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Abstract—The evaporation duct effect is a critical issue in
maritime wireless communications. This letter presents a novel
scheme based on the deep neural network (DNN) for accu-
rately predicting path loss (PL) in evaporation ducts. The
environment and antenna parameters are employed as inputs
for the lightweight model, enhancing its applicability to natural
scenarios. The proposed scheme can achieve superior prediction
performance than the k-nearest neighbor model, random forests
model, and linear regression model at varying frequencies. Addi-
tionally, this letter studies the impact of the frequency, receiver
height, and transmission distance on the prediction accuracy of
DNN. Simulation results show that DNN exhibits high prediction
accuracy at low frequencies but experiences a slight accuracy
reduction at higher frequencies due to the presence of complex
peak regions. The impact of receiver height and transmission
distance on the prediction accuracy is not significant.

Index Terms—Deep neural network, maritime wireless com-
munication, evaporation duct, path loss, parabolic equation.

I. INTRODUCTION

W ITH the rapid development of wireless communica-

tions, research on the sixth generation (6G) has com-

menced in recent years [1]. The space-air-ground integrated

network (SAGIN) has been considered an important research

direction of 6G [2]. Maritime wireless communications, as

an essential part of SAGIN, are increasingly prioritizing high

efficiency and quality. There is also a focus on providing

broadband data services over the ocean using higher bands.

Maritime channel modeling is crucial to the construction of

communication links. However, the complex maritime trans-

mission environment presents various challenges, including

barometric changes, sea wave movement, sparse scattering,

and atmospheric duct effects [3]. The time-varying characteris-

tics pose a significant challenge to obtain the channel response

and the path loss (PL) calculation provides a practical method

for evaluating signal degradation in the maritime environment,

especially in the duct environment. As an important category

of electromagnetic (EM) environments, atmospheric ducts are
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atmospheric structures with special super refraction caused

by non-standard atmospheric conditions. Beyond line-of-sight

(BLOS) detections and communications can be realized by

atmospheric ducts [4]. Atmospheric ducts are generally divid-

ed into evaporation ducts, surface ducts, and elevated ducts.

Evaporation ducts frequently appear in large areas of the sea

(the probability of occurrence near the South China Sea is

close to 80% [5]), and typically with heights below 40 m.

The typical methods to describe the EM propagation charac-

teristics in atmospheric ducts include ray tracing and parabolic

equation (PE). The ray tracing method employs geometric op-

tical approximations to simulate the propagation path of high-

frequency EM waves. The PE method, as an approximation

of the Helmholtz equation, is widely used to calculate PL

for its ability to simulate complex boundary conditions and

atmospheric parameter changes. Nevertheless, these physical

prediction methods have limitations in their applications due

to the extended calculation time with changes in propaga-

tion range, making it difficult to meet real-time demands.

Furthermore, it is difficult to quantify the dynamic changes

of the required detailed reanalysis data, such as the vertical

refractivity distribution of the atmosphere.

In the context of artificial intelligence has been widely used

in the wireless channel prediction [6], deep learning provides

a new way for PL prediction in atmospheric ducts. In [7], a

feedforward neural network was constructed to predict PL at

a coordinate point with an accuracy of about 90%. In [8], the

PL values at different distances were regarded as a time series

and predicted based on a time convolution network. In [9] and

[10], different multiscale decomposition prediction methods

based on the long short-term memory network were applied

to enhance the prediction accuracy. In [11], a method based on

the gated recurrent unit network was proposed to predict PL

at different time points. However, these methods only predict

one PL value per prediction action. For many scenarios, it may

be necessary to obtain multiple PL values at specific heights

or distances for link analysis purposes. Moreover, in practical

applications, the advantages of lightweight, easy deployment,

and high real-time models are significantly pronounced.

The PL in a duct environment is influenced by various

factors, such as the maritime environment and antenna pa-

rameters. Treating multiple PL values as a vector introduces

a complex nonlinear relationship. The deep neural network

(DNN) can fit highly complex functions with the feature

transformation of multiple nonlinear maps. A DNN with a few

well-tuned layers can demonstrate excellent fitting ability if the

width is appropriately chosen. In light of these, utilizing DNN

to predict multiple PL values in evaporation ducts emerges as

a straightforward, efficient, and accurate approach. The main
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contributions of this letter can be summarized as follows:

1) A novel DNN scheme is proposed to predict multiple

PL values in evaporation ducts for maritime wireless

communications. Six environment parameters and three

transmitting parameters are considered to enhance the

models applicability to natural scenarios. The character-

istics of being lightweight and enabling fast predictions

ensure the practical applicability of the model.

2) The proposed DNN model can effectively and accu-

rately predict a set of PL values for varying heights

or transmission distances. The proportion of prediction

results with relative errors below 5% exceeds 99%. The

comparisons show that the performance of the DNN

model is better than that of the k-nearest neighbors

model (KNN), random forests model (RF), and linear

regression model (LR).

3) Several key factors affecting prediction accuracy are

studied. Simulation results indicate that the prediction

accuracy is not significantly affected by the receiver

height or transmission distance but slightly decreases

with increasing frequency due to complex variations in

the peak regions.

The rest of this letter is arranged as follows. Section II

introduces related work and details the proposed DNN frame-

work for PL prediction. Section III provides the comparison

and analysis of prediction results and performance. Finally,

conclusions are presented in Section IV.

II. METHODS AND FRAMEWORK

A. Parabolic Equation Method
The PE method effectively simulates the horizontal and

vertical variation of atmospheric refraction effects. It provides

a fast and effective numerical solution for many long-distance

EM propagation problems. Its wide application was due to the

development of the split-step Fourier transform algorithm [12].

In [13], it was introduced as a means to calculate field intensity

in anomalous propagation environments. Datasets used to

train DL networks are generated by PETOOL [14], which

is a one-way and two-way split-step PE program. PETOOL

takes meteorological parameters as inputs and matrices of PL

within the observation area as outputs. The one-way split-step

solution is given by [14]

u(r +Δr, z) = exp

[
ik0

(
n2 − 1

) Δr

2

]
·

F−1

{
exp

(
−ik0sin

2θ
Δr

2

)
F{u(r, z)}

}
(1)

where u(r, z) denotes the field distribution, r is the distance, z
is the altitude, Δr is the change in r, k0 is the free-space wave

number, n is the refractive index, θ is the propagation angle

from the horizontal, and F indicates the Fourier transform.

After obtaining u(r, z), the propagation factor (PF) and the

PL can be determined by [14]

PF = 20 log |u(r, z)|+ 10 log(r) + 10 log(λ) (2)

PL = 20 log

(
4πr

λ

)
− PF (3)

= 20 log(4π) + 10 log(r)− 30 log(λ)− 20 log |u(r, z)|.

B. Supervised Learning and Linear Regression

Supervised learning (SL) is highly effective in handling

prediction problems with known input data. SL models based

on KNN, RF, and DNN can learn nonlinear functions for

regression. The KNN method predicts the label of a new

sample from the predefined number of training samples that

are closest to it. RF is an ensemble algorithm that combines

random decision trees to generate a prediction. A DNN

generally consists of an input layer, one or more hidden layers,

and an output layer. DNN maps the features of the input to

a new feature space through layer-by-layer feature mapping,

so as to learn a better feature expression for the output [15].

These models support multi-output problems where the output

is a vector. Additionally, LR is an analytical method that uses

linear statistical models to capture the relationship between

independent and dependent variables.

In our simulations, the LinearRegression, KNeighborsRe-
gressor, and RandomForestRegressor classes from the scikit-

learn library are used to construct corresponding prediction

models. The DNN model is implemented based on Tensor-

Flow. The loss function in terms of mean squared error (MSE)

can be calculated as

MSE =
1

N

N∑
i=1

‖yi − ŷi‖22 (4)

where N denotes the total number of samples, yi is the target

vector, ŷi is the prediction vector, and ‖ · ‖2 is the 2-norm.

C. Framework of DNN for PL Prediction

For model training, we construct two datasets, namely, the

H Data (1732500×509, each row records 500 PL values at a

certain height, reflecting the variation of PL with distances)

and the D Data (2475000×354, each row records 345 PL

values at a certain distance, reflecting the variation of PL with

heights). The input features include environmental parameters

and antenna parameters, which form a 1×9 vector. The target

vector is a set of PL values with dimensions of 1×500 (or

1×345). The desired datasets are finally generated by sim-

ulating 1250 different environmental parameter settings and

198 different antenna parameter configurations and sampling

the PL matrix calculated by PETOOL under each situation.

Table I provides the ranges of input parameters. The reason

why bands are limited to 3–20 GHz is that the waves at these

frequencies are more susceptible to ducts and are important

for future maritime wireless communications [4].

In order to explore the factors influencing prediction accura-

cy, we intentionally reserve a portion of the data with identical

environmental parameters, which is not used in the model’s

training process. To ensure the generality of the network, the

proportion of the training and testing sets is chosen as 70%

and 30%. Furthermore, to enhance the convergence velocity

and prediction accuracy of the DNN model, the datasets are

scaled to a range of 0–1 and randomly shuffled.

To determine the structure of DNN, we explore the fol-

lowing parameter ranges: the number of hidden layers (1–

10) and the number of neurons per hidden layer (10-1000).

Through repeated testing and verification, it is found that the
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Fig. 1. The framework of DNN for PL prediction.

TABLE I
FEATURE PARAMETERS OF DATASETS.

Parameter Range of values

Air temperature (AT) 21–25 ◦C

Sea surface

temperature (SST)
14–16 ◦C

Air pressure (AP)
1011.9 /

1022.2 mbar

Relative humidity (RH) 40%–44%

Wind speed (WS) 9–11 m/s

Evaporation duct

height (EDH)

From

PETOOL

Frequency (f ) 3–20 GHz

Transmitter height (ht) 10–20 m

Receiver height

(hr) / Transmission

distance (dr)

Based on the

sampling points
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Fig. 2. Prediction results at f=3 GHz and ht=15 m.
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Fig. 3. Prediction results at f=20 GHz and ht=15 m.

superposition of the three-layer network is able to provide

enough nonlinear expression ability without causing gradient

problems and the 1000-dimension fully connected (FC) layers

ensure that the network can learn enough features. Considering

the balance between network performance and complexity, a

DNN framework is proposed as shown in Fig. 1. Shallow

100-dimension FC layers are used for layer-by-layer feature

mapping, and deep 1000-dimension FC layers extract rich

features for complex function fitting. The ReLU activation

function is chosen for its effectiveness. Two separate DNNs

are trained for both datasets, differing only in the dimension

of the output layer to accommodate the varying dimensions of

the target vectors. Finally, prediction results are output through

the linear activation by an FC layer with 500 (or 345) neurons.

We conduct training and performance tests on both datasets

on Intel Core i9-12900K and NVIDIA GeForce RTX 3080.

The number of epochs and batch size are set as 1000 and

32, respectively. The Adam optimizer with a learning rate of

0.001 is used. To further evaluate the networks’ performance,

mean absolute error (MAE) and normalized mean squared

error (NMSE) are considered, as shown below

MAE =
1

N

N∑
i=1

‖yi − ŷi‖1 (5)

NMSE =
1

N

N∑
i=1

‖yi − ŷi‖22
‖yi‖22

(6)

where ‖ · ‖1 is the 1-norm. The relative error, which is used

to measure the deviation of prediction values, is calculated as

err =
|yij − ŷij |

yij
× 100% (7)

where yij and ŷij denote a value in the target and prediction

vectors, respectively.

III. RESULTS AND ANALYSIS

The comparison of different prediction schemes is shown in

Fig. 2 and Fig. 3. The fact that DNN predicts accurately in both

the peak and smooth regions indicates that DNN demonstrates

superior fitting capabilities. In contrast, KNN and RF struggle

to accurately predict the spikes and exhibit a fitting gap in the

smooth region. LR can only track the trend of PL but lacks the

ability to describe detailed changes. Notably, as the distance,

height, or frequency increases, DNN demonstrates a more

significant improvement in prediction accuracy compared to

other models. Fig. 4 shows the prediction error distributions

of DNN, KNN, RF, and LR on both datasets. The prediction

errors of DNN are mainly concentrated in the range of 0–1

dB, while KNN, RF, and LR show concentrations in the range

of 0–4 dB, 0–6 dB, and 0–10 dB, respectively.

The performance evaluations of different models are shown

in Table II. On both datasets, the MAE, MSE, and NMSE

values of results predicted by DNN are significantly lower
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Fig. 4. Prediction errors of different models on both datasets.

TABLE II
ALGORITHM PERFORMANCE EVALUATION.

Evaluation
indicator

H Data D Data
LR KNN RF DNN LR KNN RF DNN

MAE /dB 34.45 32.76 30.64 26.17 32.57 30.70 29.08 24.06
MSE /dB 44.66 41.57 38.23 31.38 42.46 39.44 36.81 28.69

NMSE /dB -25.83 -28.87 -32.34 -39.17 -26.42 -28.91 -32.13 -39.86
Perr<5% 0.755 0.861 0.947 0.992 0.780 0.874 0.945 0.995
Perr<1% 0.165 0.316 0.528 0.851 0.182 0.367 0.538 0.869
Prediction
time /μs

3 29 2 23 2 38 1 18

than those of KNN, RF, and LR. In the evaluation of pre-

diction errors for DNN on both datasets, the proportion of

predictions with errors below 5% (Perr<5%) exceeds 99%, and

the proportion of predictions with errors below 1% (Perr<1%)

exceeds 85%, which are significantly higher than those of

KNN, RF, and LR. LR has a shorter running time because of

its fewer network parameters, resulting in insufficient fitting

ability. The long running time of KNN is attributed to the

computation of distances between the test sample and all the

training samples, and KNN is memory-intensive due to storing

the training data. RF exhibits reasonable prediction accuracy

and a shorter running time. However, because of the large and

complex dataset, RF needs to store numerous decision trees,

resulting in a large memory footprint in the order of gigabytes.

DNN greatly improves prediction accuracy with acceptable

time complexity while maintaining a small model size.

The influence of frequency, receiver height, and transmis-

sion distance on the PL prediction of DNN is compared,

as shown in Fig. 5. On the H Data, the prediction curves

of different receiver heights closely match the PE results at

low frequencies. However, as the frequency increases, the

curve changes dramatically in peak regions, which affects the

prediction accuracy of DNN in peak regions and smooth re-

gions. We calculate the NMSE values of different frequencies

respectively and find that the NMSE at 20 GHz is 5.93 dB

higher than that at 3 GHz. On the D Data, the comparison

shows a similar phenomenon. The prediction accuracy at

different transmission distances is similiar but slightly reduced
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Fig. 5. Prediction results with the same environmental parameters, ht =
15 m, and EDH = 27 m. Left: H Data; Right: D Data.

at higher frequencies (the NMSE at 20 GHz is 6.76 dB higher

than that at 3 GHz).

IV. CONCLUSIONS

The proposed DNN scheme is effective and accurate for

PL prediction in evaporation ducts. Including environment

and antenna parameters in the model makes the input closer

to actual situations. Numerical results have shown that DNN

outperforms KNN, RF, and LR, achieving Perr<5% exceeding

99%. DNN has achieved a prominent improvement in predic-

tion accuracy while maintaining a microsecond running time

and a small model size. Furthermore, as the distance, height,

or frequency increases, the accuracy improvement of DNN

has become more remarkable than that of other models. The

research on the prediction accuracy of DNN has revealed that

receiver heights or transmission distances have no significant

effect. However, the prediction accuracy of DNN may sightly

decrease due to drastic changes in the peak region of the PL

curve at higher frequencies.
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