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Abstract—Recent studies have shown that the delay distribution 

of IEEE 1588 synchronization traffic varies with the 

characteristics and amount of the background traffic in the 

network, and influences the choice of packet selection filters. In 

this paper, we characterize the delay profile of an Ethernet cross-

traffic network statically loaded with one of the ITU-T network 

models and a larger Ethernet inline traffic loaded with 

uniformly-sized packets. We also propose an iterative sample-

mode packet delay variation (PDV) filter and use numerical 

simulations in OPNET to illustrate the performance of the filter 

in the networks. We compare the performance of the proposed 

PDV filter with those of the existing sample minimum, mean, and 

maximum filters and observe that the sample-mode filtering 

algorithm is able to match or outperform other types of filters, at 

different levels of network load. 

Keywords – Synchronization, IEEE 1588 Precision Time 

Protocol (PTP),  packet delay variation filtering. 

I.  INTRODUCTION 

Recently, there has been a migration from traditional 
circuit-switched networks based on Time Division 
Multiplexing (TDM) towards packet-switched networks such 
as Ethernet. This migration has been mainly driven by the 
desire to reduce costs and increase bandwidth for new types of 
services. For instance, some mobile telecommunications 
operators have started upgrading their backhaul networks to 
Carrier Ethernet, using new standards such as the Long Term 
Evolution (LTE) technology framework [1]-[3]. Other 
promising post-LTE technologies, including Cooperative 
Multiple Input Multiple Output (MIMO) and cognitive radio, 
are also being considered [4]-[7].  Some Digital Enhanced 
Cordless Telecommunications (DECT) system providers have 
also started using Ethernet as the backbone for connecting base 
stations in office environments, as well as for distributing high 
quality audio in auditoria and conference centers. There has 
also been consideration for using DECT video systems 
connected over an Ethernet backbone in transportation 
applications such as train carriages, in order to provide better 
visibility for train operators. 

When migrating towards Ethernet, synchronization is an 
important requirement that must be provided. Frequency 

synchronization is necessary for facilitating seamless handover 
and preserving connection integrity in cellular wireless 
systems, while time synchronization is required for reducing 
interference or improving capacity in systems that employ 
Time Division Duplexing (TDD) or Time Division Multiple 
Access (TDMA) techniques. For instance, the authors of [8] 
and [9] have studied time synchronization in base stations for 
mobile backhaul applications. There has also been interest in 
providing frame and multi-frame time synchronization for 
DECT base stations [7]. For both mobile backhaul and DECT 
applications, the required synchronization accuracy is in the 
microseconds range. Existing TDM technologies, such as 
Synchronous Optical Networking (SONET), Synchronous 
Digital Hierarchy (SDH), and Plesiochronous Digital 
Hierarchy (PDH), are capable of providing synchronization 
using a timing reference carried at the physical layer; however 
Ethernet was not designed for the transport of synchronization. 

Two basic methods exist for distributing precision 
synchronization over packet networks: via the physical layer 
e.g., Synchronous Ethernet (SyncE), or by exchanging 
timestamps using a packet protocol. SyncE [11] is a standard 
for the distribution of frequency over Ethernet links. While it 
can deliver a high level of frequency accuracy without 
susceptibility to packet delay variation (PDV), SyncE cannot 
provide time synchronization [12]. The most popular packet-
based synchronization protocols are Network Time Protocol 
(NTP) [13] and IEEE 1588 Precision Time Protocol (PTP) 
[14]. As NTP was primarily designed for synchronization over 
the Internet, the achievable accuracy is in the milliseconds 
range, which is unsuitable for the DECT and mobile backhaul 
applications under consideration. PTP, on the other hand, is 
capable of providing sub-microsecond synchronization 
accuracy; therefore it is generating a lot of interest as a 
potential solution for such applications. The new Ethernet 
Audio Video Bridging (AVB) standard [15], which is based on 
PTP, can also transport synchronous information; however it 
requires a special network with reservation protocols to ensure 
that it meets all the timing constraints required by multimedia 
applications. Similarly, a reserved timing network can also 
achieve synchronization. Our goal, however, is to provide time 
synchronization on a legacy network without reservation.  
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When PTP is deployed in an existing Ethernet network, the 
synchronization traffic must contend for the network path and 
share existing network elements with the non-synchronization 
traffic. This contention causes PDV, especially at the output 
queue buffers of network switches. If left unchecked, this PDV 
will adversely affect the synchronization accuracy of the 
protocol. The PTP standard recognizes this issue, and offers 
some recommendations for guarding against PDV. One 
solution is to utilize PTP transparent clocks or boundary clocks 
at intermediate nodes in the network, in order to measure and 
correct for the time a packet spends in the queue buffers of 
output ports. This is likely to be the preferred solution for new 
network installations, as the specialized switches can be 
factored into the design and costing of the network. For 
existing installations however, it is often cumbersome and 
costly to replace the existing network devices. The standard 
therefore recommends that other techniques such as traffic 
design, priority tagging of synchronization traffic, and PDV 
filtering can be employed. In some cases, more than one 
technique may be required. 

In general, the goal of PDV filtering is to select at least one 
“good” packet out of several packets within the received 
synchronization traffic and then use the good packet or packets 
to achieve synchronization. For most of the PDV filtering 
algorithms in the literature [16]-[18], a “good” packet is 
defined as one with the shortest transit time through the 
network. Hence these algorithms tend to group the arriving 
synchronization traffic into non-overlapping windows, select 
the ones that were least impacted by queuing delay, and discard 
the remaining packets. The PDV filters which employ such 
algorithms are referred to as sample-minimum or earliest 
arrival packet filters. 

Sample minimum filters can work effectively, as long as 
packets with minimal queuing delay are delivered at 
appropriate intervals. In [19] and [20], the authors showed that 
this is true for cross-traffic networks with moderate levels of 
background traffic (typically less than 45% utilization). 
However, they observed that for a heavily-loaded cross-traffic 
network and moderately-loaded high-hop in-line traffic 
network, the probability of finding a minimum-delay packet 
was significantly reduced. They thus proposed sample-mean 
and sample-maximum filters, respectively, based on the 
observed packet delay distributions in the networks. 

In this paper, first of all we characterize the delay 
distributions of a cross-traffic network at different network 
load levels and illustrate how the mean and variance of the 
observed delays vary with the network load. We further 
consider the delay distribution of a large in-line traffic network. 
From the observed delay distributions, we suggest the most 
likely type of existing filter that would perform best.  Then, we 
propose an iterative sample-mode PDV filtering technique that 
selects “good” packets from a mode bin to achieve 
synchronization. Finally, we compare the performance of the 
sample mode filter with the performance of the existing types 
of filters for some of the network scenarios whose delay 
distributions were profiled.  

The rest of the paper is organized as follows. In Section II, 
we describe how the delay profile of a network can impact the 

performance of a PDV filtering algorithm, and characterize the 
profile of a cross-traffic network and an in-line traffic network. 
Section III summarizes existing approaches to PDV filtering, 
and describes the proposed sample-mode filtering algorithm. 
Simulation results and analysis are presented in Section IV, and 
then conclusions are drawn in Section V. 

II. PACKET DELAY PROFILING  

In order to characterize the delay profile and appreciate the 
effects of PDV on the synchronization performance of the 
network, we simulated a 5 hop network with data-centric 
background traffic based on the ITU-T G.8261 Network 
Traffic Model 2 [21], as illustrated in Fig. 1. Each node 
generates background traffic that follows the same path as the 
SYNC packets. The next node extracts the background traffic 
and injects new (independent) traffic along the synchronization 
path. In the literature, this type of traffic pattern is referred to as 
cross-traffic [20]. Quality of Service (QoS) was implemented 
in the model so that the SYNC packets were transmitted with 
strict priority queuing at the switch output ports. Simulations 
were carried out for 20%, 40%, 60% and 80% background 
traffic load levels. Other simulation parameters are provided in 
Table 1. 
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Figure 1.  5-hop network topology for cross traffic. 

 

Figure 2.  Packet delay distribution for  a 5 hop cross traffic network. 
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TABLE 1: SIMULATION PARAMETERS FOR PACKET DELAY PROFILING. 

Distance between nodes 50 metres 

Synchronization Interval 3.90625 milliseconds 

Fractional frequency offset of slave 2 parts per million 

Line Rate 100 Mbps 

 

For each SYNC packet received at the slave, the end-to-end 
delay was measured and used to generate an experimental 
probability density function (PDF) of the packet delay, as 
shown in Figure 2. At low loads (typically less than 45%), 
most of the packets experienced no queuing in the network, as 
evidenced by the very strong modes at the minimum delay 
value.  As the load increases, the probability of finding a packet 
with minimum delay decreases. For example, there is no packet 
at the minimum delay value at 80% load, as all the packets 
experience queuing in the network. In fact, the PDFs at higher 
loads have well-defined shapes and can be fitted to Erlang 
density distributions. 

Inspection of the shapes of the delay profiles in Fig. 2 
suggests that the low load scenarios would be amenable to 
sample-minimum filtering, while the higher load scenarios 
might benefit from sample-mean filtering. 

We also consider the network scenario depicted by Fig. 3, 
where the background traffic follows the same path as the 
synchronization traffic. This type of traffic, termed in-line 
traffic, has practical significance in access aggregation 
networks such as in mobile backhaul systems where a network 
controller provides both timing traffic and background traffic 
(such as voice and data) to base stations. We modelled a 16-
hop network in which the size of the packets was uniformly 
distributed between 64 bytes and 1500 bytes, which are the 
minimum and maximum packet sizes for Ethernet, 
respectively. The other simulation parameters were unchanged. 

We observed that at 20% load level, the delay PDFs in this 
network can again be fitted to a theoretical Erlang PDFs, as 
depicted in Fig. 4; however, none of the packets experienced 
the minimum delay due to the long chain of queuing elements 
in the network. As the load increases, most of the packets tend 
to experience the maximum amount of delay. The resulting 
PDFs for these increased-congestion scenarios do not fit any 
popular distributions, but rather resemble mirror-images of the 
Erlang density distribution. 

Recall that an Erlang density function with rate and shape 
parameters given by λ and k, respectively, can be expressed by: 

1 exp( )
( ) ;  , 0

( 1)!

k k
x x

f x x
k

λ λ
λ

−
−

= ≥
−

. (1) 

A mirrored-Erlang density can be obtained from (1) by 
extending the function definition to include negative values of 
the shape parameter, and shifting the resultant function so that 
only physically-realistic positive delay values are displayed 
[20].   
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Figure 3.  16-hop network topology for in-line traffic.  

 

Figure 4.  Packet delay distribution for a 16-hop inline traffic network. 

 

Since the delay distributions at higher loads and for higher 
hop counts tend to follow an Erlang distribution, then in theory, 
an optimal PDV filter can be designed based on the Erlang 
distribution parameters. However, the expected computational 
overhead of such a filter would make it unsuitable for real-time 
use. 

Inspection of the shapes of the delay profiles in Fig. 4 
suggests that none of the scenarios would also be amenable to 
sample-minimum filtering. Sample-maximum filtering might 
benefit the 80% load scenario, while the other load scenarios 
might benefit from sample-mean filtering.  

As a further analysis of the impact of the network load on 
the packet delay, we present the mean and variance of the 
delays in Fig. 5 and Fig. 6, respectively.  As expected, the 
mean packet delay increases with the level of network load for 
both scenarios; however the cross-traffic scenario exhibits a 
more obvious linear relationship. 

A more interesting result is observed for the variance. For 
smaller (low hop count) networks at low loads, the variance is 
low because most of the packets experience little or no 
queuing.  As the load increases, the variance increases slightly 
to reflect the increased amount of queuing. The converse is true 
for larger networks. In these networks the probability of 
finding a packet that experiences no queuing is statistically 
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small, even at low load levels; hence the variance is high. 
However, as the load increases most packets tend to experience 
the maximum delay. Hence, the variance has an inverse 
relationship with the network load level. 

III. PACKET FILTERING TECHNIQUES 

As previously mentioned, the performance of a PDV filter 
depends on the probability of finding “good” packets among a 
sequence of arriving packets within a window. Thus the aim of 
PDV filtering is to select packets that experienced similar 
amount of delay through the network. Three main types of 
filters have been considered for PDV filtering, namely – 
sample minimum, sample maximum and sample mean. If the 
distribution of the delay is known a-priori, then the best filter to 
use is the one which matches the delay distribution, thus 
maximizing the chances of finding good packets.  However, if 
the delay distribution does not quite match up with any of the 
filters, then the residual clock offset after synchronization 
might be greater than desired. 

 

Figure 5.  Mean of packet delays for different network load levels 

 

 

Figure 6.  Variance of packet delays for different network load levels 

Having characterized the delay profiles of two network 

topologies, we now review the three existing PDV filters, and 

propose a new type of filter based on the sample mode. 

A. Existing Approaches 

Given a window with W SYNC packets, master origin 
timestamp Mi, slave reception timestamp Si, and delay δi = Si – 
Mi for the ith packet (0 < i ≤ W), a sample-minimum filter 
defines a good packet as one which satisfies the following: 

δi ≤ δmin + α.     (2) 

Similarly, a good packet for a sample-maximum filter is one 
with: 

δi ≥ δmax - α.     (3) 

For a sample-mean filter, a good packet would satisfy: 

(δmean – α /2) ≤ δi ≤ (δmean + α /2)  (4) 

where δmin, δmax, and δmean are the minimum, maximum, and 
mean, respectively, of all W δi samples in the window, and the 
threshold value α depends on the desired accuracy. 

B. Proposed Approach 

The goal of our proposed PDV filter is to maximize the 
chances of finding “good” packets by selecting packets from 
within the sample mode bin. The rationale behind this approach 
is that when the delay distribution does not quite match up with 
any of the existing filters, the sample mode will yield the 
largest number of “good” packets. Thus the sample mode filter 
should give a good fit for all traffic distributions, with a 
relatively low computational overhead. 

For each SYNC packet received at the slave, δ = S – M is 
computed from the master origin and slave reception 
timestamps and stored. After W samples have been obtained, a 
histogram is created to approximate the delay distribution of 
the received packets. If two or more bins have the same 
number of samples, the mode bin is selected as the bin with the 
minimum delay value. Good packets are defined as packets 
selected from within the mode bin, i.e. 

(δmode – α /2) ≤ δi ≤ (δmode + α /2)  (5) 

where δmode is the sample mode and α represents the width of 
each histogram bin. 

The first step in our sample mode PDV filter algorithm is 
the computation of the rate compensation factor (RCF). The 
RCF is calculated using from the largest origin timestamp 
Mmax, least origin timestamp Mmin, largest reception timestamp 
Smax, and least reception timestamp Smin within the mode bin as 
follows: 

max min

max min

S S
RCF

M M

−
=

−
.   (6) 

This RCF is used to correct for the mismatched clock rate at 
the slave with respect to the master clock. After the first 
computation of the RCF, subsequent computations are done  
for every frequency synchronization interval, rather than for 
every iteration. This is due to the well-known fact that changes 
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in clock rates are usually caused by aging of the oscillators or 
temperature changes, and as such they tend to occur extremely 
slowly.  In fact, if the maximum clock drift rate ρ is known, 
then the frequency synchronization interval f can be estimated 
from the target synchronization accuracy η as follows: 

2
f

η

ρ
= .     (7) 

From (6), it is evident that at least two good packets are 
required for computing the RCF.  

Once the RCF has been computed, subsequent iterations of 
the algorithm aim to reduce the clock offset between the master 
and the slave. At least one good packet is required for the offset 
computation. The packet selection rate is computed as the 
quotient of the number of packets in the mode bin and the 
window size W, and then compared with a packet selection 
threshold. If the selection rate exceeds the threshold level, the 
window size can be reduced. On the other hand, if no packet is 
found within the mode bin after increasing the window size to 
the maximum, the slave sends a management message to halve 
the synchronization interval at the master.  

IV. SIMULATION AND RESULTS 

To illustrate our approach and compare its performance with 
those of the existing filters, we used OPNET Modeler 16.0 [22] 
to simulate the networks depicted in Fig. 1 and Fig. 3. In order 
to allow a like-for-like comparison of the filters, we fixed the 
window size at 500 samples for all filters, the threshold value α 
was set at 0.2 µs, the synchronization interval was 976.5625 µs 
and the residual fractional frequency offset at the slave after the 
initial RCF estimation  was 30 parts per billion.  

In Fig. 7, we compare the results obtained from the four 
different filters after synchronization in a 40% 5-hop cross-
traffic scenario. As observed in the corresponding delay profile 
of Fig. 2, most of the packets experience the minimum delay; 
hence the sample-minimum filter is a good match and performs 
optimally. Since the mode corresponds to the minimum delay 
point, the performance of our sample mode filter is also 
optimal, and is in fact identical to that of the sample-minimum. 
As expected, the sample-mean and sample-maximum filters 
perform poorly, because they struggle to find “good” packets.  

In Fig. 8, we compare the results obtained after 
synchronization in an 80% 16-hop inline-traffic scenario. As 
observed in the corresponding delay profile of Fig. 4, none of 
the packets experience the minimum delay; hence the sample-
minimum filter has the worst performance. The delay profile 
does not match well with the sample-mean or sample-
maximum filters either, hence their performance is also sub-
optimal. Thus, the sample-mode filter gives the best 
performance. 

As a final analysis, we can observe the performance of a 
specific filter in both of these scenarios and see how the 
performance is influenced by the corresponding delay profile. 
The sample-maximum filter, for example, yields the worst 
performance in the first scenario, as most packets experience 
the minimum delay. On the other hand, it performs better than 

both the sample-minimum and sample-mean filters in the larger 
heavier-loaded network scenario which has higher levels of 
queuing.  The converse is true for the sample-minimum filter. 
The performance of the sample-mean filter is only marginally 
better in the first scenario, and this marginal improvement can 
be explained by the fact that the variance of the delay is 
slightly lower in the first scenario, as illustrated in Fig. 6. 

V. CONCLUSION 

We have characterized the IEEE 1588 PTP synchronization 
packet delay profiles for a small cross-traffic network and a 
large in-line traffic network with different levels of background 
traffic and observed from the shape of the distributions that the 
existing sample-minimum, sample-maximum, and sample-
mean filters perform sub-optimally for some of the load levels 
in these scenarios. A low-computation sample-mode filtering 
algorithm has been proposed, which selects packets from the 
mode bin and uses these “good” packets to achieve 
synchronization. Numerical simulations have shown that when 
the delay profile is a good match for an existing filter, the 
sample-mode filter performs as well as the existing filter. 
When the delay profile is not a good match for an existing 
filter, the sample-mode filter outperforms the existing filters. 
Future work will conduct similar experiments for more 
congested networks, as well as using background traffic 
characteristics obtained from real networks. 
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