Mk degrees of freedom (DoF) for IM in the PP
and FP precoding schemes, respectively. This means that
compared to the proposed FP precoding the PP precoding
scheme transfers pm(

K
i=1 Mk −m) DoF from interference

mitigation to CR transmission, which leads to a higher
throughput for the CR link. It can be seen from (27)–(29)
that in the large INR regime, pm is fixed for a given noise
power σ 2

n and Pp. Considering the fact from (25) that at
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Fig. 3. CR throughput under different precoding schemes (Mt = Mr =

4, Mbs = 2, K = 2, M1 = M2 = 1, LS1 = LS2 = LT2 = 50, LT1 =

350, σ 2
H = σ 2

ut = 1, Pcr = 1, and rt/d = 0.1).

high INRs the average interference power of FP IFPh is fixed
and the average interference power resulting from ‘real’
PP IPP is proportional to the square of the interference
channel gain σ 2

ut, the overall average interference of the PP
precoding IPPh = pmIPP +(1−pm)IFPh is linearly proportional
to σ 2

ut for large INRs.

5. Numerical results & discussions

Consider a scenario where a CR MIMO system coexists
with a primary TDD system which has one 2-antenna
BS and two single-antenna users. We assume that the
number of antennas for primary users is known to the
CR system. Therefore, the rank estimation of Kp used in
(18) is not needed in our simulations. Each CR node is
equipped with four antennas. The primary network works
as a downlink-broadcast and an uplink multiple-access
system. The transmission power of the CR and primary
networks is 1. All the obtained results are averaged over
2000 simulation runs.

First, we evaluate the throughput of the CR system
with theproposedprecoding schemes over different values
of signal-to-noise ratios, SNR, σ 2

H/σ 2
n . In Fig. 3, the

throughputs (average mutual information in (11)) of the
two proposed precoding schemes are compared with that
of the SP precoding of [17,18] and the P-SVD precoding
with perfect CSI of [14]. It can be seen that the proposed
FP/PP precoding schemes lead to higher CR throughput
than the SP precoding, and the throughput gain becomes
larger as the SNR increases.

Fig. 4 evaluates the impact of CR INR on the CR
throughput and the resulting CR-primary interference
under different precoding schemes. It has the same setup
as that of Fig. 3 with σ 2

n = 10−4. By comparing
Fig. 4(a) with Fig. 4(b), it can be seen that the proposed
FP/PP precoding schemes outperform the SP counterpart
at low INRs, since they lead to higher CR throughput
without introducing extra interference. At high INRs, both
the proposed FP and SP precoding schemes have fixed
interference, and there is a fairly good agreement between
the derived and simulated interference of the FP precoding.
Another phenomenon which can be seen from Fig. 4(b)
is that the interference of the SP precoding is slightly
smaller than that of the FP precoding. This is due to the
fact that the sensing of the SP precoding is longer than the
uplink sensing of the FP precoding. Moreover, at high INRs
the interference of the proposed PP precoding is linearly
proportional to the CR INR, which supports our analysis in
Section 4.2.

6. Conclusions

In this paper, two SP-based precoding schemes, namely,
FP and PP precoding, have been proposed for CRMIMO sys-
tems to mitigate the CR-primary interference and improve
the CR throughput. These twoprecoding schemes are capa-
ble of estimating the CSI of primary-CR interference chan-
nels and can account for the primary-CR interference via
a novel sensing approach. Therefore, no extra signaling is
required between primary and CR systems, which conse-
quently eases the deployment of CR networks. The perfor-
mance of the proposed precoding schemes has also been

a b

Fig. 4. (a) CR throughput and (b) resulting interference of different precoding schemes (Mt = Mr = 4, Mbs = 2, K = 2, M1 = M2 = 1, LS = 100, LS1 =

LS2 = LT2 = 50, LT1 = 350, σ 2
H = 1, Pcr = 1, rt/d = 0.1, and σ 2

n = 10−4).
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evaluated. It has been demonstrated that the FP precod-
ing can boost the CR throughput without introducing extra
CR-primary interference in the low INR regime. The PP pre-
coding can further improve the CR throughput if the pri-
mary system can tolerate some extra interference.
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