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Abstract - Efficient and accurate generative models are of 
great importance for the design and performance evaluation 
of wireless communication protocols as well as error control 
schemes. In this paper, deterministic processes are utilized 
to derive a new generative model for the simulation of 
bursty error sequences encountered in digital mobile fading 
channels. The proposed deterministic process based gener- 
ative model (DPBGM) is simply a propeirly parameterized 
and sampled deterministic process followed by a threshold 
detector and two parallel mappers. The tar,get error sequence 
is generated by a computer simulation of a frequency hop- 
ping (FH) convolutionally coded Gaussian minimum shift 
keying (GMSK) transmission system with Rayleigh fading. 
Simulation results show that this generative model enables 
us to match very closely any given gap distribution (GD), 
error-free run distribution (EFRD), error cluster distribution 
(ECD), error burst distribution (EBD), error-free burst distri- 
bution (EFBD), block error probability distribution (BEPD), 
and bit error correlation function (BECF) of the underlying 
descriptive model. 
Keywords - Generative models, deterministic processes, 
burst error statistics, digital frequency hopping systems. 

I. INTRODUCTION 
A digital wireless propagation channel is characterized 

by a variety of impairments resulting in the fact that errors 
tend to occur in clusters or bursts separated by fairly long 
error-free gaps. Many research studies hawe shown that the 
performance of high layer protocols as wlell as error control 
systems is very sensitive to the statistical properties of the 
underlying error sequences [l], [2]. Therefore, it is of great 
significance to develop accurate and efficient error models 
for characterizing bursty error sequences. Error models can 
be classified as descriptive models [3] and generative models 
[4]. A descriptive model often obtains target error sequences 
from a real digital channel or a computer simulation of the 
overall communication link. A generative model specifies an 
underlying mechanism that generates error sequences with 
desired statistics. Compared with a descriptive model, the 
main advantage of a generative model is that it greatly 
reduces the computational effort for generating long error 
sequences and therefore speeds up simulations. 

For modeling of error sequences, various generative mod- 
els have been presented based on finite [2], [4], [5] or 

infinite [4] state Markov chains or hidden Markov chains [6], 
[7]. In particular, much attention was devoted to simplified 
Frichman’s models (SFMs) with only one error state [5], 
[SI. Recently, it was shown that alternative error generation 
mechanisms, different from Markov chains, can be used to 
produce error sequences. For instance, generative models 
based on chaotic equations [9] and context-free grammars 
[ 101 were proposed to simulate bursty error sequences. In- 
terestingly, deterministic processes [ 1 11, which originally go 
back to Rice’s sum-of-sinusoids [12], [13], were successfully 
applied to the development of generative models with good 
burst error statistics [14-161. The DPBGM in [I41 enables 
us to match closely any given GD, EFRD, EBD, and EFBD 
of the descriptive model. The GD, EFRD, and ECD of the 
DPBGMs in [15], [16] can be fitted very well to those 
of the descriptive model. However, all these DPBGMs in 
[14-161 failed to approximate the BEPD and the BECF 
of the descriptive model with high precision. The BEPD 
is an important quantity for the proper choice of error 
control strategies, while the BECF is useful for the design 
of bit interleavers [4]. Both statistics have great impact on 
the throughput and delay performance of communication 
protocols. The aim of this paper is to develop an improved 
DPBGM in such a way that it approximates very well not 
only any given GD, EFRD, ECD, EBD, EFBD, but also the 
BEPD and BACF of the underlying descriptive model. 

The rest of the paper is organized as follows. Section I1 
briefly reviews some terms and the relevant burst error statis- 
tics. A novel DPBGM is proposed in Section 111. Section IV 
presents the underlying descriptive model, while Section V 
compares the burst error statistics of the adopted descriptive 
model, the proposed generative model, and a SFM. Finally, 
the conclusions are drawn in Section VI. 

11. BURST ERROR STATISTICS 

For the sake of clarity, let us first introduce some terms 
used to describe the relevant burst error statistics. An error 
sequence is represented by a binary sequence of ones and 
zeros, where “1” and “0” denote error bits and correct bits, 
respectively. A gap is defined as a string of consecutive zeros 
between two ones, having a length equal to the number of 
zeros. An error cluster is a region where the errors occur 
consecutively and has a length equal to the number of ones. 
An error-free burst is defined as an all-zero sequence with 
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a length of at least 77 bits, where 7 is a positive integer. 
Compared to a gap, an error-free burst has the minimum 
length of 7 and is not necessarily located between two errors. 
An error burst is a sequence of zeros and ones starting and 
ending with a one, and separated from neighboring error 
bursts by error-free bursts. It should be observed that the 
number of consecutive error-free bits within an error burst 
is less than v. Hence, the local error density inside an error 
burst is greater than A = 1/77. 

With the above terms in mind, the following burst error 
statistics will be investigated: 

G(m,): the GD, which is defined as the cumulative 
distribution of gap lengths rng. 
P(Omo/l): the EFRD, which is the probability that 
an error is followed by at least nzo error-free bits. 
The EFRD can be calculated from the GD. Note that 
P(Omo/l) is a monotonically decreasing function of 
mo such that P(Oo/l) = 1 and P(Omo/l) + 0 as 
rno + Co. 

P(lmc/O): the ECD, which is the probability that a 
correct bit is followed by m, or more error bits. 
PEB(m,): the EBD, which is the cumulative distribu- 
tion of error burst lengths me. 
P E F B ( ~ ~ ) :  the EFBD, which is the cumulative distri- 
bution of error-free burst lengths me. 
P ( m ,  n): the BEPD, which is defined as the probability 
that a block of n bits will contain at least m errors. This 
quantity is important for determining the performance 
of error-correcting schemes. 
p ( A k ) :  the BECF, which is defined as the probability of 
two error bits occurring at a distance of Ak bits apart. 

Note that an error sequence is the combination of consec- 
utive error bursts and error-free bursts, while error bursts can 
further be subdivided into gaps and error clusters. To avoid 
a bit-by-bit processing of an error sequence, it is sensible 
to compress the error data by listing the successive error 
burst lengths and error-free burst lengths. Consequently, an 
error burst recorder EB,,, and an error-free burst recorder 
EFB,,, are obtained. Here, EB,,, is a vector which keeps 
a record of successive error burst lengths, while EFB,,, 
records successive error-free burst lengths. Let us denote the 
minimum value as r n ~ 1  and the maximum value as m ~ 2  in 
EB,,,. By analogy, the minimum value and the maximum 
value in EFB,,, are denoted as m,, and mB2, respectively. 
For the derivation of the generative model in Section 111, it 
is convenient to further define the following quantities: 

1) Nt: the total length of the target error sequence. 
2) NEB: the total number of error bursts, which equals 

3) N E F B :  the total number of error-free bursts, which 

4) NEB(m,): the number of error bursts of length m, 
Apparently, ~ ~ ~ ~ m , ,  NEB(me) = NEB 

the number of entries in EB,,,. 

equals the number of entries in EFB,,,. 

in 
holds. 

5 )  N E F B ( ~ , - ) :  the number of error-free bursts of length 
mB in EFB,,,. Similarly, CEt&gl NEFB(mE) = 

6 )  Rg: the ratio of the mean value MEB of error bursts to 
the mean value MEFB of error-free bursts, i.e., RB = 

7 )  ECGi: a vector which lists successive error cluster 
lengths and gap lengths corresponding to each entry of 
EB,,,. Clearly, i = 1,2 , .  . . ,NEB. Note that ECGi 
has an odd number of entries, with error cluster lengths 
as odd entries and gap lengths as even entries. 

NEFB holds. 

MEB /MEF B , 

111. THE GENERATIVE MODEL 

It is commonly accepted that the second order statistics 
of fading envelope processes are closely related to the 
statistics of burst errors. This indicates the potential of 
developing generative models by using fading processes. 
It is well known that deterministic processes [I  13, basing 
on the principle of Rice’s sum-of-sinusoids [12], [13], are 
advantageous to be employed as channel simulators due to 
the easy determination of the model parameters, the efficient 
implementation on a computer, and their excellent statistical 
properties. Inspired by these promising advantages, we will 
show in the following how to utilize deterministic processes 
as a proper mechanism to generate bursty error sequences 
with desired statistics. 

It is intuitive to relate error bursts and error-free bursts 
to fading intervals and inter-fade intervals, respectively, of a 
deterministic process. The idea of the proposed generative 
model is to derive directly from a deterministic process an 
error burst length generator and an error-free burst len-gth 
generator. However, the employed deterministic process <( t )  
has to be properly parameterized and sampled with a certain 
sampling interval TA. Here, TA can simply be equated with 
the symbol duration T, of the referente transmission system. 
The sampled deterministic process (‘(HA), where k is a 
nonnegative integer, is then followed by a threshold detector. 
Error-free bursts are produced at the model’s output if the 
level of (‘(kT’) is above a given threshold rth. The lengths 
of the generated error-free bursts equal the num_bers of 
samples in the corresponding inter-fade iptervals of <( ~ T A ) .  
On the other hand, when the level of < ( ~ T A )  falls below 
rth, then this implies the occurrence of error bursts. The 
error burst lengths equal the numbers of samples in the 
corresponding fading intervalEf < ( ~ T A ) .  Consequently, an 
error burst length Enerator EB,,, and an error-free burst 
length generator EFB,,, are obtained. For the generative 
model, we use similar notations to those introduced in 
Section I1 by simply putting the tilde-sign on all affected 
symbols, i.e., we write 6 ~ 1 ,  NEFB, NEB(m,), etc. 

A.  The parametrization of the deterministic process 
The parameters of the deterministic process are deter- 

mined as follows. The level-crossing rate (LCR) fic(rth) at 
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the chosen threshold rth is fitted to the desired occurrence 
rate REB = n/EB/Tt of error bursts. Here, Tt denotes 
the total transmission time of the reference transmission 
system, from which the target error sequence of length Nt 
is obtained. Also, the ratio RB of the average duration 
of fades (ADF) pc-(rth) at rth to the average duration 
of inter-fades (ADIF) '?c+(rth) at rth is adapted to the 
ratio RB = M E B / M E F B .  Let us consbder the following 
continuous-time deterministic process [ 11 I 

C(t) = Ifil(t) + j / 5 2 ( t ) I  

f i z ( t )  = C Cz,n c o s ( 2 ~ f z , n t  + et.,) , i 1 1 , 2  . (2) 

In (2), N, defines the number of sinusoids, c,,,, f,,,, and 
Oz., are called the gains, the discrete frequencies, and the 
phases, respectively. By using the method of exact Doppler 
spread (MEDS) [ll],  the phases are considered as the 
realizations of a random generator uniformly distributed over 
(0,2n], while c , , ~  and f , , ,  are given by 

(1) 

where 
N% 

n=l  

(3) 

f i ,n  = f m a x  sin - (TI ,  -- -) [Ai f ] (4) 

respectively. Here, no  is the square root of the mean power of 
/5i(t) and f m a x  represents the maximum Doppler frequency. 

When using the MEDS with Ni 2 7, :it has been shown 
in [l 13 that the LCR Nc(r) of t(t) is very close to the LCR 
Nc(r) of a Rayleigh process, which is given by 

( 5 )  

(7) 

denotes the Rayleigh distribution. It can idso be shown that 
the ADF f'c- ( r )  and the ADIF ?c+ ( r )  of t ( t )  approximate 
very well the desired quantities Tc- ( r )  aind Tc+ ( r ) ,  respec- 
tively, of a Rayleigh process. They can be expressed as 

Tc-(r) = E$ [exp(,) r2 - I. 
200 

(9) 

Consequently, the ratio 7 ? ~  can be determined as follows 

Now, the task at hand is to find a proper parameter vector 
9 = (NI, N2, rth, 00, fmax) in order to fulfill the following 
conditions: REB = N<(rth) and RB = ~ Tc+ ( r t h ) .  '0 solve 
this problem, we first fix N I ,  N2, and rth by choosing 
reasonable values, e.g., N I  = 9, N2 = 10, and rth = 0.09. 
Then, performing RB = ~ T C + ( , t h ) ,  00 can be calculated 
according to the following expression 

TC- (,Ah) 

TC- ( r t h )  

With the help of the relation REB = Nc(Tth) ,  f m a x  is given 
by 

Using (7), (12) can finally be expressed as 

 NEB(^ + RB) 
fmax = 

Tt J27r In( 1 + RB) ' (13) 

By using the obtained parameter vector *, a sampled de- 
terministic process t( ~ T A )  is generated within the necessary 
time interval [0,pt], i.e., ~ T A  I Ft. Here, i?t = TtNt/Nt 
with Nt denoting the required length of the generated error 
sequence. The total numbers of the generated error busts 
NEB and -error-free bursts NEFB _can be estimated from 
N E B  = 1% and N E F B  = L $ N E F B ] ,  respectively. 
Here, 1x1 stands for the nearest integer to z towardsgnus 
infinity. In this manner, an error burst length recorder EB,,, 
w g  &B entries and an error-free burst length recorder 
EFBvec with JVEFB entries are derived. 

B. The mappers 
- We have found that the obtained recorders EB,,, and 

EFB,,, are not suitable to directly generate an accept- 
able EBD and EFBD, respectively. A proper procedure is 
required to adapt the EBD and EFBD of the developed 
generative model to those of the descriptive model. Two 
mappers are therefore introduced, which map the lengths 
of the generated error bursts and error-free bursts to the 
corresponding &ired 1engthLThe idea of the mappers 
is to modify EB,,, and EFB,,, in such a way that 

hold, respectively. Here, N k B  (me) equals 1%  NEB(^^)] 
or L ~ N J ~ R ( ~ ~ ) ]  + 1 for different error burst lengths me 
in order to fulfill ~ ~ ? m B l  NLB(me) = NEB. Similarly, 
N & F B ( ~ B )  equals [ ~ N E F B ( ~ I Z O ) ]  or L%NEFB(%?)j + 
1 for different error-free burst lengths me to satisfy 

EBD P E B ( ~ , )  will be close to the desired EBD P E B ( ~ , ) ,  
since  NEB(^,) is almost proportional to  NEB(^,). Also, 
the resulting EFBD & F B ( ~ , - )  will match well the desired 
one J ' E F B ( ~ E ) .  

- 

N E B ( m e )  = N L B ( m e )  and N E F B ( m E )  =- N ~ F B ( % )  

CmBZ mc=_mel N&FB(m,) = NEFB. Note that the resulting 
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Next, we will o& concentrate on the procedure of 
p r o p 3  modifying EB,,,. The same procedure applies also 
to EFB,,,. For each error burst length value me (mBl 5 
me 5 mBZ), we first find the corresponding values and 
tke ( f i ~ 1  5 l L e ,  5 f i ~ 2 )  in EB,,, to satisfy the 
following conditions 

eL,-i 

i=el 

- 

# E B ( l )  < NLB(me) (14) 
m e  

e L e  
f i E B ( 1 )  2 NhB(me) . (15) 

i=eLe 
Let us define 

eke - 1  

[=e&&, 
Ne%, = NbB(me) - f i E B ( 1 )  . (16) 

Clearly, xfi;iel  NEB(^) + NeLe = NAB(rn,) holds. This 
indicates that if we map all error burst lengths between 
and lLe - 1, while only Ne%e error burst lengths of lke in 
EB,,, to me, then # E B ( m , )  = NLB(rn,) will be satisfied. 
Note that lkBl = r T z ~ l  and tkB2 = h B 2  hold. In summary, 
the mapper for the error burst length generator works as 
follows: if 1 (lke 5 1 < lke -1) samples of the deterministic 
process are observed in a fading interval, then a mapping 
1 + me is first performed and afterwards an error burst 
with length me is generated. 

- 

C. The generation of error sequences 
- In this subsection, from the modified recorders G,,, and 

EFB,,,, an approach is described to enable the generation 
of error s2uences. For generating error-free bursts, each 
entry of EFB,,, is interpreted as the number of consecutive 
zeros. For generating error buEs, it is convenient to first 
construct parameter vectors ECG,. ( j  = 1 ,2 ,  . . . ,&B), 

which indicate the infrastructure of each error burst in EB,,, 
by listing the corresponding consecutive cluster lengths and 
gap lengths. To reach this aim, we first have to find all 
vectors ECGi corresponding to error bursts with length me 
in EB, Then, for all error burstszith the same length 
me in EB,,,, we assign randomly E C S  from all possible 
vectors ECGi. With such a vector ECG,., an error burst 
is generated by combining consecutive error clusters (ones) 
and gaps (zeros). The resulting error sequence is simply 
the combination of consecutively generated error bursts and 
error-free bursts. The block diagram of the obtained gener- 
ative model is depicted in Fig. 1. We stress that, although 
the simulation set-up phase (determining the parameters and 
designing the mappers) of the DPBGM requires relatively 
long time, the simulation run phase (generation of error 
sequences) is fast, since it determines directly error burst 
and error-free burst lengths instead of bit sequences. 

Fig. 1. The block diagram of the proposed DPBGM. 

IV. THE DESCRIPTIVE MODEL 

In this paper, a FH convolutionally coded GMSK trans- 
mission system in the presence of Rayleigh fading chan- 
nels was adopted to generate target error sequences. The 
transmitter part consists of a convolutional encoder, a block 
interleaver, a GMSK modulator, and a frequency hopper, 
while the receiver includes correspondingly a frequency 
dehopper, a GMSK demodulator, a block deinterleaver, and 
a convolutional decoder. In order to take into account the 
frequency correlations of different FH channels with insuf- 
ficient frequency separations in practice, we have employed 
here a realistic FH Rayleigh fading channel simulator [ 171 
to model FH channels. The convolutional encoder has the 
same structure as specified for the GSM system. The convo- 
lutional decoder is based on the Viterbi algorithm. The block 
interleaver has an interleaving size of 60 x 10. The frame 
length equals 60 symbols for transmission via one of the FH 
channels. A cyclic FH pattern was selected with 5 hopping 
frequencies separated by I MHz. The mobile speed was set 
to be II = 30 km/h. Fig. 2 depicts the resulting average bit 
error probability (BEP) of the FH coded GMSK transmission 
system, which was obtained by transmitting Nt = 10 x lo6 
bits with a transmission rate of F, = 1/T3 = 270.8 kb/s. The 
total transmission time is therefore Tt E 36.93 s. For reasons 
of comparison, the simulated BEPs for the uncoded GMSK 
system (without interleaving and FH) and the non-FH coded 
system (with interleaving) have also been shown in Fig. 2. A 
target error sequence of length 10 x lo6 was extracted from 
the simulated FH transmission system with a signal-to-noise 
ratio of 15 dB. The corresponding BEP is 2.8955 x low3. 
The relevant burst error statistics were computed from the 
resulting error sequence. By setting 7 = 800, altogether 
N E B  = 1818 error bursts and NEFB = 1818 error-free 
bursts were obtained. The ratio R g  equals 0.057. 

v. SIMULATION RESULTS AND DISCUSSIONS 

The procedure described in Section I11 is applied here 
for obtaining the DPBGM. The chosen parameter vector 
for the sampled deterministic process t(kT~) was !@ = 
(9,10,0.09,0.2703,87.9873 Hz). For a generated error se- 
quence with the desired length Nt = 12 x lo6, the necessary 
simulation time of was ' f t  = 44.3131 s. The GD, 
the EFRD, the ECD, the EBD, the EFBD, the BEPD with 
blocks of 60 bits (n=60), and the BECF calculated from the 
generated error sequence will be compared to those of the 
target error sequence. Also, the relevant results of a SFM will 
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Fig. 2. Comparison of BEPs for uncodecl GMSK (without 
interleaving and FH), non-FH coded GMSK (with interleav- 
ing), and FH coded GMSK systems. 

be presented for comparison purposes. The parameters of a 
SFM with K states are obtained by fitting the weighted sum 
of K - 1 exponentials to the EFRD P(Omo/l) [5]. In this 
paper, a SFM with 6 states was employed. Our experiments 
have shown that no better fitting can be obtained from SFMs 
with more than 6 states. 

Figs. 3-8 show the GDs, the EFRDs, the: ECDs, the EBDs, 
the BEPDs with blocks of 60 bits, and the BECFs of both 
generative models and the descriptive model, respectively. 
The results for the EFBDs of the three moadels are not shown 
here since they are very close to each other. As expected, all 
these curves for the DPBGM have very excellent agreements 
with the target ones. Especially, compared to the DPBGMs 
in [14-161, this improved DPBGM can also capture the 
main features of the BEPD and the BECF of the descriptive 
model with high accuracy. The SFM enables also a good 
approximation to the GD and the EFRD of the descriptive 
model, since t h s  model is based on the fitting of the EFRD. 
However, relatively large deviations were found for the 
fittings to the desired ECD, EBD, BEPD, and BECF by 
using the SFM. This demonstrates that the SFM fails to 
model the correlation properties of the target error sequence. 
Both generative models require relatively long time in the 
simulation set-up phase, but the simulation run phase of the 
DPBGM is about 6 times faster than that of the SFM. 

VI. CONCLUSIONS 
This paper has illustrated a general procedure of develop- 

ing a generative model by using a properly parameterized 
and sampled deterministic process follciwed by a thresh- 
old detector and two parallel mappers. An approach has 
also been presented to enable the fast generation of error 
sequences from the modified error burst length generator 
and error-free burst length generator of the DPBGM. The 
reliability of the suggested generative model is confirmed by 
the excellent match of all interested burst error statistics to 
those of the underlying descriptive model. Furthermore, this 

-. . 
- - DPBGM 

0 4  
1 oo I O ‘  1 o2 1 o3 1 o4 1 o5 

Gap length 

Fig. 3. The gap distributions of the generative models and 
the descriptive model. 

lo+ t 
I 

1 oo I O ’  1 o2 10’ 10‘ 
Error-free run length 

Fig. 4. The error-free run distributions of the generative 
models and the descriptive model. 

improved DPBGM outperforms the often used SFM and the 
DPBGMs in [ 14-16] by accurately modeling the correlation 
properties of error sequences. 
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