
A Sample-Mode Packet Delay Variation Filter for

IEEE 1588 Synchronization
(Invited Paper)

Margaret Anyaegbu, Cheng-Xiang Wang

Joint Research Institute for Signal and Image Processing

School of EPS, Heriot-Watt University

Edinburgh, UK

mua4@hw.ac.uk, cheng-xiang.wang@hw.ac.uk

William Berrie

TES Electronic Solutions Ltd.

Edinburgh, UK

william.berrie@tes-dst.com

Abstract—Recent studies have shown that the delay distribution

of IEEE 1588 synchronization traffic varies with the

characteristics and amount of the background traffic in the

network, and influences the choice of packet selection filters. In

this paper, we characterize the delay profile of an Ethernet cross-

traffic network statically loaded with one of the ITU-T network

models and a larger Ethernet inline traffic loaded with

uniformly-sized packets. We also propose an iterative sample-

mode packet delay variation (PDV) filter and use numerical

simulations in OPNET to illustrate the performance of the filter

in the networks. We compare the performance of the proposed

PDV filter with those of the existing sample minimum, mean, and

maximum filters and observe that the sample-mode filtering

algorithm is able to match or outperform other types of filters, at

different levels of network load.

Keywords – Synchronization, IEEE 1588 Precision Time

Protocol (PTP), packet delay variation filtering.

I. INTRODUCTION

Recently, there has been a migration from traditional
circuit-switched networks based on Time Division
Multiplexing (TDM) towards packet-switched networks such
as Ethernet. This migration has been mainly driven by the
desire to reduce costs and increase bandwidth for new types of
services. For instance, some mobile telecommunications
operators have started upgrading their backhaul networks to
Carrier Ethernet, using new standards such as the Long Term
Evolution (LTE) technology framework [1]-[3]. Other
promising post-LTE technologies, including Cooperative
Multiple Input Multiple Output (MIMO) and cognitive radio,
are also being considered [4]-[7]. Some Digital Enhanced
Cordless Telecommunications (DECT) system providers have
also started using Ethernet as the backbone for connecting base
stations in office environments, as well as for distributing high
quality audio in auditoria and conference centers. There has
also been consideration for using DECT video systems
connected over an Ethernet backbone in transportation
applications such as train carriages, in order to provide better
visibility for train operators.

When migrating towards Ethernet, synchronization is an
important requirement that must be provided. Frequency

synchronization is necessary for facilitating seamless handover
and preserving connection integrity in cellular wireless
systems, while time synchronization is required for reducing
interference or improving capacity in systems that employ
Time Division Duplexing (TDD) or Time Division Multiple
Access (TDMA) techniques. For instance, the authors of [8]
and [9] have studied time synchronization in base stations for
mobile backhaul applications. There has also been interest in
providing frame and multi-frame time synchronization for
DECT base stations [7]. For both mobile backhaul and DECT
applications, the required synchronization accuracy is in the
microseconds range. Existing TDM technologies, such as
Synchronous Optical Networking (SONET), Synchronous
Digital Hierarchy (SDH), and Plesiochronous Digital
Hierarchy (PDH), are capable of providing synchronization
using a timing reference carried at the physical layer; however
Ethernet was not designed for the transport of synchronization.

Two basic methods exist for distributing precision
synchronization over packet networks: via the physical layer
e.g., Synchronous Ethernet (SyncE), or by exchanging
timestamps using a packet protocol. SyncE [11] is a standard
for the distribution of frequency over Ethernet links. While it
can deliver a high level of frequency accuracy without
susceptibility to packet delay variation (PDV), SyncE cannot
provide time synchronization [12]. The most popular packet-
based synchronization protocols are Network Time Protocol
(NTP) [13] and IEEE 1588 Precision Time Protocol (PTP)
[14]. As NTP was primarily designed for synchronization over
the Internet, the achievable accuracy is in the milliseconds
range, which is unsuitable for the DECT and mobile backhaul
applications under consideration. PTP, on the other hand, is
capable of providing sub-microsecond synchronization
accuracy; therefore it is generating a lot of interest as a
potential solution for such applications. The new Ethernet
Audio Video Bridging (AVB) standard [15], which is based on
PTP, can also transport synchronous information; however it
requires a special network with reservation protocols to ensure
that it meets all the timing constraints required by multimedia
applications. Similarly, a reserved timing network can also
achieve synchronization. Our goal, however, is to provide time
synchronization on a legacy network without reservation.

2012 12th International Conference on ITS Telecommunications

978-1-4673-3070-1/12/$31.00 ©2012 IEEE 1

When PTP is deployed in an existing Ethernet network, the
synchronization traffic must contend for the network path and
share existing network elements with the non-synchronization
traffic. This contention causes PDV, especially at the output
queue buffers of network switches. If left unchecked, this PDV
will adversely affect the synchronization accuracy of the
protocol. The PTP standard recognizes this issue, and offers
some recommendations for guarding against PDV. One
solution is to utilize PTP transparent clocks or boundary clocks
at intermediate nodes in the network, in order to measure and
correct for the time a packet spends in the queue buffers of
output ports. This is likely to be the preferred solution for new
network installations, as the specialized switches can be
factored into the design and costing of the network. For
existing installations however, it is often cumbersome and
costly to replace the existing network devices. The standard
therefore recommends that other techniques such as traffic
design, priority tagging of synchronization traffic, and PDV
filtering can be employed. In some cases, more than one
technique may be required.

In general, the goal of PDV filtering is to select at least one
“good” packet out of several packets within the received
synchronization traffic and then use the good packet or packets
to achieve synchronization. For most of the PDV filtering
algorithms in the literature [16]-[18], a “good” packet is
defined as one with the shortest transit time through the
network. Hence these algorithms tend to group the arriving
synchronization traffic into non-overlapping windows, select
the ones that were least impacted by queuing delay, and discard
the remaining packets. The PDV filters which employ such
algorithms are referred to as sample-minimum or earliest
arrival packet filters.

Sample minimum filters can work effectively, as long as
packets with minimal queuing delay are delivered at
appropriate intervals. In [19] and [20], the authors showed that
this is true for cross-traffic networks with moderate levels of
background traffic (typically less than 45% utilization).
However, they observed that for a heavily-loaded cross-traffic
network and moderately-loaded high-hop in-line traffic
network, the probability of finding a minimum-delay packet
was significantly reduced. They thus proposed sample-mean
and sample-maximum filters, respectively, based on the
observed packet delay distributions in the networks.

In this paper, first of all we characterize the delay
distributions of a cross-traffic network at different network
load levels and illustrate how the mean and variance of the
observed delays vary with the network load. We further
consider the delay distribution of a large in-line traffic network.
From the observed delay distributions, we suggest the most
likely type of existing filter that would perform best. Then, we
propose an iterative sample-mode PDV filtering technique that
selects “good” packets from a mode bin to achieve
synchronization. Finally, we compare the performance of the
sample mode filter with the performance of the existing types
of filters for some of the network scenarios whose delay
distributions were profiled.

The rest of the paper is organized as follows. In Section II,
we describe how the delay profile of a network can impact the

performance of a PDV filtering algorithm, and characterize the
profile of a cross-traffic network and an in-line traffic network.
Section III summarizes existing approaches to PDV filtering,
and describes the proposed sample-mode filtering algorithm.
Simulation results and analysis are presented in Section IV, and
then conclusions are drawn in Section V.

II. PACKET DELAY PROFILING

In order to characterize the delay profile and appreciate the
effects of PDV on the synchronization performance of the
network, we simulated a 5 hop network with data-centric
background traffic based on the ITU-T G.8261 Network
Traffic Model 2 [21], as illustrated in Fig. 1. Each node
generates background traffic that follows the same path as the
SYNC packets. The next node extracts the background traffic
and injects new (independent) traffic along the synchronization
path. In the literature, this type of traffic pattern is referred to as
cross-traffic [20]. Quality of Service (QoS) was implemented
in the model so that the SYNC packets were transmitted with
strict priority queuing at the switch output ports. Simulations
were carried out for 20%, 40%, 60% and 80% background
traffic load levels. Other simulation parameters are provided in
Table 1.

master slave

switch_1 switch_2 switch_5

station_1 station_2 station_5

switch_3

station_3

switch_4

station_4

Synchronization traffic

Background traffic

Figure 1. 5-hop network topology for cross traffic.

Figure 2. Packet delay distribution for a 5 hop cross traffic network.

2

TABLE 1: SIMULATION PARAMETERS FOR PACKET DELAY PROFILING.

Distance between nodes 50 metres

Synchronization Interval 3.90625 milliseconds

Fractional frequency offset of slave 2 parts per million

Line Rate 100 Mbps

For each SYNC packet received at the slave, the end-to-end
delay was measured and used to generate an experimental
probability density function (PDF) of the packet delay, as
shown in Figure 2. At low loads (typically less than 45%),
most of the packets experienced no queuing in the network, as
evidenced by the very strong modes at the minimum delay
value. As the load increases, the probability of finding a packet
with minimum delay decreases. For example, there is no packet
at the minimum delay value at 80% load, as all the packets
experience queuing in the network. In fact, the PDFs at higher
loads have well-defined shapes and can be fitted to Erlang
density distributions.

Inspection of the shapes of the delay profiles in Fig. 2
suggests that the low load scenarios would be amenable to
sample-minimum filtering, while the higher load scenarios
might benefit from sample-mean filtering.

We also consider the network scenario depicted by Fig. 3,
where the background traffic follows the same path as the
synchronization traffic. This type of traffic, termed in-line
traffic, has practical significance in access aggregation
networks such as in mobile backhaul systems where a network
controller provides both timing traffic and background traffic
(such as voice and data) to base stations. We modelled a 16-
hop network in which the size of the packets was uniformly
distributed between 64 bytes and 1500 bytes, which are the
minimum and maximum packet sizes for Ethernet,
respectively. The other simulation parameters were unchanged.

We observed that at 20% load level, the delay PDFs in this
network can again be fitted to a theoretical Erlang PDFs, as
depicted in Fig. 4; however, none of the packets experienced
the minimum delay due to the long chain of queuing elements
in the network. As the load increases, most of the packets tend
to experience the maximum amount of delay. The resulting
PDFs for these increased-congestion scenarios do not fit any
popular distributions, but rather resemble mirror-images of the
Erlang density distribution.

Recall that an Erlang density function with rate and shape
parameters given by λ and k, respectively, can be expressed by:

1 exp()
() ; , 0

(1)!

k k
x x

f x x
k

λ λ
λ

−
−

= ≥
−

. (1)

A mirrored-Erlang density can be obtained from (1) by
extending the function definition to include negative values of
the shape parameter, and shifting the resultant function so that
only physically-realistic positive delay values are displayed
[20].

master slave

switch_1 switch_2 switch_16

station_1 station_2

Synchronization traffic

Background traffic

Figure 3. 16-hop network topology for in-line traffic.

Figure 4. Packet delay distribution for a 16-hop inline traffic network.

Since the delay distributions at higher loads and for higher
hop counts tend to follow an Erlang distribution, then in theory,
an optimal PDV filter can be designed based on the Erlang
distribution parameters. However, the expected computational
overhead of such a filter would make it unsuitable for real-time
use.

Inspection of the shapes of the delay profiles in Fig. 4
suggests that none of the scenarios would also be amenable to
sample-minimum filtering. Sample-maximum filtering might
benefit the 80% load scenario, while the other load scenarios
might benefit from sample-mean filtering.

As a further analysis of the impact of the network load on
the packet delay, we present the mean and variance of the
delays in Fig. 5 and Fig. 6, respectively. As expected, the
mean packet delay increases with the level of network load for
both scenarios; however the cross-traffic scenario exhibits a
more obvious linear relationship.

A more interesting result is observed for the variance. For
smaller (low hop count) networks at low loads, the variance is
low because most of the packets experience little or no
queuing. As the load increases, the variance increases slightly
to reflect the increased amount of queuing. The converse is true
for larger networks. In these networks the probability of
finding a packet that experiences no queuing is statistically

3

small, even at low load levels; hence the variance is high.
However, as the load increases most packets tend to experience
the maximum delay. Hence, the variance has an inverse
relationship with the network load level.

III. PACKET FILTERING TECHNIQUES

As previously mentioned, the performance of a PDV filter
depends on the probability of finding “good” packets among a
sequence of arriving packets within a window. Thus the aim of
PDV filtering is to select packets that experienced similar
amount of delay through the network. Three main types of
filters have been considered for PDV filtering, namely –
sample minimum, sample maximum and sample mean. If the
distribution of the delay is known a-priori, then the best filter to
use is the one which matches the delay distribution, thus
maximizing the chances of finding good packets. However, if
the delay distribution does not quite match up with any of the
filters, then the residual clock offset after synchronization
might be greater than desired.

Figure 5. Mean of packet delays for different network load levels

Figure 6. Variance of packet delays for different network load levels

Having characterized the delay profiles of two network

topologies, we now review the three existing PDV filters, and

propose a new type of filter based on the sample mode.

A. Existing Approaches

Given a window with W SYNC packets, master origin
timestamp Mi, slave reception timestamp Si, and delay δi = Si –
Mi for the ith packet (0 < i ≤ W), a sample-minimum filter
defines a good packet as one which satisfies the following:

δi ≤ δmin + α. (2)

Similarly, a good packet for a sample-maximum filter is one
with:

δi ≥ δmax - α. (3)

For a sample-mean filter, a good packet would satisfy:

(δmean – α /2) ≤ δi ≤ (δmean + α /2) (4)

where δmin, δmax, and δmean are the minimum, maximum, and
mean, respectively, of all W δi samples in the window, and the
threshold value α depends on the desired accuracy.

B. Proposed Approach

The goal of our proposed PDV filter is to maximize the
chances of finding “good” packets by selecting packets from
within the sample mode bin. The rationale behind this approach
is that when the delay distribution does not quite match up with
any of the existing filters, the sample mode will yield the
largest number of “good” packets. Thus the sample mode filter
should give a good fit for all traffic distributions, with a
relatively low computational overhead.

For each SYNC packet received at the slave, δ = S – M is
computed from the master origin and slave reception
timestamps and stored. After W samples have been obtained, a
histogram is created to approximate the delay distribution of
the received packets. If two or more bins have the same
number of samples, the mode bin is selected as the bin with the
minimum delay value. Good packets are defined as packets
selected from within the mode bin, i.e.

(δmode – α /2) ≤ δi ≤ (δmode + α /2) (5)

where δmode is the sample mode and α represents the width of
each histogram bin.

The first step in our sample mode PDV filter algorithm is
the computation of the rate compensation factor (RCF). The
RCF is calculated using from the largest origin timestamp
Mmax, least origin timestamp Mmin, largest reception timestamp
Smax, and least reception timestamp Smin within the mode bin as
follows:

max min

max min

S S
RCF

M M

−
=

−
. (6)

This RCF is used to correct for the mismatched clock rate at
the slave with respect to the master clock. After the first
computation of the RCF, subsequent computations are done
for every frequency synchronization interval, rather than for
every iteration. This is due to the well-known fact that changes

4

in clock rates are usually caused by aging of the oscillators or
temperature changes, and as such they tend to occur extremely
slowly. In fact, if the maximum clock drift rate ρ is known,
then the frequency synchronization interval f can be estimated
from the target synchronization accuracy η as follows:

2
f

η

ρ
= . (7)

From (6), it is evident that at least two good packets are
required for computing the RCF.

Once the RCF has been computed, subsequent iterations of
the algorithm aim to reduce the clock offset between the master
and the slave. At least one good packet is required for the offset
computation. The packet selection rate is computed as the
quotient of the number of packets in the mode bin and the
window size W, and then compared with a packet selection
threshold. If the selection rate exceeds the threshold level, the
window size can be reduced. On the other hand, if no packet is
found within the mode bin after increasing the window size to
the maximum, the slave sends a management message to halve
the synchronization interval at the master.

IV. SIMULATION AND RESULTS

To illustrate our approach and compare its performance with
those of the existing filters, we used OPNET Modeler 16.0 [22]
to simulate the networks depicted in Fig. 1 and Fig. 3. In order
to allow a like-for-like comparison of the filters, we fixed the
window size at 500 samples for all filters, the threshold value α
was set at 0.2 µs, the synchronization interval was 976.5625 µs
and the residual fractional frequency offset at the slave after the
initial RCF estimation was 30 parts per billion.

In Fig. 7, we compare the results obtained from the four
different filters after synchronization in a 40% 5-hop cross-
traffic scenario. As observed in the corresponding delay profile
of Fig. 2, most of the packets experience the minimum delay;
hence the sample-minimum filter is a good match and performs
optimally. Since the mode corresponds to the minimum delay
point, the performance of our sample mode filter is also
optimal, and is in fact identical to that of the sample-minimum.
As expected, the sample-mean and sample-maximum filters
perform poorly, because they struggle to find “good” packets.

In Fig. 8, we compare the results obtained after
synchronization in an 80% 16-hop inline-traffic scenario. As
observed in the corresponding delay profile of Fig. 4, none of
the packets experience the minimum delay; hence the sample-
minimum filter has the worst performance. The delay profile
does not match well with the sample-mean or sample-
maximum filters either, hence their performance is also sub-
optimal. Thus, the sample-mode filter gives the best
performance.

As a final analysis, we can observe the performance of a
specific filter in both of these scenarios and see how the
performance is influenced by the corresponding delay profile.
The sample-maximum filter, for example, yields the worst
performance in the first scenario, as most packets experience
the minimum delay. On the other hand, it performs better than

both the sample-minimum and sample-mean filters in the larger
heavier-loaded network scenario which has higher levels of
queuing. The converse is true for the sample-minimum filter.
The performance of the sample-mean filter is only marginally
better in the first scenario, and this marginal improvement can
be explained by the fact that the variance of the delay is
slightly lower in the first scenario, as illustrated in Fig. 6.

V. CONCLUSION

We have characterized the IEEE 1588 PTP synchronization
packet delay profiles for a small cross-traffic network and a
large in-line traffic network with different levels of background
traffic and observed from the shape of the distributions that the
existing sample-minimum, sample-maximum, and sample-
mean filters perform sub-optimally for some of the load levels
in these scenarios. A low-computation sample-mode filtering
algorithm has been proposed, which selects packets from the
mode bin and uses these “good” packets to achieve
synchronization. Numerical simulations have shown that when
the delay profile is a good match for an existing filter, the
sample-mode filter performs as well as the existing filter.
When the delay profile is not a good match for an existing
filter, the sample-mode filter outperforms the existing filters.
Future work will conduct similar experiments for more
congested networks, as well as using background traffic
characteristics obtained from real networks.

ACKNOWLEDGMENT

The authors gratefully acknowledge EPSRC, TES
Electronic Solutions Ltd, and the Industrial Doctorate Centre in
Optics and Photonics Technologies at Heriot-Watt University
for funding this research. We also thank OPNET for providing
the network simulation software free of charge under the
University License agreement. C.-X. Wang would also like to
acknowledge the support from the RCUK for the UK-China
Science Bridges Project: R&D on (B)4G Wireless Mobile
Communications and the support of the Opening Project of the
Key Laboratory of Cognitive Radio and Information
Processing (Guilin University of Electronic Technology),
Ministry of Education (Grant No.: 2011KF01).

REFERENCES

[1] A. Sutton, “Building better backhaul,” Engineering and Technology
Magazine, vol. 6, no. 5, pp. 72 – 75, Jun. 2011.

[2] M. Howard, “Using Carrier Ethernet to Backhaul LTE,” Infonetics
Research White Paper, Feb. 2011.

[3] P. Briggs, R. Chundury, and J. Olsson, “Carrier Ethernet for Mobile
Backhaul,” IEEE Communications Magazine, vol. 48, no. 10, pp. 94 –
100, Oct. 2010.

[4] X. Cheng et al, “Cooperative MIMO channel modeling and multi-link
spatial correlation properties,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 2, pp. 388 – 396, Feb. 2012.

[5] C.-X. Wang, X. Hong, H.-H. Chen, and J. S. Thompson, “On capacity of
cognitive radio networks with average interference power constraints,”
IEEE Transactions on Wireless Communications, vol. 8, no. 4, pp. 1620
– 1625, Apr. 2009.

[6] C.-X. Wang et al, “Cooperative MIMO channel models: a survey,” IEEE
Communications Magazine, vol. 48, no. 2, pp. 80 – 87, Feb. 2010.

5

Figure 7. Relative clock offset for 5 hop cross traffic network at 40% load.

Figure 8. Relative clock offset for 16 hop inline traffic network at 80% load.

[7] X. Hong, C.-X. Wang, H.-H. Chen, and Y. Zhang, “Secondary spectrum
access networks: recent developments on the spatial models,” IEEE
Vehicular Technology Magazine, vol. 4, no. 2, pp. 36 – 43, Jun. 2009.

[8] A. Magee, “Synchronization in next-generation mobile backhaul
networks,” IEEE Communications Magazine, pp. 110 – 116, Oct. 2010.

[9] Z. Ghebretensae, J. Harmatos, and K. Gustafsson, “Mobile broadband
backhaul network migration from TDM to carrier Ethernet,” IEEE
Communications Magazine, pp. 102 – 109, Oct. 2010.

[10] C. Na, D. Obradovic, and R. Scheiterer, “Method for Synchronizing
Clocks in a Communication Network”. U.S. Patent Application US
2011/0161524 A1, Jun. 30, 2011.

[11] Timing characteristics of a synchronous Ethernet equipment slave clock
(EEC), ITU-T Recommendation G.8262/Y.1362, June 2010.

[12] J.-L. Ferrant et al, “Synchronous ethernet: a method to transport
synchronization,” IEEE Communications Magazine, pp. 126 – 134, Sept.
2008.

[13] D. Mills, “Network Time Protocol (version 4) Protocol and Algorithms
Specification”, RFC 5905, University of Delaware, June 2010.

[14] IEEE 1588: IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems, 2nd Edition,
2008.

[15] IEEE 802.1AS Standard: Timing and Synchronization for Time-
Sensitive Applications in Bridged Local Area Networks, 1st Edition,
March 2011.

[16] D. T. Bui, A. Dupas, and M. Le Pallec, “Packet Delay Variation
Management for a better IEEE 1588v2 Performance,” ISPCS 2009 IEEE

International Symp. on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 75 - 80, Oct. 2009.

[17] T. Murakami and Y. Horiuchi, “Improvement of Synchronization
Accuracy in IEEE 1588 Using a Queuing Estimation Method,” ISPCS

2009 IEEE International Symp. on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 12 - 16, Oct. 2009.

[18] C S. Johannessen, “Time Synchronization in a Local Area Network,”
IEEE Control Systems Magazine, vol. 24, no. 2, pp. 61 – 69, Apr. 2004.

[19] I. Hadzic and D. R. Morgan, “On Packet Selection Criteria for Clock
Recovery,” ISPCS 2009 IEEE International Symp. on Precision Clock

Synchronization for Measurement, Control and Communication, pp. 35 -
40, Oct. 2009.

[20] I. Hadzic and D. R. Morgan, “Adaptive Packet Selection for Clock
Recovery,” ISPCS 2010 IEEE International Symp. on Precision Clock

Synchronization for Measurement, Control and Communication, pp. 42 -
47, Sep. 2010.

[21] Timing and Synchronization Aspects in Packet Networks, ITU-T
Recommendation G.8261, April 2008.

[22] OPNET Product Documentation 16.0, www.opnet.com.

6

