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Abstract—With the advancement of communication technology
and the improvement of localization accuracy, cellular net-
works are gradually evolving from communication to perception-
integrated networks. Addressing the research challenges of
sensing-assisted communication, we propose, for the first time,
the concept of Digital Twin of Channel (DToC). Specifically,
we regard user terminal (UT) positions as physical objects,
and statistical channel state information (CSI) as virtual digital
objects. Observing the change trend of UTs’ statistical CSI
caused by the changes of UT’s physical position enables predictive
analytics for subsequent communication tasks. Then, we establish
the relationship between physical and virtual digital objects using
a Diffusion Model (DM) to achieve the DToC. Indeed, the DM
can generate the desired objects by gradually denoising from
noisy data using neural networks. Furthermore, we propose a
conditional DM utilizing UTs’ positions, which completes the
task of generating the corresponding statistical CSI under known
user-specific position conditions, thus mapping UT positions to
statistical CSI. Simulation results demonstrate that our DToC
framework outperforms previous statistical CSI estimation meth-
ods. Without the need of pilots, our method can simultaneously
generate statistical CSIs from a large number of UTs’ positions,
achieving satisfactory results.

Index Terms—Digital twin, integrated sensing and communi-
cation, deep generative model, diffusion model, statistical channel
information generation.

I. INTRODUCTION

A. Background and Motivation

The integration of sensing and communication (ISAC) not
only enables high-quality communication services but also
provides high-precision sensing capabilities, making it a key
research area for future wireless systems [1]. Advancements in
wireless technologies, such as beyond fifth generation (B5G)
and sixth generation (6G) systems, are expected to support
various sensing-based applications like indoor positioning,
Wi-Fi sensing, and radar sensing [1]. Traditionally, sensing
and communication (S&C) operate independently in different
frequency bands. However, with base stations (BSs) utilizing
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massive Multiple Input Multiple Output (MIMO) and Orthog-
onal Frequency Division Multiplexing (OFDM) technologies,
they can transmit high-resolution radio signals, enabling high-
precision sensing [2]. Jointly designing S&C systems to share
the same frequency band and hardware not only improves
efficiency but also reduces costs, making ISAC a highly
promising research field [3].

Device-based ISAC, an essential component of ISAC, em-
powers the BS to achieve wireless positioning functionality
while enhancing user terminals’ (UTs’) services [4]. Handling
radio signals that carry both transmission data and location-
related information, seamlessly integrating sensing and com-
munication becomes a natural choice [5]. The application of
the latest technologies, such as millimeter wave and massive
MIMO, significantly improves positioning accuracy, advancing
from hundreds of meters in the 2G era to meter-level precision
in the 5G era [6]. This progress pushes future cellular mobile
networks towards perceptive networks.

In this context, it becomes crucial to explore how to leverage
the location and sensing data, obtained through sensors or
BSs [7]. A promising and novel approach is the concept
of Digital Twin (DT), widely acknowledged as a modeling
technique for physical processes through digital technology.
By analyzing UTs’ historical location and sensing data, re-
searchers can observe trends in the DT, identify issues, and
optimize, thereby providing predictive analytics for accurate
subsequent decision-making. Typically, a DT comprises three
components: a physical object, a virtual twin object, and their
connections. This concept has garnered significant attention
from both industry and academia [8].

DT will play a crucial role in the operation and infrastruc-
ture management of 6G ISAC networks, providing significant
assistance in shaping the future of communication networks.
Supported by DT technology, communication networks will
become more intelligent, flexible and will not only serve as
infrastructure but also as a platform, fostering the development
of other application areas such as Industrial Internet of Things
(IoT), smart cities, Extended Reality (XR), and the Meta-
verse [9]. By integrating DT with 6G networks, a seamless
connection between the physical and digital worlds can be
fully established. This paper attempts to propose a kind of
DT model tailored for the future 6G system, where the DT’s
physical objects are UTs’ locations and other sensing data.

In the 6G systems, acquiring statistical Channel State
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Information (CSI) for UTs is crucial for the subsequent
performance of communication. Statistical CSI enables the
establishment of a posterior channel model, characterizing
defects arising from channel aging and other factors, and
facilitating the design of robust linear precoders [10]. More-
over, excellent performance in instantaneous CSI estimation
has been achieved through method such as Minimum Mean
Square Error (MMSE) channel estimation. However, prior to
conducting instantaneous channel estimation, knowledge of
the statistical CSI or statistical parameters is necessary.

Viewing the construction of the above communication sys-
tems from the perspective of DT, when BS detects the changes
in UT’s sensing data (such as location information), BS can
map this physical object to the DT’s virtual twin object. By
observing the trend of the virtual twin object, BS can make ad-
vanced optimization decisions for subsequent communication
services (such as instantaneous CSI estimation and precoding).
Therefore, the virtual twin object in DT should correspond
to certain channel characteristic parameters that reflect the
physical location and serve the subsequent communication
processes. It is natural to choose statistical CSI as the virtual
twin object of the DT. In this paper, our objective is to explore
the relationship between the physical object and the virtual
twin object, establishing a mapping from the UT’s location to
the statistical CSI. We refer to this concept as Digital Twin of
Channel (DToC).

The integration of artificial intelligence (AI) is expected to
be a fundamental aspect of 6G systems. To establish DToC,
leveraging AI to address the aforementioned challenges is
a feasible approach. By combining data-driven and model-
driven advantages, AI helps design an efficient and robust 6G
system. Additionally, the powerful sensing and communication
capabilities of 6G system can provide large training data for
AI model learning. The aim is to combine the strengths of both
AI and 6G system to model the complex relationships between
the physical and virtual twin objects of DToC, including the
propagation channels, surrounding scattering environment, and
UT’s locations. Therefore, utilizing AI to advance DToC re-
search and explore the interaction between communication and
sensing in AI-assisted systems is an interesting and promising
research area.

Deep generative models have got significant attention within
the AI field in recent years, such as variational autoencoders
(VAEs) [11], generative adversarial networks (GANs) [12],
and normalizing flows (NFs) [13]. By learning data-driven
implicit priors, these models exhibit exceptional latent rep-
resentational power, effectively capturing complex and rich
structures found in natural signals. Diffusion models (DMs),
a prominent subset of deep generative models, have gained
popularity due to their remarkable performance in multi-modal
learning applications [14]. With the emergence of DALL-
E2 [15] and Stable Diffusion [16], DMs have revolutionized
artificially intelligent-generated content (AIGC). Unlike other
generative models, DMs do not require aligning posterior dis-
tributions (VAEs) [11], training extra discriminators (GANs)
[12], or enforcing network constraints (NFs) [13]. The record-
breaking performance of DMs in many areas have made them
a compelling choice for AI applications.

The ‘diffusion’ model achieves the process of transforming
structured signals into noise through gradual iterations. This
process is a pre-processing step that generates noise matrices
based on existing training data, commonly referred to as the
‘forward process’. Then, the generated noise matrices are
denoised by training a neural network (NN). Essentially, the
NN learns how to reverse the diffusion process, effectively
recovering the training data from the noise. This process is
commonly referred to as the ‘reverse process’. The novel
approach of DM lies in their ability to learn from noisy sam-
ples and subsequently generate high-quality data (the desired
output) by iteratively denoising pure noise matrices.

In this study, we propose an innovative sensing-assisted
statistical CSI generation method to accomplish the DToC.
Specifically, we delve into the construction of a conditional
denoising diffusion model, including the derivation of the loss
function, the implementation of the NN, and the iterative
sampling technique. Leveraging this conditional DM, our
trained NN combines UT location information to generate
statistical CSI under specific UTs’ locations. This establishes a
connection between the physical object and the virtual digital
object in DToC, achieving a mapping from UT location to sta-
tistical CSI. Our research adopts a data-driven approach aimed
at enabling the BS to obtain location-conditioned statistical
priors of the propagation channel.

B. Related Works

In the area of 6G ISAC, researchers have identified
communication-assisted sensing as a pivotal research direction,
aiming to explore high-precision BS positioning methods to
achieve new 6G performance metrics. Among these methods,
fingerprint localization is a feasible approach for achieving
accurate positioning. For instance, in [2], the authors present
a fingerprint-based single-cell localization method for massive
MIMO-OFDM systems in rich scattering environments. The
BS first extracts location marker features from the collected
data, known as fingerprints. Then, by matching the fingerprint
of the UT with a pre-recorded database, the UT can be
accurately located. In [2], the location fingerprint corresponds
to the Angle-Delay Channel Amplitude Matrix (ADCAM) of
the channel. In [17], the authors extend single-cell fingerprint
localization to a multi-cell cooperative scenario. Also deep
learning methods are utilized to obtain location information
faster and smarter. The authors use a refined beam domain
channel energy coupling matrix as the location fingerprint,
which better reflects the multipath characteristics of the chan-
nel. However, in the aforementioned literature, the location
fingerprints, whether they are the Angle-Delay Channel Am-
plitude Matrix or the refined beam domain channel energy
coupling matrix, correspond to the UT’s statistical CSI. More-
over, in the localization problems discussed in these studies,
it is assumed that the statistical CSI is known.

In the study [18], a direct localization method based on
received pilot signals is proposed, which does not require the
assumption of known statistical CSI. Through unsupervised
pre-training of an NN with extensive received pilot signals,
followed by fine-tuning the NN with a small set of signals
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labeled with location information, the NN can regress location
coordinates based on received signals. All of the works can
be considered as an exploration into communication-assisted
sensing.

Given that the BS can obtain the UT’s location directly from
received signals, the next step lies in addressing the research
gap of sensing-assisted communication. Exploration of DToC
precisely fills this gap, as it can enable the BS to establish
a mapping from location to statistical information, gaining
prior knowledge about the surrounding scatterer environment.
It can also be regarded as the inverse process of fingerprint
localization. The DToC may enable the seamless integration of
localization with communication functionalities, reaching in a
comprehensive cellular system that uniformly combines S&C
capabilities. Moreover, DToC may provide an essential prior
information for subsequent instantaneous channel estimation
and robust precoding, enhancing its potential impact.

C. Contribution and Organization

We summarize the contributions of this paper as follows:
1) For 6G massive MIMO ISAC systems, we propose,

for the first time, the concept of DToC in sensing-
assisted communication. We regard UTs’ positions as
the physical objects of DToC, and the statistical CSI of
UTs as the virtual twin objects of the DToC. We attempt
to explore a mapping from physical objects to virtual
twin objects and then achieving DToC.

2) To achieve DToC, our work first introduces the Dif-
fusion Model to address the statistical CSI genera-
tion challenge. Within this model, two distinct Markov
chains—the forward and reverse processes—are de-
ployed. The forward process applies controlled Gaussian
noise gradually to training data through a predefined
variance schedule. In contrast, the reverse process aims
to remove the introduced noise step by step. By incorpo-
rating location coordinates as conditional supplementary
inputs, we explore on the construction of conditional
denoising diffusion models. This includes deriving the
loss function, implementing neural networks, and iter-
ative sampling techniques to generate statistical CSI at
arbitrary positions within a target area.

3) Capitalizing on the robust parallel computing capabili-
ties of the diffusion model, simultaneous generation of
statistical CSI for multiple UTs becomes feasible once
their location coordinates are provided. Our simulations
demonstrate the simultaneous generation of statistical
CSI for up to 100 UTs. Compared to traditional estima-
tion methods and interpolation techniques, the proposed
method achieves superior results without the need of
pilot signals. These results demonstrate the excellent
performance of DToC.

The rest of this paper is organized as follows. System model
and channel model are introduced in Section II. Section III
introduces the methodology design. In Section IV, we give
the corresponding simulation results. Finally, in Section V, we
conclude this paper. Some of the symbols used in this paper
are listed below: Bold upper and lower cases denote matrix

and column vectors, respectively. CM×N (RM×N ) denotes
the set of M × N -dimensional complex (real) matrices, and
(·)H , (·)T , (·)∗ denote the conjugate transpose, transpose, and
complex conjugate operations, respectively. E{·} indicates the
expected operation. ⊙ denotes the Hadamard product, i.e.,
point-wise product, of two matrices. CN (a,B) denotes the
circular symmetric complex Gaussian distribution with mean
a and covariance matrix B. [·]i and [·]ij denote the i-th element
of a vector and the (i, j)-th element of a matrix, respectively.
vec(·) transforms a matrix into a column vector by stacking
its columns on top of each other. The symbol | · | represents
the magnitude of a complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we begin with introducing the channel model
of the massive MIMO system. Subsequently, we will provide
a overview of the digital twins of channel (DToC) and outline
the challenges associated with the research problem.

A. System and Channel Model

In this paper, we focus on 6G cellular BS communication
and sensing systems, along with its corresponding enabling
technologies, to achieve the design of DToC and empower the
communication technology and network design. This concept
is represented in Fig. 1.

Empower 

Communication

Technology

Empower 

Network Design
Digital Twin

Model Design

Data Collection 

and Mapping

Control

Instructions
Smart City

Intelligent 

Industry

6G BS

6G BS

On Central 

Server

Fig. 1. Schematic diagram of 6G cellular BS scenario and the concept of the
DToC.

Consider a 6G massive MIMO ISAC system with frequency
selective fading channels. The system comprises a BS with
uniform linear array (ULA) and K UTs, each equipped with
a single antenna. The inter-antenna spacing amounts to half a
wavelength. The BS has a total of Nr antennas. The steering
vector in the spatial domain is

a(Θ) =
[
1 e−jπΘ · · · e−jπ(Nr−1)Θ

]T
. (1)
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Let cos (θ) = Θ denote the directional cosine, corresponding
to the angle of arrival (AoA) θ. The integration of orthogonal
frequency division multiplexing (OFDM) modulation is em-
ployed to convert the frequency-selective fading channel into
multiple parallel channels. In the context of the system, the
count of subcarriers is denoted as Nc, with Np subcarriers
reserved for uplink pilot signal transmission. We denote the
cyclic prefix length and the sampling interval as Ng and
Ts, respectively. Additionally, the subcarrier spacing is set as
δ = 1

NcTs
. This formulation facilitates the frequency domain

steering vector, corresponding to the delay of arrival (DoA) τ ,
to be expressed as

b(τ) =
[
1 e−j2πδτ · · · e−j2π(Np−1)δτ

]T
. (2)

Let’s consider that the signal traverses through Pk Non-Line-
of-Sight (NLoS) paths connecting the k-th UT and the BS.
Notably, we denote Θk,p, τk,p, and βk,t,p ∼ CN (0, γ2

k,p) as the
directional cosine, DoA, and fading coefficient respectively,
associated with the p-th path during the t-th OFDM symbol,
connecting the k-th UT and the BS. Importantly, we make this
assumption that the maximum delay spread τk,max remains
within the duration of the cyclic prefix, i.e., τk,max ≤ NgTs.
Under these premises, the spatial frequency domain channel
matrix over the t-th symbol is given by [10], [19]–[21]

Hk,t =

Pk∑
p=1

βk,t,pe
−j2πfcτk,pa(Θk,p)b

T (τk,p). (3)

Here, fc signifies the carrier frequency. And we introduce
a corresponding definition of the spatial frequency domain
channel coefficients

hk,t(Θ, τ) ≜ βk,t,pe
−j2πfcτk,pδ(Θ−Θk,p)δ(τ − τk,p). (4)

Then, define sampled sets Ba,i and Bd,j , respectively,

Ba,i =

{
Θ | argmin

Θ
|Θ−Θi|

}
, (5)

Bd,j =

{
τ | argmin

τ
|τ − τj |

}
, (6)

where the terms Θi and τj denote the sampled directional
cosine and delay, respectively. We use Na and Nd to represent
the numbers of samples, and a(Θi) and b(τj) serve as the
sampled steering vectors in the spatial and frequency domains,
respectively. To ensure accurate quantization, we establish
that Na is greater than or equal to Nr, and Nd is greater
than or equal to Ng . Additionally, we set Θi as 2i

Na
− 1

for i = 1, 2, · · · , Na, which uniformly spans the interval
(−1, 1]. Similarly, τj is uniformly distributed within the range
(0, NgTs] with j = 1, 2, · · · , Nd.

When the values of Na and Nd are sufficiently large,
equation (3) can be represented using sampled steering vectors
a(Θi) and b(τj), given as follows

Hk,t =

Na∑
i=1

Nd∑
j=1

gk,t(Θi, τj)a(Θi)b
T (τj), (7)

where

gk,t(Θi, τj) =
∑

Θk,p∈Ba,i,τk,p∈Bd,j

hk,t(Θ, τ). (8)

Further, we define matrices A and B as

A = [a(Θ1),a(Θ2), · · · ,a(ΘNa
)] ∈ CNr×Na , (9)

B = [b(τ1),b(τ2), · · · ,b(τNd
)] ∈ CNp×Nd , (10)

then (7) can be expressed by matrix multiplication as

Hk,t = AGk,tB
T . (11)

Equation (11) can be referred to as a refined double beam-
based channel model, with Gk,t ∈ CNa×Nd being the refined
beam domain channel matrix. The (i, j)-th element of Gk,t is
represented as [Gk,t]i,j = gk,t(Θi, τj), signifying the fading
coefficients of the spatial and frequency beams. Each sampled
space/frequency steering vector corresponds to a distinct phys-
ical beam in the space/frequency domain. When Na = Nr and
Nd = Ng , A takes the form of a discrete Fourier transform
(DFT) matrix, while B represents the submatrix consisting of
the first Ng columns of a DFT matrix. In this configuration,
equation (11) coincides with the DFT-based channel model
[22].

Define Γk(Θk,p, τk,p) = E{hk,t(Θk,p, τk,p) ·
h∗
k,t(Θk,p, τk,p)}. Subsequently, introduce the beam domain

channel power matrix Ωk ∈ RNa×Nd , where the (i, j)-th
element is expressed as

[Ωk]i,j ≜
∑

Θk,p∈Ba,i,τk,p∈Bd,j

Γk(Θk,p, τk,p). (12)

The elements of Gk,t satisfy

E
{
[Gk,t]i,j · [Gk,t]

∗
i′,j′

}
= [Ωk]i,j δ(i− i′)δ(j − j′). (13)

The equations (12) and (13) explicitly highlight the cru-
cial role of the refined beam domain channel power matrix,
denoted as Ωk, in capturing the long-term characteristics of
the refined beam domain channel matrix Gk,t during temporal
variations. And Ωk reflects the channel information regarding
the power, DoA and AoA of each path associated with the
scatterers between the UT and the BS. This unique matrix is
appropriately referred to as the ‘beam domain statistical CSI’
denoting its ability to capture the invariant characteristics of
channel over time.

The strength of Ωk lies in its ability to distribute channel
power across different distinguishable spatial directions and
time delays. Within the matrix Ωk, one can find information
regarding the power, AoA, and DoA associated with each
path connecting the k-th UT to the BS. And the equation
(13) reveals that the elements within the refined beam domain
channel matrix Gk,t are independent, while each component of
Ωk is fundamentally linked with the propagation environment
and the scatterers found between the UT and the BS. This
interrelation is further confirmed by the principle of channel
sparsity, where the majority of elements in Ωk tend to zero,
forming clusters that correspond to distinct physical scatterers
[23].
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Compared to the conventional DFT-based channel model,
the refined double beam domain channel power matrix Ωk

provides enhanced resolution for both angle and delay of the
paths connecting UTs and the BS. This enhanced precision
of Ωk allows for a more accurate representation of the local
propagation environment. Serving as a comprehensive repre-
sentation, Ωk represents the information involving the BS, UT,
and environmental scatterers. Consequently, the acquisition
of UT’s Ωk plays a pivotal role in 6G massive MIMO
ISAC systems, serving as a cornerstone for comprehending
surroundings of systems and offering communication services
to UTs. And this unique characteristic lays the groundwork for
a complex interaction between communication and sensing.

B. Problem Formulation

Based on the description of refined double beam-based
channel matrix Gk,t and power matrix Ωk, they represent the
environmental characteristics of the main scatterers between
the BS and the UTs. We observe a high correlation between
the channel and the environment. As illustrated in Fig. 1,
we can design the refined double beam-based channel power
matrix Ωk as a virtual twin object of the physical transmission
channel, and we take the UT’s location as the physical object
in DToC. In this paper, our main goal is to find the mapping
between physical and the virtual twin based on the proposed
method.

Building upon our previous work [18], this paper assumes
the existence of a location-aware method within the system,
facilitating the acquisition of UTs’ location coordinates. To
simplify the issue in this paper, the UTs’ location information
represents the system perception of the environment. Our
focus here is to skip beyond the UT positioning step and
directly generate the UT’s statistical CSI, Ωk, from the specific
location coordinates. In essence, our goal is to develop a
novel location-assisted statistical CSI generation method. The
generation method based on other perceptual information is
left for future research.

If we look at this problem from the perspective of probabil-
ity and statistics, we assume that the statistical CSI Ω at any
location within the target area should satisfy the conditional
distribution q(Ω|p), where q represents the probability density
function, Ω ∈ RNa×Nd , and p ∈ R2 represents the location
coordinate vector. We aim to find this conditional distribution
q(Ω|p) so that, given a UT’s location coordinate vector
pk = [xk, yk]

T , we can sample the statistical CSI ΩUT
k for

the UT from the distribution. In our problem, we assume that
the location coordinates pRP

i at some ‘reference points’ (RPs)
and their corresponding statistical CSI ΩRP

i are known. We
hope to learn the underlying probability distribution of the
data and then generate new data from this distribution, which
aligns with the goals of generative AI. Once we obtain this
probabilistic representation q, we establish the connection be-
tween the location coordinates and the statistical CSI, thereby
constructing a DToC.

The problem discussed in this paper can be formulated as

Ω̂ ∼ q̂(Ω|p), (14)

where q̂ represents the desired probability distribution of the
statistical CSI Ω obtained from the known RPs, and the
symbol ∼ indicates obeying a certain distribution.

Through DToC, we no longer solely rely on obtaining
channel information within the communication system but
leverage location data to acquire partial channel information
in advance. Consequently, this will provide new opportunities
for the physical layer design of communication. We observe
that the problem represents a mapping from low-dimensional
to high-dimensional space R2 → RNa×Nd . Traditional super-
vised AI methods to find this mapping is difficult to achieve the
desired results. Therefore, we have adopted a novel generative
AI approach, namely the diffusion model (DM).

III. METHODOLOGY

In this section, we start with introducing the overarching
strategy of our system. Subsequently, we delve into the
detailed of the DM approach. This includes an in-depth
exploration of ‘noise scheduling’, the acquisition of the loss
function, and the details of the network configuration.

A. General Strategy of Generating Statistical CSI

Obtain UT's 

Position 

Coordinate

Transform Target Area 

into Grids with Several 

RPs

Training the 

Diffusion Model 

with all Data

Training Stage

Generation Stage

UT in Target 

Area

BS
Central 

Processing 

Unit

Generate 

Statistical CSI

Generate 

Statistical CSI
Central 

Processing 

Unit

Central 

Processing 

Unit

Obtaining 

Historical 

Channel Data 

of RPs

Obtaining 

Historical 

Channel Data 

of RPs

Feed UT's Position as 

Conditional Input of the  

Diffusion Model

Feed UT's Position as 

Conditional Input of the  

Diffusion Model

Feed UT's Position as 

Conditional Input of the  

Diffusion Model

Fig. 2. General strategy of the DM-based statistical CSI generation methods.

Similar to numerous end-to-end AI-based communication
methodologies [17], [24], [25], the proposed statistical CSI
generation method based on DM is split into two principal
phases: an offline training phase and an online generation
phase, as shown in Fig. 2. In the training phase, a self-guided
vehicle traverses the target area, which could include locales
such as a university campus or a shopping mall. At specific
intervals, this vehicle establishes RPs along its path, noting
the spatial coordinates of these RPs’ locations, referred to as
pRP
i ∈ R2. It then transmits detection signals to the BS, which

subsequently captures and archives the statistical CSI ΩRP
i

associated with these RPs’ locations using the method in the
related works [26]. Eventually, the BS accumulates the data to
form a training dataset D = {pRP

i ,ΩRP
i }NRP

i=1 , the resource
utilized for training the Diffusion Model.
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pq (Wt -1 | Wt , p)

Fig. 3. The forward diffusion process q (left to right) gradually adds Gaussian noise to the target CSI Ω0. The reverse inference process pθ (right to left)
iteratively denoises the noisy matrix conditioned on a position p.

During the generation phase, when a UT shows commu-
nication requisites, we suppose that the BS can promptly
determine its geographical coordinates (positioning issues are
not the focus of our work). Subsequently, employing the
proposed conditional DM, the UT’s statistical CSI, denoted
as Ω̂

UT
∈ RNa×Nd , is generated conditioned upon the UT’s

positional coordinates pUT ∈ R2.

B. Overview of Diffusion Model
The denoising diffusion probabilistic model (DDPM), a

successful practice of DM despite not considering conditional
information, fundamentally aims to establish an easily sam-
plable distribution, denoted as pθ(x) where θ representing NN
parameters, to effectively approximate a training target data
distribution, represented by q(x) for x ∈ RG. DDPM includes
both forward diffusion and reverse inference processes [14].
In essence, DDPM is designed to create an NN that allows
us to efficiently generate samples from the easily-sampled
distribution pθ(x).

Furthermore, the distribution q(Ω) that characterizes the
statistical CSI Ω within the target area can be likened to
q(x) in DDPM, which is transitioning from vector to matrix
problem. Consequently, the statistical CSI observed at the RP
locations, denoted as ΩRP

i within training dataset, serves as a
series of data points sampled from the distribution q(Ω). The
core objective of employing the DDPM for CSI generation is
to uncover an easily-sampled distribution, denoted as pθ(Ω),
enabling the BS to comprehend the surrounding scatterer
environment and sampling the statistical CSI of UTs from
pθ(Ω). In the context of statistical CSI generation, we can
relate forward diffusion and reverse process to the training
stage, where the NN is learned, and the generation stage
corresponding to using the trained NN to sample from the
easily-sampled distribution pθ(x) in Fig. 2.

However, compared with the DDPM [14], our scenario
differs in that we have a training dataset D including pairs
of RP’s statistical CSI ΩRP

i and their corresponding position
coordinates pRP

i . This dataset D actually comprises samples
drawn from an unknown conditional distribution q(Ω|p). So
our primary objective further revolves around developing a
parametric approximation distribution pθ(Ω|p) for q(Ω|p),
utilizing a conditional DM to establish the relationship be-
tween position coordinates pRP

i and the corresponding targets
ΩRP

i in D, achieving the DToC.

To address this challenge, we propose an adaptation of the
DDPM introduced in [14] to suit the context of conditional
generation. This modified model is tailored to learn the un-
derlying conditional distribution q(Ω|p) in (14), the task that
aligns with our aim of generating statistical CSI based on
provided position coordinates.

The conditional DM generates the target ΩRP
i through

a series of T refinement steps. For introducing the DM
conveniently, we omit the ordinal subscript i of the RP
in subsequent text for clarity, while the subscript t of Ω
denote different time steps for consistency with [14]. The
reverse inference process initiates with a purely noise matrix
ΩT ∼ N (0, I) and progressively refines this matrix over
subsequent iterations (ΩT−1,ΩT−2, . . . ,Ω0) using learnable
conditional transition distributions pθ(Ωt−1|Ωt,p), ultimately
leading to Ω0 ∼ pθ(Ω|p) (refer to Fig. 3 right to left).

In the reverse process, the state of the intermediate matrix
is controlled by the forward diffusion process. The forward
diffusion process is implemented by a predefined determinis-
tic Markov chain, denoted as q(Ωt|Ωt−1), which physically
means gradually introducing Gaussian noise into the training
data (refer to Fig. 3 left to right). The key of conditional
DM lies in reversing this Gaussian forward diffusion process,
which is achieved through a reverse Markov chain (namely,
reverse process) that’s conditioned on the positional informa-
tion p. The reverse process utilizes a denoising deep NN ϵθ
to implement the learnable conditional transition distribution
pθ(Ωt−1|Ωt,p). ϵθ takes the position p and intermediate
noisy CSI matrix Ωt as inputs and effectively estimates the
added noise component.

In the subsequent sections, we present a comprehensive
overview of the forward diffusion process, followed by details
of how denoising model ϵθ is trained and subsequently using
ϵθ for the sample.

C. Gaussian Diffusion Process

Within the forward process, the objective involves the
gradual transformation of all the RPs’ statistical CSI training
data in dataset D into Gaussian noise by introducing minor
noise perturbations. In contrast, the reverse process needs the
stepwise denoising of Gaussian noise to restore the original
target by NN. To facilitate this, a sequence of latent variables
Ω1:T = {Ωt}Tt=1 is introduced, maintaining the same dimen-
sionality as the original training Ω0 ∈ RNa×Nd (128× 128 in
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simulation). Referred to as the diffusion process, the forward
process is formally defined as a T Markov chain

q(Ω1:T |Ω0) =
T∏

t=1

q(Ωt|Ωt−1), (15)

with the transition probability density function q(Ωt|Ωt−1) is
a pre-designed Gaussian distribution aimed at transforming the
original prior q(Ω0) into a simple distribution

q(Ωt|Ωt−1) = N
(
Ωt;

√
1− βtΩt−1, βtIG

)
. (16)

Here, β1:T = {βt}Tt=1 represents a predefined variance sched-
ule that regulates the added noise at each step, 0 < β1 < β2 <
· · · < βT ≪ 1. IG is the G = 128-dimensional identity matrix.
The attribute of the forward process lies in it can generate Ωt

from Ω0 using a closed-form sampling

q(Ωt|Ω0) = N (Ωt;
√
αtΩ0, (1− αt)IG) . (17)

Based on (17), we can use reparameterization method to
sample Ωt from the original data Ω0 in a closed-form manner
through ‘noise scheduling value’ αt =

∏t
s=1(1− βt).

Ωt =
√
αtΩ0 +

√
1− αtϵt. (18)

This process involves ϵt ∼ N (0, IG). When T is sufficiently
large, αT ≈ 0 and q(ΩT |Ω0) ≈ N (0, IG), effectively making
ΩT resemble standard Gaussian noise matrix. By applying
Bayes’ rule

q(Ωt|Ωt−1) = q(Ωt−1|Ωt,Ω0)
q(Ωt|Ω0)

q(Ωt−1|Ω0)
, (19)

the forward process (15) can be reformulated as

q(Ω1:T |Ω0) = q(ΩT |Ω0)
T∏

t=2

q(Ωt−1|Ωt,Ω0), (20)

according to (16) and (17),

q(Ωt−1|Ωt,Ω0) = N
(
Ωt−1; µ̃t(Ωt,Ω0), β̃tIG

)
, (21)

where

µ̃t(Ωt,Ω0) =

√
αt−1βt

1− αt
Ω0 +

√
1− βt(1− αt−1)

1− αt
Ωt, (22)

β̃t =
βt (1− αt−1)

1− αt
. (23)

Furthermore, we establish α0 = 1 to ensure consistency with
the situation when t = 1.

This (21) posterior distribution plays a crucial role in
shaping the parameterization of the reverse Markov chain and
constructing a variational lower bound on the log-likelihood of
the reverse Markov chain. In the subsequent sections, we delve
into the training an NN to effectively reverse this Gaussian
diffusion process. We provide the derivation process about
(21) in (24), where C (Ωt,Ω0) is a constant term about Ωt−1,
calculated solely by a combination of Ωt,Ω0, which can be
implicitly returned in the final equation to satisfy the perfect
squared formula.

D. Loss Function of Conditional Denoising Model

Subsequently, the reverse process, is formulated as a reverse
Markov chain beginning with Gaussian noise ΩT , p(ΩT ) ∼
N (ΩT ; 0, IG). Noticing that in order to complete DToC, we
utilize location coordinate vector p as the conditional infor-
mation for the Markov chain during the design of the reverse
process to learn an easily-sampled distribution pθ(Ω0:T |p)
correlated with UT’s location:

pθ(Ω0:T |p) = p(ΩT )
T∏

t=1

pθ(Ωt−1|Ωt,p) (25)

We formulate the reverse process using isotropic Gaussian
conditional distribution, denoted as pθ(Ωt−1|Ωt,p), which is
learned from the training data. Designing a Gaussian transition
probability density function that can be learned by NN

pθ(Ωt−1|Ωt,p) = N (Ωt−1;µθ(Ωt, t,p),Σθ(Ωt, t,p)) .
(26)

Here, θ represents the learnable parameters of an NN, and
µθ(Ωt, t,p) and Σθ(Ωt, t,p) represent the mean and the co-
variance function, respectively, with the independent variables
being Ωt, t, and p, and the parameters being θ. The key to
the reverse process lies in training the parameters θ to make
the reverse Markov chain (25) match the inversion form (20)
of the forward Markov chain as closely as possible.

The parameters θ in (26) are trained through the mini-
mization of the variational upper bound on the negative log-
likelihood Eq(Ω)[− ln pθ(Ω|p)], as detailed in [14].

L = Eq(Ω0:T ) [ln q(Ω1:T |Ω0)− ln pθ(Ω0:T |p)]
= Eq(Ω0:T ) [D (q(ΩT |Ω0)||p(ΩT ))

+

T∑
t=2

D (q(Ωt−1|Ωt,Ω0)||pθ(Ωt−1|Ωt,p))

− ln pθ(Ω0|Ω1,p)] .

(27)

Here, D [·||·] represents the KL divergence. In order to ef-
fectively train the parameters θ, according to (27), it is
necessary to design the corresponding reverse transition prob-
ability densities pθ(Ωt−1|Ωt,p) at different time steps t.
The q(Ωt−1|Ωt,Ω0) defined in (21) provides guidance for
designing pθ(Ωt−1|Ωt,p) in (26).

According to (26), the reverse transition probability density
pθ(Ωt−1|Ωt,p) only has information about the previous step
Ωt. Therefore, based on the expression of the mean of
q(Ωt−1|Ωt,Ω0) in (22), the mean of pθ(Ωt−1|Ωt,p) can be
modeled as

µθ(Ωt, t,p) =

√
αt−1βt

1− αt
Ωθ(Ωt, t,p) +

√
1− βt(1− αt−1)

1− αt
Ωt,

(28)
where Ωθ(Ωt, t,p) represents the prediction function for Ω0

given the observation Ωt. This function is formulated in
accordance with (18) as

Ωθ(Ωt, t,p) =
1

√
αt

Ωt −
√

1− αt

αt
ϵθ(Ωt, t,p), (29)

where ϵθ(·) is a ‘denoising’ function mapping from RNa×Nd×
R(1+2) to RNa×Nd , realized using an NN parameterized by θ
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q(Ωt−1|Ωt,Ω0) = q(Ωt|Ωt−1)
q(Ωt−1|Ω0)

q(Ωt|Ω0)

=
N

(
Ωt;

√
1− βtΩt−1, βtIG

)
N

(
Ωt−1;

√
αt−1Ω0, (1− αt−1)IG

)
N (Ωt;

√
αtΩ0, (1− αt)IG)

∝ exp

{
−

[
(Ωt −

√
1− βtΩt−1)

2

2βt
+

(Ωt−1 −
√
αt−1Ω0)

2

2(1− αt−1)
−

(Ωt −
√
αtΩ0)

2

2(1− αt)

]}

= exp

{
−1

2

[
(Ωt −

√
1− βtΩt−1)

2

βt
+

(Ωt−1 −
√
αt−1Ω0)

2

1− αt−1
−

(Ωt −
√
αtΩ0)

2

1− αt

]}

= exp

{
−1

2

[
−2

√
1− βtΩt−1Ωt + (1− βt)Ω

2
t−1

βt
+

Ω2
t−1 − 2

√
αt−1Ω0Ωt−1

1− αt−1
+ C (Ωt,Ω0)

]}

∝ exp

{
−1

2

[
−2

√
1− βtΩt−1Ωt + (1− βt)Ω

2
t−1

βt
+

Ω2
t−1 − 2

√
αt−1Ω0Ωt−1

1− αt−1

]}

= exp

{
−1

2

[(
1− βt

βt
+

1

1− αt−1

)
Ω2

t−1 − 2

(√
1− βtΩt

βt
+

√
αt−1Ω0

1− αt−1

)
Ωt−1

]}
∝ N

(
Ωt−1; µ̃t(Ωt,Ω0), β̃tIG

)
,

(24)

to predict the added noise. And the structure of the network
will be introduced in the next subsection. By substituting (29)
into (28), the final mean is obtained as

µθ(Ωt, t,p) =
1√

1− βt

(
Ωt −

βt√
1− αt

ϵθ(Ωt, t,p)

)
.

(30)
Furthermore, the covariance of (26) can be determined in ac-
cordance with (23), a default covariance given by the forward
process resulting in

Σθ(Ωt, t,p) = β̃tIG. (31)

Given that the KL divergence between the d-dimensional
multivariate Gaussian distribution has

D [N (z1;µ1,Σ1) ∥N (z2;µ2,Σ2)] =
1

2
ln

det (Σ1)

det (Σ2)
− d

+ tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

T
Σ−1

2 (µ2 − µ1) (32)

Substituting (18), (30), and (31) into (27) and disregarding
constant terms leads to a reduction of the training loss (27) to

L − C =
T∑

t=1

EΩ0,ϵt

[
γt ∥ϵt − ϵθ(Ωt, t,p)∥22

]
=

T∑
t=1

EΩ0,ϵt

[
γt

∥∥ϵt − ϵθ(
√
αtΩ0 +

√
1− αtϵt, t,p)

∥∥2
2

]
,

(33)

where γt = βt

2(1−αt−1)(1−βt)
, ϵt ∼ N (0, IG). Notably, ex-

periments conducted in [14] have illustrated that a simplified
variant of equation (33) tends to enhance the generation quality
while also being easier to implement. In this simplified variant,
the weighting factor γt is omitted, and t is uniformly sampled
from the range of 1 to T . For each time step

L = EΩ0,ϵt

∥∥ϵt − ϵθ(
√
αtΩ0 +

√
1− αtϵt, t,p)

∥∥2
2
. (34)

E. Network Structure and Specific Training the Conditional
Diffusion Model

The architecture of the denoising NN ϵθ proposed is based
on the well-known U-Net network, which has been adopted
in DDPM [14]. However, we have adjusted this architecture
according to the requirements of our problem. First and
foremost, the difference lies in the input layer. We integrate
the independent variables Ωt and p from equation (34) into a
single input tensor through a series of carefully crafted Ten-
sorFlow layers, which is then used for subsequent denoising
processing, as shown in Fig. 4. Our approach to this integration
unfolds in several key steps:

ResNet 

Blocks+Down 

Sample

1282,64

642,128

322,256 322,256

642,128

1282,64 Wt-1  
1282,1

P  Wt  
1282,3

Input 

Layer

ResNet 

Blocks+Up 

Sample

Middle 

Attention Block

Output 

Layer

Fig. 4. Description of the U-Net architecture with skip connections. The
position information p is replicated to the target dimensions, and concatenated
with the noisy Ωt along channel dimension.

• Input Layer Creation: We first need to establish an input
layer with the purpose of receiving the noisy training data
Ωt. This input layer needs to explicitly specify the width
as Na = 128, the height as Nd = 128, and the number of
channel count as 1. It serves as the foundational gateway
into the entire NN architecture.

• Reshaping the Condition Information: The next step
involves reshaping the positional coordinate vector p.
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While p exists in the mathematical space R2, it needs
to be expanded into a more expressive form R1×1×2. By
introducing two single dimensions, p is adjusted into a
tensor form. This seemingly minor change enables the
model to handle and utilize the positional information
more effectively.

• Expansion positional information with ‘Tile’ layer:
To fullly utilize the potential of p, the NN adopts a
‘Tile’ function. This function effectively amplifies the
positional information by replicating the p tensor along
defined dimensions. Given the specific dimensions of the
training data, p is replicated Na times along the ‘width’
dimension and Nd times along the ‘height’ dimension.
This ultimately expands the conditional information into
a tensor of dimensions Na×Nd×2, enabling ‘pixel-level’
conditional control of the training data Ωt.

• Fusion through ‘Concatenate’ layer: This layer plays
a crucial role in fusing the information of two distinct
tensors - the noisy statistical CSI training data Ωt and the
enriched conditional positional information derived from
the modified p. These tensors, sharing the same width and
height dimensions but unique information, are seamlessly
concatenated along the channel dimension. The result is
an input tensor of dimensions Na ×Nd × 3, combining
statistical information with positional conditions.

Next we will introduce the widely used U-Net network and
our improvements to it as the main structure of the DM (see
Fig. 4 for details). U-Net is a convolutional neural network
(CNN) architecture firstly designed for image segmentation
tasks, which has found successful applications in various
fields, including computer vision, remote sensing, and more.
The U-Net architecture is characterized by its input and output
data that have the same ‘width’ and ‘height’ dimensions, which
resembles an U-shaped structure. It consists of two main parts:
the contracting path and the expansive path.

• Contracting Path: The contraction path is used with
residual convolutional neural networks (i.e., ResNet
blocks). A ResNet block consists of a series of con-
volutional layers, activation function layers and ‘skip
connections’. Subsequently, the output of the feature
extraction through the ResNet block is connected to a
downsampling layer that reduces the width and height
of the feature representation while increasing the depth.
The purpose of the contracting path is to capture the main
feature information in the input and create intermediate
feature representations.

• Expansive Path: The expansive path aims to generate the
pixel-wise statistical channel information. It consists of
many ResNet blocks and a series of up-sampling layers.
Each up-sampling step gradually increases the width and
height of the intermediate feature representation while
reducing its depth.

• Skip Connections: In U-Net, these skip connections
directly link the intermediate feature representations from
the contraction path to the corresponding layers in the
expansion path, as shown by the purple lines in Fig. 4.
The skip connections help the network recover spatial

TABLE I
SPECIFIC U-NET ARCHITECTURE PARAMETERS

Parameter Value
Kernel size 3

Channel dim1 64
Depth multipliers2 {1, 2, 4}

ResNet blocks3 2
#Params 150M

1 Channel dim is the depth dimension of the first conv-layer.
2 Depth multipliers apply to the subsequent conv-layer.
3 ResNet blocks apply to the number before down-sample

layer and up-sample layer.

information lost during down-sampling in the contracting
path. This facilitates gradient flow and avoids introducing
representation bottlenecks.

• Final Output Layer: The last layer of the U-Net archi-
tecture utilizes a 1 × 1 convolutional kernel to map the
feature maps from the contracting and expanding paths
to the desired output depth (1 in the specific simulation),
corresponding to the channel of Ωt.

In summary, Fig. 4 depicts the main architecture of the U-
Net network. This denoising U-Net takes a noisy statistical
CSI Ωt and conditioning p that has been up-sampled to
the target dimension as input. Task dependent parameters are
summarized in Table I. The network architecture includes
over 150 million parameters for generation and denoising. The
design parameters in Table I are appropriately chosen based
on the excellent results in the existing field of computer vision
and the specific conditions of the experimental equipment. The
model performance is proportional to the parameter capacity,
so the number of layers can be increased further if conditions
permit. In the next subsection, more training hyper-parameters
will be introduced.

In addition to the noisy Ωt and the positional conditional
information p, the NN denoising model ϵθ needs to take the
timestep t as input. The timestep t is required since denoising a
signal requires different operations at different levels of noise.
We transform the timestep t using ‘sinusoidal’ embeddings,
similarly with the Transformers network. For a given timestep
t, the ‘Time-embedding’ layer transforms it into a d = 256-
dimensional vector denoted as ‘SE’, where each element is

SE2i(t) = sin(t/100002i/d)

SE2i+1(t) = cos(t/100002i/d).
(35)

This embeds the timestep t into the ResNet block and helps
the network to be highly sensitive to the added noise level,
which is crucial for good performance.

The ResNet blocks serve as essential components within
the U-Net framework, corresponding to the ‘light green main
module’ in Fig. 4, playing a pivotal role in facilitating the
training of very deep networks (e.g. our model has more than
50 layers). Their primary function is to address the issue of
vanishing gradients that occurs as the network layers increase.
Key characteristics of the ResNet Block used in our network
(seen in Fig. 5) are shown below:
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Group Norm

Input Wt 

Convolution+ActivationConvolution+Activation

Projection+ActivationProjection+Activation

Time embedding tTime embedding t

Group Norm

Convolution+ActivationConvolution+Activation

N×ResNet Blocks 

Convolution+DownSampleConvolution+DownSample

Fig. 5. Description of the ResNet block architecture with skip connections,
which forms the basic building block of the overall U-Net structure in Fig. 4.

• Adaptive Depth: A characteristic of the ResNet block is
its ability to adapt to convolution operations with vari-
ous channel numbers (e.g. {64, 128, 256} for each light
green module in Fig. 4). It achieves this by dynamically
adjusting depth ‘multipliers’ hyper-parameter in Table
I, ensuring compatibility with various network architec-
tures. When integrating ResNet blocks into the entire U-
Net network, this adaptability allows for flexible hyper-
parameter configuration based on the specific prediction
accuracy and the experimental equipment.

• Temporal t Integration: In diffusion process, timestep
t holds paramount importance. To address this need, the
ResNet block incorporates an additional input denoted as
‘Time Embedding’ of t in (35) and processes it using
a specified projection and activation. This embedding
significantly enhances the ResNet’s capability to capture
time-sensitive features. When employed within U-Net
networks, this temporal integration becomes essential for
involving sequential data.

• Normalization and Activation: The ResNet block lever-
ages group normalization that different from [27] and
‘Swish’ activation function to ensure a stable and efficient
flow of information, thereby augmenting feature learning.
This combination enhances the reliability of the ResNet’s
performance, making it a reliable choice when enhancing
the whole U-Net models.

• Residual Connection: The core of the ResNet block
is the use of residual connections. When the input and
output channel dimensions align, a direct residual con-
nection is established. If this alignment is not met, a
1× 1 convolutional layer adjusts the channel dimension.
This unique design plays a crucial role in mitigating the
vanishing gradient problem, a challenge often encoun-
tered in deep networks. In the U-Net framework, these
residual connections enhance gradient flow during both
contracting and expansive path, enabling the training of
deeper and more effective models.

Incorporating ResNet blocks into the U-Net architecture
empowers the model with adaptability, enhances temporal un-
derstanding, improves the feature learning and robust gradient
flow. These advantages collectively contribute to more effec-
tive and accurate deep learning model, particularly in the CSI
generation where complex spatial and temporal information
processing is required.

In summary, we have introduced several key enhancements
to the specific U-Net network [14]. Firstly, ϵθ now includes
three inputs: the noisy Ωt, positional conditional information
p, and the time step t. This three-input scheme enables the
network to denoise data while considering their temporal
characteristics. Furthermore, once the feature map dimensions
reach the bottleneck (e.g., 32×32 dimensions as shown in Fig.
4), a self-attention mechanism is introduced between ResNet
blocks. This self-attention mechanism enhances the network’s
ability to focus on relevant information, which is particularly
valuable when processing complex data. Moreover, we’ve
replaced ‘Weight Normalization’ in [14] with ‘Group Nor-
malization’, promoting more stable and efficient information
flow within the network, ultimately improving its feature
learning capabilities. Notably, in our specific applications, we
found that configuring the ‘groups’ parameter in the ‘Group
Normalization layer’ to 8 yields superior results. The whole
proposed algorithm is given in Algorithms 1 and 2.

Algorithm 1 Training a diffusion model ϵθ
1: repeat
2: Give batch of training data pairs (ΩRP

0 ,pRP ) ∼ q(ΩRP
0 |pRP )

in the dataset D.
3: Give time step t that satisfies a uniform distribution t ∼Uni

({1, · · · , T}).
4: Randomly generate a pure Gaussian noise matrix ϵt ∼

N (ϵt; 0, IG).
5: According equation (18) noise the training data ΩRP

0 .
6: Feed the noisy data, time step and the position

condition through the model. Update model parameters
θ with the mean squared error as our loss function
∇θ

∥∥ϵt − ϵθ
(√

αtΩ
RP
0 +

√
1− αtϵt, t,p

RP
)∥∥2

2
7: Get the gradients and update the weights of the network. Then

update the weight values for the network with EMA weights
8: until converged and save the NN parameters θ.

Algorithm 2 Generation by T iterative steps in reverse process
1: Load the trained NN θ and give a sampling loop.
2: repeat
3: Give a pure Gaussian noise matrix ΩT ∼ N (ΩT ; 0, IG) and the

UT’s position coordinate pUT
k

4: for t = T, · · · , 1 do
5: z ∼ N (z; 0, IG) if t > 1, else z = 0
6: Reverse the diffusion process by the trained NN θ

and the equation (30) and (31) Ωt−1 = 1√
αt

Ωt −√
1−αt
αt

ϵθ(Ωt, t,p
UT
k ) + β̃tz

7: end for
8: return ΩUT

0 as the k-th UT’s generation statistical CSI Ω̂
UT

k

conditioned on the given position pUT
k

IV. SIMULATION RESULTS

In this section, we present simulation results to show the
effectiveness of the proposed methods. We use a geometry-
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based model to simulate the massive MIMO wireless trans-
mission environment, and consider a 2D propagation scenario,
similarly to [2]. The BS is equipped with a ULA. In Fig. 6,
we provide a 2D planar schematic diagram to demonstrate
the configuration of our simulation. This plane’s coordinates
(X,Y ) correspond to the X- and Y-axes. Assume that the BS
is at the coordinate origin (0, 0) m, and its equipped ULA
is parallel to the Y-axis. The targeted area is a square area
with its center at (200, 0) m and sides of each 50 m long.
There are 50 scatterers per km2 of space [2], [17]. Each

(0, 0)

X

(225, 25)

(175, -25)

pk-th Path
BS 

UT

Link

Target Area

pk-th Scatterer

Y

(175, 25)

(225, -25)

Fig. 6. The schematic diagram of the massive MIMO systems.

scatterer is represented as a collection of reflection points on
its surface, and a path is any transmission line connecting the
UT and BS that is not blocked by other scatterers. We consider
the propagation of geometry-based single bounces (GBSB) to
simplify the model, but without loss of generality [28], [29].
For simulation, we employ a typical set of wireless and system
parameters, as indicated in Table II. We generate the channels
according to the refined beam-based channel in (11) and (13).
In this case, the accurate statistical CSIs are known, and thus
can be used to evaluate the accuracy of the generated CSIs.

During the offline training phase, the target area is dis-
cretized along its geometric space dimensions, that is, along
the X-axis and Y-axis, respectively. Taking ∆x and ∆y as
the minimum interval units, and meshes the target area into a
2D matrix graph with Nx rows and Ny columns. The position
coordinates of each grid point are recorded as the true positions
pRP
i of the RPs, and the statistical CSI of the RPs are obtained

by channel model. We can get the training dataset of the
RPs, including {ΩRP

i ,pRP
i }NxNy

i=1 . Similarly, during the online
mode, generate 500 randomly distributed UTs in the whole
target area for the testing UT set {ΩUT

i ,pUT
i }500i=1 to evaluate

the NN generation Ω̂
UT

i performance. Since the accurate ΩUT
i

is known, we can use the normalized mean squared error
(NMSE) between the generated Ω̂

UT

i and the accurate ΩUT
i

to evaluate the accuracy. The NMSE in dB is defined as

NMSE(dB) = 10 log10

 1

500

500∑
i=1

∥∥∥Ω̂i −Ωi

∥∥∥2
F

∥Ωi∥2F

 . (36)

The batch size is 32 and the Adam optimizer is used in this
paper, with the learning rate 0.0002 for good performance.
We utilize MATLAB 2020a to calculate and save the statistical
CSI and UTs’ and RP’s coordinates for the methods described
above. TensorFlow 2.9 is used to train and test the DNN. Our

TABLE II
SYSTEM AND MODEL PARAMETERS

Parameter Value

Minimum interval units ∆x = 1 m

Minimum interval units ∆y = 1 m

Number of rows of the grid Nx = 50

Number of colums of the grid Ny = 50

Number of UTs 500

Carrier frequency f = 4.8 GHZ

Bandwidth B = 20 MHZ

Subcarrier spacing ∆f = 15 kHz

Subcarrier numbers Nc = 2048

Cyclic prefix length Ng = 144

Sampling interval Ts = 30.4 ns

simulation was run on a Servers equipped with an Intel Xeon
5318Y CPU and a Geforce GTX 4090 24GB GPU.

A. Training Stage

First, we evaluate the systems under N = 64, Na = 128,
and BW = 20 MHz, Nd = 128 wireless channel parameters.
Thus the size of input tensors is 128 × 128 (Na × Nd).
The channel gains βk,p follow the standard complex Gaussian
distribution. Our NN architecture has been described in detail
in the last Section III. The hyper-parameters dropout and
Exponential Moving Average (EMA) rate are set to 0.1 and
0.999, respectively (using the EMA technique to update NN
parameters, the model weights are updated during training by
combining the product of the current gradient and the EMA
value with the product of the previous gradient weight and
(1-EMA) value). The diffusion step number T is set to 1000.
The diffusion noise variance follows an linear schedule from
β1 = 0.0001 to β1000 = 0.02. The training and testing datasets
consist of 10,000 and 5,000 randomly generated channels
based on the presented channel model.
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Fig. 7. Noise scheduling value
√
αt and

√
1− αt.

To demonstrate the training process of Algorithm 1, we
first need to obtain the noisy data ΩRP

t corresponding to
any time step t by using a pre-designed noise scheduler α
based on equations (17) and (18). We then use this ΩRP

t as
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input to train the U-Net to predict the noise added at time
step t using the mean squared error (MSE) loss function (33).
We begin by presenting the noise addition strategy used in
simulation. The mathematical notation of the diffusion process
can appear challenging in Section III-C and D, but fortunately,
the scheduler α handles all of that. We plot

√
αt (labeled as

sqrt alpha) and
√
1− αt (labeled as sqrt one minus alpha)

in Fig. 7 to observe how the training data ΩRP
0 and the pure

noise matrix ϵt are scaled and mixed across different time
steps t.

Next, we construct the U-Net model as described in Sections
III-E, consisting of various modules, including the input layer
(comprising noisy data ΩRP

t at time step t and positional
conditional information pRP ), down-sampling modules (com-
prising two ResNet blocks and a down-sampling layer), middle
modules (comprising two ResNet blocks and a self-attention
block), up-sampling modules (comprising two ResNet blocks
and an up-sampling layer), and finally connecting to an output
layer. Our U-Net network accounts for the influence of time
step t, enabling the prediction of noise levels present in
noisy data ΩRP

t at any given time step t. Additionally, we
consider the impact of physical spatial position information
pRP , allowing the model to establish the mapping between
RP’s CSI and corresponding physical position of RP. In Fig.
8, we observe a decreasing trend in noise prediction error with
increasing training epochs, indicating the increasingly accurate
noise prediction of the model. The reduction in training loss
corroborates the effectiveness of our method, demonstrating
that through training, the model can predict the noise levels
added to statistical CSI data corresponding to specific RP’s
positions pRP at any time step t, and after T time steps, the
statistical CSI data will transform into a pure noise matrix. The
variation in training loss function aided in adjusting network
parameters to achieve optimal performance, and we preserve
the final trained model for using in Algorithm 2 during the
generation stage.
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Fig. 8. The noise prediction MSE loss of the training stage by U-Net.

B. Generation Stage
Firstly, we introduce the testing environment setup. Dur-

ing the generation phase, 100 UTs are uniformly randomly

distributed within the target area, assuming that the BS can
obtain their positional coordinates pUT

k . To demonstrate the
performance of our Algorithm 2 generation method, we first
introduce two statistical CSI estimation methods for compari-
son. One is referred to as the ‘interpolation’ method, where the
BS is assumed to have obtained the positional coordinate of the
UT pUT

k . By calculating the physical distance with the RPs’
coordinates, the four nearest RPs to the UTs are found, and the
physical distances are used as weights wi =

∥pUT
k −pRP

i ∥
2∑4

i=1∥pUT
k −pRP

i ∥
2

to compute the weighted average of the statistical CSI ΩRP
i

of the four RPs as the UTs’ statistical CSI estimation result:

Ω̂k =
4∑

i=1

wiΩ
RP
i . (37)

The other method is the statistical CSI estimation from
reference [26], where the BS can obtain Tp receiving pilot
signals from the UTs. By computing the KL divergence, an
optimization problem is solved to obtain the UT’ statistical
CSI estimation value. We compare the NMSE performance of
the method for Tp = 3 and Tp = 10 as a baseline with our
method.

For our diffusion model-based generation method, our sim-
ulation approach is as follows: after every 1000 epochs of
training, the trained model parameters are saved. Then, uti-
lizing the model’s powerful parallel computing capability and
known positional coordinates of 100 test UTs, the statistical
CSIs of the test UTs are simultaneously generated as the UT’
statistical CSI estimation Ω̂k, and the NMSE is calculated and
saved. Since the performance of the comparative methods is
not based on AI, their performance does not improve with the
progress of training. Our final simulation results are shown in
Fig. 9.
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Fig. 9. The comparison of NMSE v.s. training epochs for different estimation
methods of statistical CSI.

By comparing the performance lines in yellow, blue, and
purple, it can be observed that increasing the number of pilots
can improve the performance of the method from reference
[26]. For example, when the number of pilots is Tp = 10, it
can estimate 24 UTs simultaneously and achieve an NMSE
of −8.28. In comparison, the proposed generation method

Page 12 of 13IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON WIRELESS COMMUNICATION, VOL. 00, NO. 0, AUGUST 2021 13

does not require pilot information and can simultaneously
generate the statistical CSI of 100 UTs with only known
positional coordinates. Moreover, as training progresses, the
performance gradually improves and surpasses the baseline
method, and the NMSE gradually increases from −2.92 to
−9.387. The simulation results demonstrate the accuracy and
effectiveness of our method. Note that all training processes
above are conducted offline, and the generation phase can
select the saved network parameters as needed, without addi-
tional computational complexity in the generation phase. By
comparing the performance lines in red and blue, it can be
seen that when the training epochs of our method exceed
3000, an NMSE of −6.97 can be achieved, surpassing the
‘interpolation’ method’s NMSE. Although the ‘interpolation’
method is natural and convenient, for higher accuracy, the
proposed generation method can achieve more satisfactory
results.

V. CONCLUSION

This paper introduces the concept of the DToC. By treating
UT positions as physical objects and statistical CSI as virtual
digital object, DToC enables predictive analytics for subse-
quent communication tasks by observing trends in UT’s sta-
tistical CSI resulting from the changes in UT physical position.
Additionally, the proposal of a conditional DM, incorporating
UT position information, facilitates the generation of statistical
CSI under specific UT position, thus enabling precise mapping
between UT positions and statistical CSI. Simulation results
show the superiority of our DToC framework over previous
statistical CSI estimation methods, presenting its ability to
generate statistical CSI for numerous UTs simultaneously
based solely on their positions, without the need for pilot
signals. In essence, the DToC framework presents a promising
road for enhancing communication efficiency and accuracy in
sensing-integrated networks.
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