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A New Class of Generative Models for Burst-Error
Characterization in Digital Wireless Channels
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Abstract—Accurate and efficient generative models are sig-
nificant for the design and performance evaluation of wireless
communication protocols as well as error-control schemes. In this
paper, deterministic processes are used to derive a new class of
hard and soft generative models for simulation of digital wireless
channels with hard and soft decision outputs, respectively. The
proposed deterministic-process-based generative models (DP-
BGMs) are all based on a properly parameterized and sampled
deterministic process followed by a threshold detector and two
parallel mappers. The target hard and soft error sequences are
provided by computer simulations of uncoded enhanced general
packet radio service (EGPRS) systems with typical urban and
rural area channels. Simulation results indicate that the proposed
DPBGMs enable us to approximate very closely all the interested
burst-error statistics of the target hard and soft error sequences.
The validity of the suggested DPBGMs is further confirmed by the
excellent match of the simulated frame-error rates and residual
bit-error rates of coded EGPRS systems obtained from the target
and generated error sequences.

Index Terms—Deterministic processes, digital wireless channels,
enhanced general packet radio service (EGPRS) systems, error
models, hard and soft generative models.

I. INTRODUCTION

WIRELESS propagation channels can roughly be classi-
fied in two major categories. The first category is analog

or physical channels, where the parameters of interest are the
received signal strength, the noise and/or interference power,
the mobile speed, etc. Channel models for physical channels
place emphasis on describing the fading characteristics of the
received signal. Such models, e.g., the well-known Rayleigh
and Rice models [1], are important for the design, parameter
optimization, and test of the transmitter and receiver of wire-
less communication systems. The second category is digital
channels, where we are interested in the number and distribu-
tion of error events in a sequence of bits or packets. A digital
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(time-discrete) channel comprises the complete transmission
chain, including the transmitter, the physical channel, and the
receiver in the complex baseband. Errors encountered in digital
wireless channels are not independent but occur in bursts or
clusters. Channel models for digital channels are called error
models [2], [3], which aim at describing the statistical prop-
erties of the underlying bursty error sequences. Error models
have wide applications to the design and performance evalua-
tion of error-control schemes [3], as well as high-layer wireless
communication protocols [4], [5].

Error models are either descriptive [2] or generative [3]. A de-
scriptive model analyzes the statistical behavior of target error
sequences obtained directly from a real digital channel or a com-
puter simulation of the overall communication link. A genera-
tive model specifies a mechanism that generates error sequences
statistically similar to the target error sequences [3]. Compared
with a descriptive model, the main advantage of a generative
model is that it can greatly reduce the computational effort for
generating long error sequences, and therefore speed up sim-
ulations. In this paper, descriptive models are considered our
reference models, while generative models are considered sim-
ulation models.

An error sequence can be either a hard (binary) error sequence
or a soft one, depending on whether the outputs of a digital
channel are based on hard decisions or soft decisions. Conse-
quently, one can have hard generative models and soft genera-
tive models, which generate hard error sequences and soft error
sequences, respectively. In the literature, five classes of hard
generative models have been proposed. The first class is based
on finite [3], [6]–[14] or infinite [3] state Markov chains. Gilbert
[6] originally proposed a two-state Markov model. It generates
in one state (good state) a hard error-free sequence, and in the
other one (bad state), a sequence of errors. Elliot [7] modi-
fied Gilbert’s model in such a way that errors can also occur
in the good state with a small probability. The disadvantage
of a two-state Markov model is its limited capability to repro-
duce the desired burst-error statistics. One way to overcome this
problem is to enlarge the number of states. Fritchman [8] pro-
posed Markov models with a finite number of states, which
are then partitioned into two groups. One group consists of
error-free states, while the other group has error states.
Simplified Fritchman’s models (SFMs) with only one error state
have received wide applications [9]–[13]. For example, SFMs
were applied to describe the statistical properties of high-fre-
qency (HF) channels in [9], very (V)HF channels in [10], ultra
(U)HF channels in [11], and indoor radio channels in [12] and
[13]. Finite-state Markov models also include the so-called bi-
partite models [14]. The Markov chain used in a bipartite model
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forms a bipartite graph. Another important class of hard gen-
erative models are hidden Markov models (HMMs) [12], [13],
[15], [16], which have to use a high number of HMM states in
order to provide good fittings to the desired burst-error statis-
tics. A higher state Markov model enhances the parametriza-
tion problems and makes the subsequent performance analysis
of high-layer protocols increasingly difficult [5]. Furthermore,
HMMs lack a direct intuition between the channel behavior and
the underlying Markov chain.

Recently, three other classes of hard generative models [13],
[16]–[23] were presented. The underlying error-generation
mechanisms, which are completely different from Markov
chains, are based on stochastic context-free grammars [13],
chaos equations [16]–[19], and sum-of-sinusoids deterministic
processes [20]–[23]. Stochastic context-free grammar-based
hard generative models are limited to model hard error se-
quences having the bell-shaped error-density behavior [13].
Chaos-equation-based hard generative models [16], [17] failed
to approximate some important burst-error statistics, e.g., the
block-error probability distribution, with high accuracy. On
the other hand, the new class of deterministic-process-based
generative models (DPBGMs) [20]–[23] was demonstrated to
be a promising alternative to Markov models. In particular,
the DPBGM in [23] shows much better performance than the
DPBGMs in [20]–[22] by accurately modeling all the interested
burst-error statistics of the underlying hard error sequences.
The employed target hard error sequences in [20]–[23] were
obtained by computer simulations of postulated transmission
systems, rather than realistic wireless communication systems.
Moreover, the resulting hard error sequences generated from
the developed DPBGMs in [20]–[23] were not further applied
to performance simulations of error-control schemes and com-
pared with the target hard error sequences. This implies that the
applicability of the DPBGMs in [20]–[23] to the performance
evaluation of coding systems was not validated.

All the above-mentioned hard generative models [3], [6]–[23]
can only simulate the occurrence of binary errors. It is widely
accepted that better performance of channel-coding schemes
can be achieved by using soft decision decoding algorithms.
In this framework, the hard generative models become useless.
In the literature, only a few soft generative models were found
for the simulation of digital wireless channels with soft deci-
sion outputs. They are based on either hidden Markov chains
[24]–[30] or chaos equations [29], [30]. For generating soft error
sequences, the HMM building becomes much more complex,
since it needs to significantly increase the number of HMM
states [25]. Chaos-equation-based soft generative models still
result in relatively poor fittings to the desired burst-error statis-
tics [29], [30].

The aim of this paper is twofold. First, we will follow the line
of [23] and develop an improved hard generative model based
on deterministic processes for realistic enhanced general packet
radio service (EGPRS) systems. Uncoded EGPRS systems with
hard decision outputs are adopted to provide target hard error
sequences. Second, we will show that the proposed DPBGM is
also capable of generating soft error sequences by slightly mod-
ifying the design procedure. In this case, uncoded EGPRS sys-
tems with soft decision outputs are used as reference transmis-

Fig. 1. Extract from a hard error sequence with � = 4 as an example.

sion systems. It is shown that the proposed DPBGMs can pro-
vide excellent approximation to the desired burst-error statistics
of the underlying descriptive models. The verification made by
performance simulations of coded EGPRS systems with hard
and soft decision decoding algorithms further confirm the reli-
ability of the suggested models.

The paper is organized as follows. Section II briefly intro-
duces the terms and interested burst-error statistics for both
hard and soft error sequences. A general design procedure of
novel hard and soft generative models based on deterministic
processes is addressed in Section III. Section IV presents the
adopted EGPRS systems and the resulting hard and soft error
sequences. In this section, the burst-error statistics of the under-
lying descriptive models and the proposed generative models
are also compared. Section V demonstrates the simulated
frame-error rates (FERs) and residual bit-error rates (RBERs)
of coded EGPRS systems obtained from the descriptive models
and generative models. Finally, conclusions are drawn in
Section VI.

II. BURST-ERROR STATISTICS

In the literature, different definitions exist for some terms de-
scribing bursty error sequences. For instance, the definition of a
gap used in [9] and [10] differs from that used in [3] and [16].
For the sake of clarity, let us first introduce the terms and rel-
evant burst-error statistics we use in this paper to characterize
hard and soft error sequences. The definitions of the terms were
chosen in such a way that they are convenient for the develop-
ment of DPBGMs.

A. Burst-Error Statistics for Hard Error Sequences

A hard error sequence is often represented by a binary se-
quence of ones and zeros, with a “1” denoting an error bit, and a
“0” a correctly received bit. A gap is defined as a string of con-
secutive zeros between two ones, having a length equal to the
number of zeros [9], [10]. An error cluster is a region where the
errors occur consecutively, and has a length equal to the number
of ones [8]. An error-free burst is defined as an all-zero sequence
with a length of at least bits, where is a positive integer
[12], [14]. Compared with a gap, an error-free burst has a min-
imum length of and is not necessarily located between two
errors. An error burst is a sequence of zeros and ones starting
and ending with a “1,” and separated from neighboring error
bursts by error-free bursts [12], [14]. It should be observed that
the minimum length of an error burst is 1 and the number of
consecutive error-free bits within an error burst is less than .
Hence, the local error density inside an error burst is greater than

. To make the above concepts easily understood, we show in
Fig. 1 an extract from a hard error sequence. Only in this figure,
“G,” “EC,” “EFB,” and “EB” are used to denote a gap, an error
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Fig. 2. Extract from a soft error sequence with � = 4 as an example.

cluster, an error-free burst, and an error burst, respectively. In
addition, holds as an example here.

Regarding hard error sequences, we are interested in the fol-
lowing burst-error statistics.

1) : the gap distribution (GD), which is defined as the
cumulative distribution function (CDF) of gap lengths
[9].

2) : the error-free run distribution (EFRD), which
is the probability that an error is followed by at least
error-free bits [8]. The EFRD can be calculated from
the GD [9]. Obviously, is a monotonically
decreasing function of , such that and

as .
3) : the error cluster distribution (ECD), which is

the probability that a correct bit is followed by or more
consecutive bits in error [8].

4) : the error burst distribution (EBD), which is the
CDF of error burst lengths .

5) : the error-free burst distribution (EFBD),
which is the CDF of error-free burst lengths .

6) : the block-error probability distribution (BEPD),
which is the probability that a block of bits contain at
least errors. This quantity is important for determining
the performance of error-correcting schemes [10].

7) : the bit-error correlation function (BECF), which is
the conditional probability that the th bit following an
error bit is also in error. The BECF represents the bursti-
ness of the channel and is useful for the design of bit inter-
leavers [2], [3].

B. Burst-Error Statistics for Soft Error Sequences

For digital channels with -bit soft decision outputs, a soft
error sequence is, in general, represented by a sequence of in-
teger numbers ranging from to , where
is a positive integer. A negative integer indicates an error bit,
while a nonnegative integer stands for a correctly received bit.
The absolute value of an integer shows the reliability of the de-
cision. Fig. 2 shows an extract from a soft error sequence. Here,

holds as an example and therefore, the integers are
located in the interval [ 8, 7]. In order to make statistical as-
sessments of soft error sequences, some new terms and relevant
burst-error statistics pertaining to soft decision outputs have to
be introduced. For reasons of consistency, we will consider the
following terms for soft error sequences analogous to the defini-
tions used for hard error sequences. A soft gap (SG) is defined as
a string of consecutive nonnegative integers between two nega-
tive integers, having a length equal to the number of nonnegative
integers. A soft error cluster (SEC) is a region where the nega-
tive integers occur consecutively, and has a length equal to the
number of negative integers. A soft error-free burst (SEFB) is
defined as a sequence of nonnegative integers with a length of

at least bits, where is a positive integer. Again, is set to
be 4 as an example in Fig. 2. A soft error burst (SEB) is a se-
quence of integers beginning and ending with a negative integer,
and separated from neighboring SEBs by SEFBs. It is impor-
tant to mention that a hard error sequence can be regarded as a
quantized version of a soft error sequence, i.e., . This is
also obvious by comparing Figs. 1 and 2. If we replace all the
nonnegative integers by zeros and negative integers by ones in
Fig. 2, then Fig. 2 will be reduced to Fig. 1.

In relevance to soft error sequences, the following burst-error
statistics will be studied.

1) : the soft GD (SGD), which is defined as the CDF
of SG lengths .

2) : the soft EFRD (SEFRD), which is the probability
that a negative integer is followed by at least nonneg-
ative integers.

3) : the soft ECD (SECD), which is the probability
that a nonnegative integer is followed by or more neg-
ative integers.

4) : the soft EBD (SEBD), which is the CDF of SEB
lengths .

5) : the soft EFBD (SEFBD), which is the CDF of
SEFB lengths .

6) : the soft BEPD (SBEPD), which is the proba-
bility that a block of integers contain at least negative
integers.

7) : the soft decision-symbol distribution (SDSD),
which is the CDF of soft decision symbols

.
It is worth stressing here that the SGD, SEFRD, SECD,

SEBD, SEFBD, and SBEPD of soft error sequences will ex-
actly be identical to the GD, EFRD, ECD, EBD, EFBD, and
BEPD of hard error sequences, respectively, if the underlying
hard error sequence is a corresponding quantized version
of the soft error sequence. This is due to the fact that we
have employed the consistent definitions of the terms and the
above-mentioned burst-error statistics for hard and soft error
sequences. For notational brevity, we use , ,

, and to represent (soft) GD, (soft) EBD,
(soft) EFBD, and (soft) BEPD, respectively.

From the definitions of the terms, it is clear that a hard (soft)
error sequence can be considered as the combination of con-
secutive (soft) error bursts and (soft) error-free bursts, while
(soft) error bursts can further be subdivided into (soft) error
clusters and (soft) gaps. To avoid a bit-by-bit processing, a hard
(soft) error sequence can concisely be represented by listing the
successive (soft) error-burst lengths and (soft) error-free burst
lengths. This results in a (soft) error-burst recorder and
a (soft) error-free burst recorder . Here, is a
vector which counts successive (soft) error-burst lengths, while

records successive (soft) error-free burst lengths. Let
us denote the minimum value as and the maximum value
as in . This means that the lengths of (soft) error
bursts satisfy . By analogy, the minimum
value and the maximum value in are denoted as
and , respectively. For the convenience of developing the
DPBGMs in Section III, the following quantities are defined.

1) : the total length of the target hard (soft) error sequence.
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2) : the total number of (soft) error bursts, which equals
the number of entries in .

3) : the total number of (soft) error-free bursts, which
equals the number of entries in .

4) : the number of (soft) error bursts of length
in . Apparently,

holds. The (soft) EBD can then be calculated by
.

5) : the number of (soft) error-free bursts of length
in . Similarly,

holds. The (soft) EFBD is given by
.

6) : the ratio of the mean value of (soft) error-burst
lengths to the mean value of (soft) error-free burst
lengths, i.e., .

In relevance to a hard error sequence, the configuration of
error-free bursts are obvious from the entries of , since
the length of an error-free burst defines the number of consecu-
tive zeros. On the other hand, the entries of do not pro-
vide a clear configuration of corresponding error bursts, because
an error burst consists of possibly mixed zeros and ones. It is
necessary to further define the following vectors.

• : a vector which lists successive error cluster lengths
and gap lengths corresponding to each entry of .
Clearly, . Note that each vector
has an odd number of entries, with error cluster lengths as
odd entries and gap lengths as even entries.

Due to the specific nature of a soft error sequence, two types
of vectors need to be defined instead of the above vectors

.
• : a vector which records soft decision symbols corre-

sponding to each entry of . Here, .
The vector indicates the configuration of the corre-
sponding SEB.

• : a vector which records soft decision symbols
corresponding to each entry of . Similarly,

.

III. THE NOVEL GENERATIVE MODELS BASED ON

DETERMINISTIC PROCESSES

It is well established that the statistics of burst errors can be
estimated from the second-order statistics of fading envelope
processes. This indicates the possibility of developing genera-
tive models by using fading processes. Deterministic fading pro-
cesses, based on the principle of Rice’s sum-of-sinusoids [31],
[32], have widely been employed as physical channel simulators
[1], [33], [34]. It has been shown in [20]–[23] that deterministic
processes can also be used as a proper error-generation mech-
anism for the simulation of digital wireless channels with hard
decision outputs. In this section, we will develop a general de-
sign procedure of generating hard (soft) error sequences based
on deterministic processes.

It is natural to relate the generation of (soft) error bursts and
(soft) error-free bursts to fading intervals and interfade intervals
of a fading process, respectively. The key idea behind the
proposed hard (soft) generative model is to derive directly from
a deterministic process a (soft) error burst-length generator

and a (soft) error-free burst-length generator. The employed
deterministic process must be properly parameterized
and sampled with a certain sampling interval . A threshold
detector with a chosen threshold then follows after the sam-
pled deterministic process , where is a nonnegative
integer. During the simulation, the level of the deterministic
process will vary and cross the given threshold from time
to time. If the level of is above , (soft) error-free
bursts are supposed to be produced at the model’s output.
The lengths of the generated (soft) error-free bursts equal the
numbers of samples in the corresponding interfade intervals of

. When the level of falls below , then (soft)
error bursts will occur. The (soft) error-burst lengths equal
the numbers of samples located in the corresponding fading
intervals of . Consequently, a (soft) error burst-length
generator and a (soft) error-free burst-length generator

are obtained. Similar to the notations used for the
descriptive model in Section II, we simply put the tilde sign on
all affected symbols for the generative model. For example, we
write , , and .

A. The Parametrization of the Sampled Deterministic Process

The first step for the design of the proposed hard (soft) gen-
erative model lies in the parametrization of the employed deter-
ministic process based on the known quantities obtained from
the target hard (soft) error sequence. In the following, a general
idea is described to determine the parameters of the underlying
deterministic process used in the hard (soft) generative model.
The level-crossing rate (LCR) at the chosen threshold

is fitted to the desired occurrence rate of
(soft) error bursts. Here, denotes the total transmission time
of the reference transmission system, from which the target hard
(soft) error sequence of length is obtained. The ratio of
the average duration of fades (ADF) at to the av-
erage duration of interfades (ADIF) at is adapted
to the desired ratio . Moreover, we must
guarantee that the sampling interval is chosen sufficiently
small in order to detect most of the level crossings and fading
intervals at deep levels, i.e., .

For our purpose, any forms of deterministic processes, e.g.,
in [1], [20]–[23], [33], and [34], with different degrees of com-
plexities can, in principle, be used. Obviously, it is beneficial
to choose a deterministic process which has as few parame-
ters as possible in order to increase the simulation efficiency.
In this paper, we will only consider the following simple con-
tinuous-time deterministic process [20]–[23]:

(1)

where

(2)

In (2), defines the number of sinusoids. The phases are
considered as the realizations of a random generator uniformly



WANG AND XU: A NEW CLASS OF GENERATIVE MODELS FOR BURST ERROR CHARACTERIZATION 457

distributed over . The gains and the discrete frequen-
cies are calculated by using the method of exact Doppler
spread (MEDS) [33] and are given by

(3)

(4)

respectively. Here, is the square root of the mean power of
, and represents the maximum Doppler frequency.

The deterministic nature of the resulting process in (1)
stems from the fact that all the involved process parameters are
kept constant instead of random during the simulation.

When using the MEDS with , it has been shown in
[33] that the LCR of fits very closely the LCR
of a Rayleigh process, which is given by

(5)

where

(6)

and

(7)

denotes the Rayleigh distribution. It can also be shown that the
ADF and the ADIF of approximate very
well the corresponding quantities and , respec-
tively, of a Rayleigh process. They are given by

(8)

(9)

It follows that the ratio can be expressed as

(10)

From the analysis above, it is clear that the second-order
statistics with respect to the LCR, ADF, and ADIF
of the underlying sampled deterministic process

are fully determined by the parameter vector
. The confronted task now

is to find a proper parameter vector so that the following
conditions can be fulfilled: and

. For our purposes, it is not necessary to
include all the elements of the parameter vector in the
design. We can first choose reasonable values for , , and

, e.g., , , and . Then, performing

, can be calculated according to
the following expression:

(11)

With the help of the relation , is given by

(12)

The substitution of (7) into (12) yields the following explicit
expression:

(13)

Equation (13) clearly states that is completely determined
by the known quantities , , and of the descriptive
model, but not influenced by and . The sampling in-
terval for small values of can suitably be chosen as
follows [22]:

(14)

where is a very small quantity determining the maximum
measurement error of the LCR. This implies that the probability
of undetectable level crossings at is not larger than . Using
(8), (14) can finally be expressed as

(15)

By referring to the (11), (13), and (15), we point out that the
remaining parameters , , and of can all be ob-
tained as closed-form expressions of known quantities. This al-
lows the model users to unambiguously choose a certain set of
parameters of the sampled deterministic process based on the
given quantities obtained from the target hard (soft) error se-
quence. Consequently, the stability of the new generative model
is greatly improved, compared with the model in [23]. With the
resulting parameter vector , a sampled deterministic process

is simulated within the necessary time interval ,
i.e., . Here, with denoting the
required length of the generated hard (soft) error sequence. The
total numbers of the generated (soft) error bursts and (soft)
error-free bursts can approximately be estimated from

and , re-
spectively. Here, stands for the nearest integer to towards
minus infinity, i.e., . In this manner, a (soft) error burst
length generator with entries and a (soft) error-free
burst-length generator with entries are derived.

B. The Mappers

Our investigations have shown that the obtained generators
and are in general not suitable to directly

generate an acceptable (soft) EBD and (soft) EFBD, respec-
tively. This is due to the fact that the resulting
and are far from proportional to and
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, respectively. Therefore, the second step of the
design procedure is to develop two appropriate mappers,
which map the lengths of the generated (soft) error bursts
and (soft) error-free bursts to the corresponding desired
lengths. The idea of the mappers is to properly modify

and such that and
hold, respectively. Here,

equals or
for different (soft) error burst lengths in order to ful-
fill . Similarly,
equals or
for different (soft) error-free burst lengths to satisfy

. Since obtained

from the modified generator after the mapping procedure
is almost proportional to , the resulting (soft) EBD

will match well the desired (soft) EBD ,
i.e.,

(16)

By analogy, the resulting (soft) EFBD will be close
to the desired one .

Next, we will only address how to properly modify .
The same idea applies also to . For each (soft) error-
burst length , we first find the corre-
sponding values and ( , ) in

to satisfy the following conditions:

(17)

(18)

Let us define

(19)

Clearly, holds. This in-

dicates that if we map all (soft) error-burst lengths between
and , while only error-burst lengths of in

to , then will be satisfied.
Note that and hold. For example, let
us assume that , , ,

, and . The application of this simple example to
(17) and (18) immediately results in and .
Then, the error-burst lengths of 10 and 11 in are all

mapped to the length 1. Consequently,
holds. In summary, the mapper for the (soft) error burst length
generator works as follows: if samples of
the deterministic process are observed in a fading interval, then
a mapping is first performed, and afterwards, a (soft)
error burst with length is generated.

It is important to stress here that the above properly designed
mappers allow the developed generative model to approximate
very well any given (soft) EBD and (soft) EFBD. This makes our
proposed model sufficiently general to adapt to different types
of burst-error statistics.

C. The Generation of Error Sequences

The third step for the design procedure of the DPBGM is to
generate hard (soft) error sequences from the modified genera-
tors and after the mappers.

1) The Generation of Hard Error Sequences: The gener-
ation of error-free bursts is straightforward, since each entry
of is simply interpreted as the number of consecutive
zeros. For generating error bursts, it is convenient to first con-
struct parameter vectors , which
reflect the configuration of each error burst in by listing
the corresponding consecutive cluster lengths and gap lengths.
To this end, we have to find all vectors corresponding to
error bursts with length in . Then, for all error bursts
with the same length in , we randomly assign
from all possible vectors . With such a vector , an
error burst is generated by combining consecutive error clusters
(ones) and gaps (zeros). The resulting hard error sequence is
simply the combination of consecutively generated error bursts
and error-free bursts.

2) The Generation of Soft Error Sequences: For generating
SEBs, we need first to find all vectors corresponding to
a SEB length in . Then, we randomly choose an un-
derlying configuration (soft decision symbols) from all possible
vectors for all SEBs with the same length in .
With such a vector , an SEB of length is generated.
By analogy, for the generation of SEFBs, we first have to lo-
cate all vectors corresponding to a SEFB length in

. Afterwards, the underlying configuration of a SEFB
with the same length in is randomly selected from
all possible vectors . In this manner, a SEFB of length

is produced. The resulting soft error sequence is simply the
combination of consecutively generated SEBs and SEFBs.

In short, the design procedure of the proposed DPBGM in-
volves three steps: the parametrization of the sampled determin-
istic process, the development of two mappers, and the gener-
ation of hard (soft) error sequences. We call the first two steps
the simulation setup phase, and the last step the simulation run
phase. It should be noted that, although the simulation setup
phase of the proposed DPBGM requires relatively long time,
the simulation run phase is very fast, since it determines directly
(soft) error burst and (soft) error-free burst lengths instead of bit
sequences. The design procedures of a hard generative model
and a soft generative model based on deterministic processes
differ mainly in the last step. The general block diagram of the
proposed DPBGM is depicted in Fig. 3.
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Fig. 3. General block diagram of the proposed DPBGM.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the novel generative
models is investigated by applying the mechanism to exper-
imental error sequences. The burst-error statistics defined in
Section II are used here as the performance criteria. In general,
one generative model outperforms another if it better fits the
important statistics, e.g., the (soft) BEPD, of the descriptive
model.

Uncoded EGPRS transmission systems were employed to
generate target soft error sequences. The underlying digital
channels are composed of a Gaussian minimum-shift keying
(GMSK) modulator, a propagation channel with cochannel
interference, a GMSK demodulator, and a 4-bit soft-decision
Viterbi equalizer. The data were transmitted in time-division
multiple-access (TDMA) bursts of 116 bits with a transmission
rate of 270.8 kb/s. As specified in [35], the deployed
propagation channels can be denoted as NAMEx. Here, x
represents the vehicle speed in km/h and NAME stands for the
name of a particular channel, e.g., a typical urban (TU) channel
and a rural area (RA) channel. Also, the system can use either
no frequency-hopping (NFH), or ideal FH (IFH), which im-
plies perfect decorrelation between TDMA bursts [35]. In this
paper, we have considered one typical narrowband propagation
channel profile, RA 275 NFH, as well as three typical wideband
propagation channel profiles: TU3 IFH, TU3 NFH, TU50 NFH
[35]. In the case of NFH, since data are transmitted using a
GSM carrier within a bandwidth of 200 kHz, the system is a
narrowband one. When FH is employed, the system operates
in a wide frequency band. Depending on the actual frequency
band assigned to the operator, a bandwidth of 5 MHz or more
is, in fact, used.

The target soft error sequences of length were
produced at carrier-to-interference ratios (CIRs) of 5, 7, 8 , 9,
11, 13, 15, and 17 dB. The total transmission time is therefore

55.3914 s. The target hard error sequences were
obtained as quantized versions of the corresponding soft error
sequences. This is the same as we obtain target hard error se-
quences from the uncoded EGPRS systems with a hard decision
Viterbi equalizer. By using the design procedure of the proposed
DPBGMs in Section III, hard (soft) error sequences of length

were generated. It follows that the necessary sim-
ulation time of the deterministic processes is
73.8552 s. For the sake of brevity, only the simulation results of
the EGPRS system with the TU3 IFH channel will be presented
here. For other channel types, the presented error models per-
form similarly well.

Let us first study the performance of the obtained hard gen-
erative model in terms of the interested burst-error statistics.
The GDs, the EFRDs, the ECDs, the EBDs, and EFBDs with

Fig. 4. ECDs of the descriptive model and the hard generative models.

, the BEPDs with blocks of 116 bits per
TDMA burst, and the BECFs calculated from the target and gen-
erated hard error sequences were compared. For further com-
parison purposes, the relevant results of a six-state SFM were
also presented. The transition probability matrix of a -state
SFM is calculated by expressing the EFRD as the
sum of exponentials with suitable weighting coefficients
[8]. This procedure has to involve curve fitting techniques and
is called the simulation setup phase of an SFM. From the tran-
sition probability matrix of a SFM, hard error sequences can
be generated with any desired length, which is considered as
the simulation run phase of an SFM. In our case, the fitting of

is achieved by using five exponentials. Our experi-
ments have shown that no better performance can be obtained
from SFMs with more than six states. The same conclusion was
also given in [20]–[23].

As an example, we will only show the simulation
results of the descriptive model and two hard genera-
tive models for the EGPRS system with the TU3 IFH
channel at a CIR of 8 dB. The chosen parameter vector
for the underlying sampled deterministic process was

Hz, ms , which
were calculated from the given quantities ,

, and . Figs. 4–7 show the resulting
ECDs, EBDs, BEPDs, and BECFs of the descriptive model and
both hard generative models, respectively. The results for the
GDs, EFRDs, and EFBDs of the three models are not presented
here since they are very close to each other. As expected, all
these curves for the DPBGM have very excellent agreements
with the target ones. However, relatively large deviations were
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Fig. 5. EBDs of the descriptive model and the hard generative models.

Fig. 6. BEPDs of the descriptive model and the hard generative models.

found for the fittings to the desired ECD, EBD, BEPD, and
BECF by using the SFM. This demonstrates that the SFM
fails to model some characteristics, especially the correlation
properties, of the target hard error sequence. Concerning the
simulation time, we do not need to compare the simulation
setup phase of the DPBGM and the SFM. For generating a
hard error sequence of length , the DPBGM and
the SFM need for their simulation run phase about 1.25 and
107.5 s, respectively. Hence, from both the accuracy and simu-
lation efficiency points of view, the superiority of the DPBGM
over the SFM is obvious. Experiments have shown that the
descriptive model needs approximately 8.5 h for generating a
hard error sequence of length . This clearly indicates
the advantage of the generative models over the underlying
descriptive model.

Then, we investigate the interested burst-error statistics
of the proposed soft generative model. As mentioned in
Section II, the SGDs, SEFRDs, SECDs, SEBDs, SEFBDs, and
SBEPDs of target soft error sequences are exactly identical

Fig. 7. BECFs of the descriptive model and the hard generative models.

Fig. 8. SDSDs of the descriptive model and the DPBGM.

to the corresponding GDs, EFRDs, ECDs, EBDs, EFBDs,
and BEPDs, respectively, of target hard error sequences.
This is due to the fact that the target hard error sequences
were obtained as quantized versions of the target soft error
sequences. By using the proposed soft DPBGM, the resulting
SGD, SEFRD, SECD, SEBD, SEFBD, and SBEPD are the
same as those obtained from the hard generative model.
Therefore, these statistics have excellent approximations to
those of the descriptive model, as we have verified for the hard
generative model. For brevity of presentation, the results are
omitted here. Fig. 8 demonstrates the good match between
the SDSDs of the descriptive model and the DPBGM. As
examples, the CIRs of 9 and 19 dB were selected. In the case
of CIR = 9 dB, the ratio and
SEBs were obtained. With , the chosen parameter
vector for the corresponding deterministic process was

Hz, ms . For CIR = 19 dB,
and hold. The chosen parameter

vector was Hz, ms .
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Fig. 9. RLC FERs of the MCS3-coded EGPRS system with hard and soft
decoding algorithms obtained from the descriptive models and the generative
models.

Fig. 10. RLC RBERs of the MCS3-coded EGPRS system with hard and soft
decoding algorithms obtained from the descriptive models and the generative
models.

V. APPLICATION TO ERROR-CONTROL STRATEGIES

To further illustrate the accuracy of the proposed DPBGMs,
we applied them to the performance evaluation of coded EGPRS
systems with hard and soft decoding algorithms. The modula-
tion and coding scheme 3 (MCS3) [35] was chosen as a prac-
tical example. Again, only the simulation results for the TU3
IFH channel profile are presented here.

Fig. 9 plots the resulting radio link control (RLC) header and
data FERs of the MCS3-coded EGPRS system with a hard de-
coding algorithm obtained from the descriptive model and two
hard generative models. Here, one frame includes four TDMA
bursts. It is clear that the FERs obtained from the DPBGM coin-
cide very well with those obtained from the descriptive model,
while the accuracy of the FERs obtained from the SFM is not
acceptable. The same conclusion holds for the RLC header and
data RBERs of the MCS3-coded EGPRS system with a hard de-
coding algorithm, which are demonstrated in Fig. 10. The RBER

is the ratio of the number of errors detected over the frames de-
fined as “good” to the number of transmitted bits in the “good”
frames [35].

Figs. 9 and 10 also illustrate the excellent accordance of the
resulting RLC data FERs and RLC data RBERs, respectively, of
the MCS3-coded EGPRS system with a soft decoding algorithm
obtained from the descriptive model and the DPBGM. Good
agreements were also observed concerning the corresponding
RLC header FERs and RLC header RBERs. We omit the results
here in order to retain the clarity of the figures. Obviously, com-
pared with using a hard decoding algorithm, better performance
of the MCS3-coded EGPRS system can be obtained by using a
soft decoding algorithm.

It is important to mention that we have also successfully ap-
plied the proposed DPBGMs to the EGPRS systems with the
TU3 NFH, TU50 NFH, and RA275 NFH channel profiles. Fur-
thermore, performance simulations of the coded EGPRS sys-
tems with the MCS1 [35] were carried out. Satisfactory results
were found in all tested cases. In this manner, the reliability and
generality of the proposed DPBGMs, as well as their applica-
bility to coding system evaluation, are validated.

VI. CONCLUSION

This paper has demonstrated a general procedure of designing
a new class of hard and soft generative models by using a prop-
erly parameterized and sampled deterministic process followed
by a threshold detector and two parallel mappers. Simulation
results indicate that the proposed DPBGMs have the attractive
capability to approximate very well all the interested burst-error
statistics of the underlying descriptive models. The reliability
of the suggested hard (soft) DPBGM is further confirmed by
performance simulations of coded EGPRS systems with a hard
(soft) decoding algorithm obtained from the target and gener-
ated hard (soft) error sequences.
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