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Abstract—In millimeter wave (mmWave) communication
systems with massive multiple-input multiple-output (MIMO)
architecture, selecting the antennas contributing most from the
candidate array to transmit/receive signals is one of the effective
solutions to reduce hardware cost and power consumption while
maintaining high spectral efficiency. In this paper, for the
communication systems where the base station (BS) equipped
with massive MIMO antenna array communicates with multiple
single-antenna users, the impact of limited-resolution analog-
to-digital converters (ADCs) and digital-to-analog converters
(DACs) on system capacity is investigated, and two antenna
selection (AS) algorithms, namely quantization-aware greedy
with square maximum-volume (QAG-SMYV) and group-selection
(GS) schemes, are proposed to enhance system capacity for the
uplink and downlink transmission, respectively. Specifically, after
the quantization noise caused by limited-resolution ADCs/DACs
is converted to independent additive noise, the problem of
maximizing system capacity is formulated. Then, two novel AS
schemes are proposed to improve system capacity. Simulation
results show that the proposed AS algorithms can obtain higher
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average system capacity, and the computational complexity is
reduced as well.

Index Terms— Limited-resolution ADCs/DACs, average achiev-
able capacity, massive MIMO, antenna selection.

I. INTRODUCTION

N wireless communications, to cater the increasing

demands in system capacity and real-time services, some
effective techniques on the network layer have been proposed
in the past decade [1], [2], [3], [4]. Nevertheless, extending
communication frequency into millimeter-wave (mmWave)
band still seems the essential solution to the current gridlock
in spectrum resource requirements. Hence, mmWave is
promising to be exploited in the fifth/sixth generation (5G/6G)
mobile communication systems [5], [6], [7]. For the wireless
communication with mmWave band, in order to enhance
signal gain for reliable decoding via reducing the effect
of severe path-loss in signal propagation, massive multiple-
input multiple-output (MIMO) architecture is commonly
adopted [8], [9]. Consequently, massive MIMO antenna
array is becoming the mainstream architecture in the future
mmWave communication systems, and it is one of the current
hot spots in both academy and industry [10], [11].

For mmWave massive MIMO systems, there are dozens or
even hundreds of antennas. For such wireless communication
systems, it is hard to provide a dedicated radio-frequency (RF)
chain and other supporting circuits for each antenna. Hence,
the technique of hybrid precoding emerges as one of the
most effective solutions to decrease the number of RF chains,
the corresponding hardware cost and power consumption,
while maintaining high spectral efficiency [12]. Accordingly,
some novel hybrid precoding schemes have been proposed in
the past several years [13], [14], [15], [16]. In fact, among
the antennas being densely deployed in a small space, some
antennas are correlated one another and their contributions in
enhancing system capacity are usually unequal [17]. There-
fore, if only the antennas that contribute most are exploited
to transmit or receive signals, not only hardware cost and
energy consumption can be saved, but also the computational
complexity to implement hybrid precoding can be further
reduced [18], [19]. Consequently, antenna selection (AS) in
massive MIMO systems will play a significant role to realize
the vision of broadband green communication in the future.

In the past decade, many AS schemes have been proposed
to enhance the system capacity for MIMO architecture.
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Based on the concept of constructive interference, a joint
optimization scheme of transmit-antenna-selection (TAS)
and hybrid precoding was proposed via the mixed-integer
programming approach in [20]. For the continuous and
gusty communication scenarios with different data request
probabilities, an efficient AS scheme using genetic algorithms
was developed in [21]. The conjunct design of secure
beamforming and receive-antenna-selection (RAS) scheme
was investigated for both complete and incomplete channel
state information (CSI) scenarios in [22], and then a branch
and bounded (BAB) algorithm to obtain the optimal antenna
subset was proposed. In [23], based on the successive convex
approximation technique to deal with max-min fairness, a joint
scheme of AS and multicast beamforming was proposed
for a single multicast group in massive MIMO systems.
A novel AS algorithm was presented to maximize the system
capacity based on the rectangular maximum-volume (RMV)
technique in [24]. For single-input multiple-output (SIMO)
multi-antenna systems with discrete inputs, a RAS scheme
was proposed in [25]. Two low-complexity AS algorithms
were proposed for the downlink multi-user massive MIMO
systems using the matched filter precoding technique in [26],
where vector multiplications were avoided successfully during
the iterative selection procedure. Based on global searching,
two iterative-swapping AS schemes were proposed in [27].
A local-swapping (LS) AS algorithm was proposed in [28],
and the global swapping strategy was proposed to reduce
its complexity. In [29], Gorokhov proposed a decremental
AS strategy, which can almost find the optimal antennas in
maximizing system capacity, and its low-complexity version
was proposed in [30] rendering just a little degradation in
system capacity. In [31], based on the Monte Carlo type
search approach, an intelligent AS strategy was proposed to
enhance system capacity in a simple manner. To decrease
the required number of RF chains and power consumption,
several TAS schemes were proposed to minimize the mean
square reception error and reduce the transmit power with the
matching pursuit techniques in [32]. Furthermore, AS schemes
were investigated to combat wiretap for massive MIMO
systems in [33] and [34].

All the aforementioned AS algorithms can achieve good
performance in enhancing system capacity. Nevertheless, most
of them supposed that the analog-to-digital converters/digital-
to-analog converters (ADCs/DACs) are infinite-resolution,
which is infeasible for practical massive MIMO systems owing
to the huge hardware cost and power consumption [35], [36].
In fact, the resolution of ADCs/DACs affects system capacity
and it should be considered when AS schemes are designed.
For instance, the achievable rates in the uplink and downlink of
full-duplex (FD) massive MIMO systems with low-resolution
ADC/DACs were investigated in [37], and it was shown that
the approximate achievable rate becomes constant only when
the number of quantization bits tends to infinity. However, the
number of quantization bits is usually 2 or 3 in practice.

Consequently, when AS schemes are leveraged for
enhancing system capacity, the quantization errors caused
by the limited-resolution ADCs/DACs should be considered.
However, most prior works omitted this issue. To the best
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of our knowledge, only a few existing works mentioned this.
For the massive multi-user MIMO systems equipped with
low-resolution DACs, a joint AS and user scheduling scheme
was proposed to maximize the system total rate based on the
cross-entropy optimization concept in [38]. To maximize the
energy efficiency and spectral efficiency at the same time,
an AS framework to jointly allocate the best active RF chains
was proposed in [39], which not only can implement the
selection between the DACs of random resolution optimally,
but also can determine the optimal number of RF chains
to be activated. However, these two methods operate either
in an iterative manner or sorting operation was required,
and so their computational complexity is considerably high.
In this paper, for the massive MIMO systems with limited-
resolution ADCs/DAC:s at the BS, when the quantization errors
are considered, two low-complexity AS algorithms, namely
quantization-aware greedy with the square maximum-volume
(QAG-SMV) AS and group-selection (GS) AS, are proposed
to improve the average achievable capacity in the uplink and
downlink transmission, respectively. The main contributions
of this paper are summarized as follows.

o Based on the additive quantization noise model (AQNM),
the impact of limited-resolution ADCs/DAC:s is converted
to independent additive noise, and then the expressions
of the achievable capacity in closed form are derived
for the uplink and downlink transmission, respectively,
through which valuable insights into the joint effect
of the quantization bits of ADCs/DACs and antenna
selection algorithms on the system capacity can be
obtained.

e For the uplink transmission, a novel QAG-SMV AS
scheme is proposed, through which both the global
optimization and implementation complexity are consid-
ered, and the antennas contributing most are selected to
maximize system capacity in a low-complexity manner.

¢ A GS scheme is proposed for the downlink transmission,
through which the antennas contributing most for each
user are obtained, and the same number of antennas are
selected finally. Not only the maximal system capacity is
promising to achieve, but also the fairness among users
is considered.

o For the proposed AS schemes, the performance in
average achievable capacity and complexity is evaluated.
Simulation results are presented to validate the superior
performance over the existing algorithms in both average
achievable capacity and implementation complexity.

The remainder of this paper is organized as follows.

In Section II, the system model considered in this paper is
presented and the problem of signal transmission with limited-
resolution ADCs/DACs is formulated. The QAG-SMV AS
scheme is proposed for the uplink transmission in Section III,
and a novel AS strategy is proposed for the downlink
transmission based on the GS concept as well. In Section VI,
simulation results are presented to evaluate the performance of
the proposed AS schemes for both the uplink and downlink
transmission. The computational complexity of the proposed
schemes is analyzed in Section VI-C. Some ideas on extending
the proposed schemes to multi-antenna user scenarios are
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presented in Section V. Finally, the paper is concluded and our
future interested research point is presented in Section VIL.

Notation: The following notations are used throughout
this paper. Lowercase letters, bold lowercase letters and
bold uppercase letters represent scalars, vectors and matrices,
respectively. H and H” denote the Hermitian and transpose
of H, respectively. Iy € CV*¥ denotes the identity matrix
with dimension N x N. ||x|| is the Euclidean norm of x. |x]|
means obtaining the absolute value for each element of vector
X. |x| is the absolute value of scalar x. det(X) means applying
the determinant operator of matrix X. A\B means removing
element B from set A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model with massive MIMO
architecture is described, and the quantization noise caused
by limited-resolution DACs/ADCs is formulated.

A. Massive MIMO Systems With Limited-Resolution
ADCs/DACs

In this paper, a single-cell massive MIMO system with
multiple users is considered, where the BS equipped with
Ny, antennas transmits signals to N,, users who are equipped
with single antenna simultaneously. As the number of antennas
at user terminals is usually very small, it is assumed
that the user terminals are capable of presenting infinite-
resolution ADCs/DACs. On the contrary, there are usually
hundreds or even thousands of antennas at the BS, and if so
many ADCs/DACs are infinite-resolution, the BS can hardly
provide such huge hardware cost and power consumption.
Consequently, it is assumed that the ADCs/DACs at the BS
are limited-resolution, but the ones at the users are infinite-
resolution.

Both the uplink and downlink transmissions are investigated
in this paper. It is assumed that /N, users send their signals to
the BS with same transmit power in the uplink transmission
phase!, and the BS transmits signals to the N, users after
encoding being operated in the downlink phase. It is supposed
that the channels are in slow block fading, which means that
the channel coefficients keep invariant during a coherence
time.

To reduce hardware cost and power consumption, only the
candidate antennas contributing most are selected to trans-
mit/receive signals at the BS. In this section, we investigate AS
schemes when the impact of limited-resolution ADCs/DACs
is considered for both the uplink and downlink transmissions.

B. The Uplink Transmission With Limited-Resolution ADCs

In the phase of the uplink transmission, when signals are
transmitted from the users, the BS receives them via a large-
scale array and tries to decode them after sampling with

For practical systems, the distances from users to the BS are usually
different, and the users should scale their transmit power to ensure the received
signal power at the BS be almost the same. Nevertheless, from the perspective
of the BS, when antenna selection schemes are designed to maximize the
achievable system capacity, considering large-scale fading and ensuring the
same received signal gain at the BS is equivalent to transmitting signals with
same transmit power at the users while omitting the large-scale fading.
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limited-resolution ADCs. Let H = [hy,hy,--- ,hy,]" €
CNe*Nu pe the channel from the N,, users to the BS, and it is
assumed that each element of H is independent and identically
distributed (i.i.d) with the parameter of CA(0, o2), where h;,
i €{1,2,---, Ny}, represents the i*" row of matrix H and
corresponds to the N, links from the N, users to the ith
antenna. When the signals x,, = [x1, 22, - ,xNu]T € CNux1
are transmitted from the users, the received signals at the BS

can be expressed as

yu =V P,Hx, + n,, (D

where P, is the average transmit power of each user,
n, = [Ny1,Nu2, ,nube]T € CNex1 is the vector of the
i.i.d. additive white Gaussian noise (AWGN) at the BS with
the parameter of CA/(0,1n, ).

Due to the limited-resolution of the ADCs at the
BS, quantization error occurs inevitably when sampling is
operated. Unfortunately, such error is hard to obtain accurately
even if the nonlinearity of the quantization function is
known. Therefore, an AQNM is usually adopted to measure
the quantization error of the low-resolution ADCs/DACs.
Consequently, (1) can be rephrased as

Yu = QU(R€<yu)) +]Qu(lm(yu))
= Oy, \/P>uHXu + ayNy + qy, (2)

where Q,,(-) is the scalar quantization function of the limited-
resolution ADCs, a,, represents the quantization gain, which
is commonly expressed by o, ~ 1 — ”T\/g2*2b” when b, <
5 holds [38], [40], where b, denotes the number of bits that
the DACs can provide for quantification and 1 — «,, represents
the quantitative distortion factor. g, = [qu 1, qu.2, " » Qu, Nb]T
is the additive Gaussian quantization noise. Generally, the
distribution of the quantization noise also depends on the
nonlinearity nature of the quantizer. Nevertheless, as our focus
is to select the optimal antennas under the consideration of
limited-resolution of ADCs/DACs, it is assumed that high-
quality quantizers are used and the nonlinearity has been
processed with the existing scheme in [41]. Hence, it is
supposed that the quantization noise is i.i.d. with the parameter
of CN(0,R,,), and it is determined by the limited-resolution
ADCs and is uncorrelated to y,,. R, is the covariance matrix
of the quantization noise q,,, which can be expressed as’

R, = a,(1 — a,)diag(P,HH" + Iy, ). 3)

From (2), it can be seen that the noise at the BS involves two
terms, which are quantization noise and AWGN, respectively.
The covariance matrix of the total noise can be defined as

R; = au(l - au)diag(PuHHH + INb) + au2INb' 4)

It can be seen that when AS schemes are investigated for
enhancing system capacity, the total noise imposed on the
received signals should be considered.

2The derivation process is similar to (5) in [40], and it is omitted here for
the sake of simplicity.
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TABLE I
THE QUANTIZATION GAIN iy (tg) WHEN by (bg) < 5
b (bq) 1 2 3 4 5
ay(ag) | 0.6366 | 0.8825 | 0.96546 | 0.990503 | 0.997501

C. The Downlink Transmission With Limited-Resolution
DACs

In the downlink transmission, it is assumed that N, data
streams, denoted as vector s € CM*! are transmitted in
parallel from the BS to the IV, users simultaneously. Before
being transmitted, it is assumed that the data is precoded by the
maximum ratio transmission (MRT) precoding matrix W =
B € CVxNu| where H = HY € CNuxNo represents the
channel from the BS to the N,, users’. Hence, the transmitted
signals from the BS are presented as X = WP'/2s, where
P = diag {p1, p2, - ,pn, } € CNeXNu s the transmit power
of the signal vector s. Let P, be the total transmit power, and it
is assumed that the transmit power is allocated equally among
the N, users, and so the transmit power on each data stream
is P, = P,/N,. Accordingly, the final transmitted signals can
be rephrased as X = /P, Ws.

When the AQNM is exploited to measure the quantization
error of the limited-resolution DACs at the BS, the transmitted
signals after digital-to-analog conversion can be expressed as

xq = Qa(X)
= a¢X +qq = agy/ P,Ws +qq, &)

where the operation Qg(-) is similar to that of Q,(:),
representing the quantization function due to the limited-
resolution DACs, and a4 denotes the quantization gain, which
can be expressed as ag ~ 1 — ”T\/EQ’%GL in case of
by < b5, wherein b; denotes the number of bits that the
DACs can provide for quantification. The approximation of
the quantization gain «,/ag is given in Table 1. qq =
[9d,1,9d.2;---,4q4,n,] 1is the quantization noise vector with
the i.i.d. nature and the parameter of CN' (0, R4), where Ry
is the covariance matrix and it can be obtained by

Ry = aq(l — ag)Pdiag(WW). (6)

Accordingly, the received signals at the users can be given
by

y, = HX = agv/P;HWs + Hqg + ng, (7)
where ng = [ng1,M42," " ,nd7Nu}T is the AWGN vector

with the i.i.d. nature and the parameter CN (0, 1y, ).

Due to the fact that quantization noise occurs during the
sampling operation at the BS, when the transmitted signals
are received at the N, users, the noise is composed of two
parts, namely quantization noise and AWGN. As a result, the
total noise is shown as

R, = ay(l — ag)P;Hdiag WWHH +1y,. (8

3For massive MIMO systems, hybrid precoding is usually implemented
at the transmitter. As the focus of this paper is AS schemes, fully digital
precoding is used here for the sake of notational brevity.
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Accordingly, both the quantization errors introduced by the
limited-resolution ADCs and DACs are modeled as additive
noises imposed on the received/transmitted signals, based on
which AS schemes are designed in the following sections.

III. QAG-SMV AS SCHEME FOR UPLINK TRANSMISSION

For the considered massive MIMO system, among the NV,
candidate antennas at the BS, IV, antennas are selected to
receive signals and the same number of RF chains are utilized
to process the received signals from the antennas. In this
section, the impact of quantization error on system capacity
is investigated first, and then a QAG-SMV RAS algorithm is
proposed with the objective of enhancing system capacity.

A. Analysis on the Achievable Capacity in the Uplink Phase

To maximize the achievable rate in the uplink transmission,
the /V,. antennas contributing most at the BS should be selected
from the NV, candidate antennas based on the CSI from the
users to the BS. Denote the selected antenna set as 2 and the
corresponding channel as H,. Then, the achievable capacity
in the uplink phase can be shown as

C, = log, det(I 4+ P,a,*R,, "H,H), 9)

from which it can be seen that the covariance matrix R, of the
noise emerges as a penalty term in the expression of the system
capacity, and it is caused by the limited-resolution ADCs at
the BS*.

To maximize the total capacity of the uplink transmission,
the AS problem can be formulated as

arg max C,
Ny,

S. t-ZAi,i = NT,
i=1

where A;; € {0,1} is the i'" diagonal entry of the matrix
A € CNeXNo which is a diagonal matrix used to denote the
selected antennas. This implies that after the optimal antennas
having been selected, the corresponding channel matrix can
be shown as H, = HA.

(10)

B. QAG-SMV RAS Strategy

To solve the optimization problem in (10), a QAG-SMV
RAS algorithm is proposed, which consists of two consecutive
processing stages. In the first stage, a SMV-based algorithm
is used to select N, antennas without considering the impact
of finite resolution globally, and then a QAG algorithm is
employed to select the remaining N, — N, antennas, where
N, < N, is set.

Specifically, in the first pre-processing stage, the SMV
algorithm is carried out with an empty set of selected RAS
and then a certain number of antennas are selected from the

4When the blockage of the network is considered, the achievable system
capacity should be discounted through multiplying a coefficient to the
corresponding channel gains. In this case, the channel matrix will be rewritten
T .
as H = [Bihy,Bzhy, -+, By, hy, ], where B, i € {1,2,---, Ny}
represents the strength of blockage, the value of which is located in the range
of (0,1).
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perspective of global optimization while ignoring quantization
error. Let ¢ be the selected antenna set and H, 4 be the
corresponding channel matrix, and then the system capacity
of the uplink transmission ignoring quantization error can be
given by

Cy = log, det(I + P,HY H, ;)
No
— Zlog2(1 + P,oi?),
i=1
where oi, ¢ = 1,2,3,---,N,, is the nonzero singular
value of the channel matrix H, 4 with the dimension of
N, x N,. When the scenarios with moderate high SNR are
considered, P,o;2 > 1 holds. Accordingly, (11) can be further
approximated as

(1)

N,
Co~ Z log, (P,0i%)

i=1
No
= N, log,(P,) + ) _logy(0:?)
i=1

= N, logy(P,) + logy det(HY JH, ;). (12)

From (17), we can observe that to maximize the system
capacity with the selected antenna set ¢ is to obtain the optimal
matrix H, 4, which is denoted as Hy, ,,r € CVe*Ne, Hence,
the optimal N, antennas are selected when det(H} ;H,, 4) =

2 . .
|det(H,, 4)|” is maximal.

To obtain the optimal antennas, let the first IV, rows of H be
H,, 4, and hence the total H with all antennas can be rewritten

as
_ | Hug
u= el

where H, is the remaining matrix after the first N, rows are
deleted from H. Letting Q = HH;’;, we can see that the
dimension of Q is [N, X Ny. Then, for the matrix Q, it is to
find the element with maximum modulus, which is denoted
as Qj, i € {No+1,No+2,--- Ny}, j € {1,2,--- , N, }. If
|Q;j| > 1 holds, exchange the i'" row with the j* row in H
until ’Qi,j| < 1 holds. In this way, the first IV, rows of matrix
H are updated constantly, and finally the optimal antenna set
H; ,p: is obtained. In this stage, the SMV algorithm is not
only beneficial to reduce the number of candidate antennas
for the subsequent second stage, but also greatly improves the
system capacity of the uplink transmission due to its global
optimization.

Since the diagonal elements of R, contain the aggregate
gain, which corresponds to the selected antennas, QAG RAS
algorithms in the post-processing stage can be exploited to
measure the influence of channel gain and quantization error,
through which the optimal antennas can be selected.

In the second stage, the remaining N, — N, antennas are
selected from the remaining channel matrix H,. based on the
QAG RAS algorithm. To select the optimal N,. — N,, antennas,
it is assumed that all the candidate antennas are selected at the
beginning, and then the antennas that contribute the least are
eliminated one by one until there are only IV, — N,, candidate
antennas.

13)
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While letting w be the set of the remaining candidate
antennas, the system capacity with all the N, — N, antennas
can be given as

C, = logy det(I+ P,02R; LH, ;H )
= log, det(I + P o, D, LH, HY ),

U,w

(14)
where D,, , = Ry, ., /v, is a diagonal matrix and its diagonal
element d; is 1+ (1—ay,) P, ||hyjl, j € {1,2,..., N, — N, },
and h, ; denotes the 4" row vector of H,.. According to (20),
when (n+1)(n < Ny — N, + N,) antennas have been deleted
based on the QAG algorithm, the achievable capacity with
such candidate antennas can be expressed as
Crpt1 = logy det(I+ o, P, D, 1 H, ,  HE L)

=log, det(I+ a, P,HY, D1 H, 1),  (15)
where

1
H
- rhr,n+1 h’f,’ﬂJrl .

n+1
(16)

H -1 _ H -1
HT7”+1Dn+1HT7n+1 - Hr,nDn H,,

According to the lemma of matrix determinant
A + uv?| = |A|(1 + vFA"'u), (21) can be rephrased
as

H —1 h7'»n+1h7“Hn+1
Crnt1 = logy det[I+ P, (H;, D, "H, ;, — ————)

ﬂn+1

dn+1

where B,41 = hyn1(I + P, HY, DJ'H, )" 'hE ).
For the notational simplicity, we define B, I+
PuaquanlHnn)’l. From (23), we can see that max-
imizing C, ,(H,,) is equivalent to minimizing log, |1 +
auPu%L Consequently, the optimization problem can be
rewritten as

dn+1

= Cypn —logy |1 + a, Py l, 17

ﬂnJrl

arg min log, |1 + ay, Py
dn+1

. (18)

The expression (18) represents the system capacity loss caused
by removing the (n+1)*" candidate antenna, and d,, | ; refers
to the effect of the quantization error. It can be concluded
that maximizing C, ,y; after one antenna being deleted
can be converted to deleting the antenna with the minimal
Brt1/dnt1-

In this way, the antenna with the least contribution in
enhancing the system capacity is deleted one by one until
there are only (N, — N,) antennas left. It can be seen that both
the channel gain and quantization error are considered in the
proposed QAG-AS algorithm, and enhanced system capacity
can be obtained for practical massive MIMO systems. The
detail procedure to select the optimal antennas for the uplink
transmission is summarized in Algorithm 1.

IV. TAS FOR DOWNLINK TRANSMISSION BASED ON GS

In this section, the selection of transmit antennas in the
downlink phase is investigated under the consideration of
limited-resolution ADCs/DACs. It is assumed that the BS
is equipped with N; RF chains, N, candidate antennas
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Algorithm 1 AS for the Uplink Transmission at the BS Based
on QAG-SMV Scheme

1: Initialization: let H, , = H(1 : N,,:) and H, = H(N,+
1: Ny,

2: Compute Q = HH;; and search the element Qi,j’ i€
{No+1,No+2,--- N}, 5 €{1,2,--- ,N,}, with the
maximal modulus.

3: if [Q, ;| > 1, exchange the i'" row with the j** row by
T =H(i,:), H(i,:) = H(j,:) and H(j,:) = T.

4: Return to step 2 until |Q; ;| < 1.

5: Obtain the first N, antennas by H,, 4 = H(1 : N,,:).

6: Initialize B = (I + o, P,H/D;H,)"" and the
candidate set w = {1,2,--- , Ny — N, }.

7: Compute all the channel gain of each antenna 3, =
|H,(k,:)||” and quantization error dj = 1 + (1 —
o) Py |[H, (K, 2)||?, where k € w.

8: Obtain the index k*of the candidate antenna contributing
the least by k* = arg min G /dy.

9: Delete the k™ antenna from the set w and remove the k™
row from H,..

10: Compute a =

7]3?:(16*’:) , update B = B + aa’’.
afpu —Brx

11: Update 8; by By, = B + [H,(k*,:)a|*.
12: Return to step 7 and repeat until only (N, — N,.) antennas
are left.

13: Output the selected antennas by Hy = [Hﬁ“b}
,

and limited-resolution ADCs/DACs, while the N, users
are equipped with single antenna and infinite resolution
ADCs/DACs. To reduce power consumption, it is supposed
that N; of N, antennas are used to transmit signals. It is
known that the computational complexity of the optimal TAS
is considerably high due to the exhaustive search. Therefore,
a GS AS algorithm is proposed to reduce the resultant
complexity.

A. The Formulation of AS to Maximizing Downlink Capacity

For the N, selected antennas, while denoting the corre-
sponding channel as H, the downlink capacity can be shown
as

Cq = log, det(I + o3 PyR; ' H, W, WEHY), (19)

where W is a precoding matrix to encode the data before
being transmitted.

Accordingly, selecting the optimal [V, antennas to maximize
the system capacity can be formulated as

arg max Cy

Ny
LY Vii=N, (20)
=1

where V;; € {0,1} is the i*" diagonal entry of the matrix
V € CNexNo V is a diagonal matrix, denoting the selected
antennas. Consequently, when AS has been applied, the
channel matrix can be shown as H; = HV.
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B. AS Algorithm Based on the GS Concept

As antennas contribute unequally in enhancing system
capacity for real propagation channels [17], selecting the
antennas that contribute the most by the GS technology can
effectively improve system capacity and can reduce power
consumption as well.

When all red the transmit antennas are considered, the
downlink channel can be denoted as H = [hy,hy,--- ,hp,],
which consists of IV, column vectors. For the channel matrix
H, each column represents a transmit antenna. While letting
hy = [hig,hio,-- hin ] s i € {1,2,- Ny}, by, § o€
{1,2,---,N,} represent the channel coefficient from the i*"
transmit antenna at the BS to the j** user. According to the
channel H, the corresponding gain can be obtained, which is

shown as

hia? o haof* o oy,
o1 |hopl* ... fhon, [

G= . . . . 2D
lhn,1l* |y, 2l? lhn, ., 2

To obtain the system capacity as large as possible, the
Ny, antennas are classified into N,, groups equally depending
on their contribution to the users. Specifically, for antenna ¢,
compare |hy ;|?, |ho;|%, -+, |y, i|?, if the value of |h ;|2
ke {1,2,---,N,} is the largest, antenna ¢ should be assigned
to user k. Meanwhile, if there are already N, /N, antennas for
user k, the user with the second largest gain is considered, and
so on until every user has N, /N,, antennas.

Then, for each group of the antennas, the users measure
the contribution in enhancing system capacity that each
antenna can provide for the assigned user independently
based on (22).

’

137 —H
Cij =logy |1+ aj PR JH; W, ;WITH, ;| (22)

J
where H; ; represents the channel from the antenna i in group
J to user j, W, ; is a precoding vector, and R; jl is the noise
covariance, which can be given by

H
1,77

Ri)j =1 + ad(l — Ozd)Puﬁi’joﬁ (23)

where W; is the j'" diagonal entry of matrix (WW#). For
each group of antennas, the N;/N,, antennas contributing most
are selected.

In this way, the /V; antennas contributing most are selected.
The detail procedure to select the optimal antennas for the
downlink transmission is summarized in Algorithm 2.

V. EXTENSION TO THE SCENARIOS WITH
MULTI-ANTENNA USERS

When the scenarios with multi-antenna served users are
considered, without loss of generality, it is assumed that each
user has the same number of antennas, and it is denoted
as m. Then, the channel matrix H from the N, users to
the BS can be rewritten as H = [H;,Hs,--- ,HNb]T €
CNoxmNu where H; € CNo*™ € {1,2,---, N,}. Itis also
assumed that each element of H is i.i.d with the parameter of
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Algorithm 2 AS Algorithm Base on Grouping
1: Input Ny, Ny, N; and H.
2: Initiate the N, antenna groups by G; = 0, i €
{1,2,---,N,} and the selected antenna set by @ = ().

3: fort=1: Ny do

4 Q=]]

5. forj=1:N, do

o Q=0 |l

7:  end

8 [va,in ] = max(Q).

9: if (length(G;,) < Ny/Ny)

10: Gin = [Gzn Z]

11: else

12: Q(va,in) = —inf, goto step 8.

13: end

14: end

15: Based on (22), select N;/N, antennas with the most
contribution from each antenna group, and obtain the total
N; antennas.

: Output the selected antennas.

[=))

CN(0,0?). As our task is to select the optimal antennas of
the BS to transmit or receive signals for maximizing system
capacity, the considered issue is the CSI from the antennas
of the BS to the antennas of the users whether the served
users are equipped with single antenna or multiple antennas.
Hence, the AS schemes proposed for single-antenna users are
still available. The only difference is that the dimension of
the channel matrix increases, and hence the computational
complexity increases accordingly.

To reduce the computational complexity of the proposed
AS schemes under the consideration of multi-antenna users,
aggregating the channel gains of each user may be available.
For the it" user, the channel matrix H; € C™*Ne can be
rewritten as H; = [H; 1, H;2,--- ,Hl-be]T. Hence, h;, =
|H; 1|+|H; 2|+ - -+|H; n,| can be used for the proposed AS
schemes to represent the channel from user ¢ to the BS. In this
way, the dimension of the channel matrix is the same with
that of the single-antenna user scenarios, and the proposed
AS schemes can be applied directly.

VI. SIMULATION RESULTS AND
COMPLEXITY ANALYSIS

In order to show the superior performance of the proposed
AS schemes in both enhancing system capacity and reducing
computational complexity, simulation results with different
settings and complexity analysis are presented in this section.
For the two near-optimal AS schemes, decremental AS in
the uplink transmission [29] and the LS in the downlink
transmission [27], their achievable system capacities are also
presented for the sake of comparison. Meanwhile, the random
AS and QAG schemes are also presented to highlight the
enhanced performance in system capacity when optimization
strategies are adopted.
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Fig. 1.  The average achievable capacity of uplink versus the increasing
number of selected antennas when Ny, = 130, N,, = 10 and P,, = 3 dB are
set.

A. The Evaluation of the Proposed RAS Scheme in Uplink
Phase

In the uplink transmission, as the capacity of each user
is usually unequal, the total average achievable capacity is
used to show the performance of the proposed scheme in
enhancing system capacity. In the simulations, Nakagami-
m channel model is considered. As the distances from the
candidate antennas to all the users are the same, the coefficient
of path-loss fading is set as f = 1. The total number of
candidate antennas is set as N, = 130, and the number of
users is set as N, = 10. Without loss of generality, it is
supposed that the transmit power of all the users are equal,
and P, = 3 dB is set.

To highlight the performance of our proposed QAG-SMV
RAS scheme under the consideration of limited-resolution
of ADCs/DACs, the near-optimal decremental AS scheme,
the QAG-AS strategy without SMV and the random AS
scheme without optimization consideration, are also simulated.
The average achievable capacities with the increasing number
of receive antennas are shown in Fig. 1, from which we
can see the following results. Firstly, the average achievable
capacities increase monotonously with the number of receive
antennas for all the RAS algorithms, but the increasing rates
decrease gradually when the number of selected antennas
become more and more. Hence, increasing receive antennas
is beneficial to enhance system capacity, but these antennas
contribute to enhancing system capacity unequally. Therefore,
for massive MIMO systems, selecting the antennas with the
most contribution is an effective way to maintain high capacity
with less hardware cost and power consumption. Secondly, the
proposed QAG-SMV RAS algorithm is superior to all the other
algorithms except for the QAG-AS scheme with N, > 58°.
The reason is that both quantization error and channel gains are
considered in the QAG-SMV RAS algorithm. Consequently,
it can be concluded that the SMV method can be used to
improve average achievable capacity when QAG RAS scheme
is employed.

SIn fact, its average achievable capacity is still a bit greater than that of
QAG-AS, which can be seen more clearly when Fig. 1 is enlarged.
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Fig. 2. The average achievable capacity of uplink versus the transmit power
when N, = 128, N, = 24, N,, = 10, b, = 3 bit is set.

To show the performance in enhancing system capacity
with different transmit power, the relationship between average
achievable capacity and transmit power is simulated, which
is shown in Fig. 2. From the simulation results, it can be
observed that the average achievable capacities of all the
RAS algorithms increase monotonously with the increasing
of transmit power, but the growth rates slow down gradually
when transmit power becomes more and more. Accordingly,
there may be an optimal value of the transmit power when
energy efficiency is considered. It may be one of our research
points in the future, and hence it is omitted here. Meanwhile,
it also can be seen that the average achievable capacity with
the proposed RAS scheme is always the highest one, especially
in the case with high transmit power.

The average achievable capacities with the increasing
number of the served users are presented in Fig. 3, from
which we can see that, for all of the RAS schemes, their
average achievable capacities always increase with the number
of users, while the performance of the proposed RAS strategy
QAG-SMV is always better compared to other algorithms,
especially under the scenarios with many users. As the impact
of the low-resolution ADCs/DACs is considered during AS
in the proposed RAS scheme, the most appropriate antennas
beneficial to obtain high system capacity are selected out via
jointly considering both the channel gains and the interference
among users. Hence, the served users is more, the superiority
in enhancing average achievable capacity is more obvious.

To insight the impact of the resolution ratio of ADCs on
the system capacity in the unlink transmission, the simulation
results of average achievable capacities with the increasing
number of quantization bits of ADCs are presented, which are
shown in Fig. 4. It can be seen that increasing the resolution
of ADC:s is beneficial to enhance average achievable capacity.
When the number of quantization bits varies from 2 bits to
5 bits, the achievable capacity increases rapidly. Nevertheless,
the increasing ratios slow down with the incrementing trend of
b, from 5 bits to 7 bits, and the achievable capacities almost
keep constant after 7 bits. There is a pronounced increase
in the average achievable capacities with the increasing b,
when b, is less than or equal to 7 for all AS algorithms,
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while the average secrecy capacities no longer increase when
b, exceeds 8. Therefore, it is reasonable and advantageous
to adopt low-resolution ADCs in the practical deployment
of massive MIMO systems since the use of high-resolution
ADCs will cause excessive power consumption and hardware
complexity.

B. Simulation With the Proposed TAS Scheme in the
Downlink Phase

In the downlink transmission, the BS selects the /V; antennas
contributing most from the candidates based on the obtained
CSI, and the performance in average achievable capacity of
each user with varying parameters are evaluated. Meanwhile,
the similar existing algorithms on GS TAS selection are also
simulated for the sake of comparison.

The average achievable capacity versus the increasing
number of the selected transmit antennas with the proposed
TAS strategy is presented in Fig. 5, where the classic TAS
schemes, such as the random TAS, the decremental TAS and
the LS TAS, are also presented for the sake of contrast.
From the simulation results, it can be seen that the average
achievable capacities of all the TAS algorithms increase
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monotonously with the number of the selected transmit
antennas, while the proposed scheme outperforms all the
existing strategies in average achievable capacity. Though the
grouping method is also used in LS TAS scheme, its average
achievable capacity is lower than that of GS TAS scheme. The
reason is that the antenna contribution in enhancing system
capacity is considered in the GS TAS scheme when grouping
is carried out at the first stage, while the antennas are grouped
randomly in the LS TAS scheme. The simulation results are
consistent with the theoretical analysis.

The average achievable capacity with the increasing total
transmit power at the BS is presented in Fig. 6, where
N, = 160, N; = 30, N, = 10 and b; = 3 bits are set.
From the simulation results, it can be seen that the average
achievable capacity of all the TAS algorithms increases with
the total transmit power at the BS, and the proposed GS AS
scheme outperforms all other algorithms. The reason is that
the resolution of ADCs/DACs is considered in transmit AS.

The average achievable capacity with the increasing bits of
quantization in DACs is shown in Fig. 7. From the simulation
results, it can be observed that increasing the quantization bit
bg will lead great enhancement in average achievable capacity
firstly, and the growth rates slow down since the quantization
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bit is set as by = 6. Finally, this almost keeps constant
after by = 9. This phenomenon is similar to the case in the
uplink transmission, while the increasing rate in achievable
capacity is smaller. The reason is that the quantization error
is amplified and transmitted to the users, which probably
leads to more additive noise. On the contrary, in the uplink
transmission, the quantization error of the limited-resolution
ADCs occurs at the receiver and the sampled signals are not
transmitted anymore. Hence, the impact of quantization bits
on average achievable capacity is greater in the downlink
transmission compared to the uplink one. Compared to the
existing counterpart strategies, the simulation results show
that the proposed GS-RAS scheme can obtain larger average
achievable capacity when the resolution of ADCs/DACs is
considered.

C. Complexity Analysis

For the proposed AS schemes, to insight the performance
in real time, the computational complexity and convergence
are analyzed in this subsection. Among the three considered
AS algorithms in the aforementioned section, for the QAG
algorithm, as the noise covariance matrix is not diagonal, it
is not applicable to the downlink transmission with limited-
resolution DACs, and hence its complexity analysis is not
presented here.

From Algorithm 1 it can be seen that, for the proposed QAG-
SMV AS scheme, the main operation in the first stage is spent
on computing Q = HH;’; when the selected antenna set
H,, 4 is being updated, and so its complexity is N A4+ NN,
For the worst case, N, X N, cycles are required to obtain
the optimal first N, antennas. In the second stage, N, — N,
cycles are needed and the most running time is spent on the
inversion operation of the noise covariance matrix, which is
usually time-consuming. Fortunately, its complexity has been
decreased greatly due to the reduced number of candidate
antennas after the SMV algorithm has been carried out in
the first stage. As the number of cycles are dependent on the
number of the candidate antennas, which is constant for a
given massive MIMO system, Algorithm I converges. For
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TABLE II
COMPLEXITY COMPARISON FOR AS ALGORITHMS

AS algorithm

Total operation times

Computational complexity

GS 3NpNy + 3N, Ny /Ny,

O(NpNy,)

Nu® + 4Ny Ny? 4+ Nu* + Ny N3 + 2Ny Ny — 2N, 2+

AG-SMV O((Np — Ny)3
Q 2(Ny = Nu)?Nu + (Ny = Nu)® + (Ny = No)(Np — Ny + 2Ny No) (N = M)
QAG NyNu(2Np + Ny + 2) + N3 + Ny + (Ny — N2 ) (N + 2N, 2 + 2N, Ny,) O(N?)
2 4 2
LS NyNy + Np? /Ny + Nu* + Ny *Ne+ O(TyNu2 N, (Ny — Ny))

Ts(Np — Np)(2Nu? + 2Ny Ny + Ny + Nu® Ny + Ny + N;.2)

Decremental AS

Nu3 +NbNu2 + (Nb - N'r)(NbNu2 + NbNu + Nb + 2Nu2)

O(NyN,2(Ny, — N;))

the AS algorithm based on QAG without SMV, though its
main operations are also spent on the inversion of the noise
covariance matrix, the dimension of the matrix is Ny X Ny,
which is much larger than that of the proposed scheme.
Consequently, the computational complexity of the QAG-SMV
AS scheme is less compared to the QAG scheme without SMV.

For the proposed scheme GS-AS of the downlink
transmission, the main computing operation is spent on
the following two aspects: (a) classifying the NV, antennas
into N, groups depending on their contributions to the
system capacity, (b) searching the N;/N,, antennas with the
largest contribution from each group when the resolution of
ADCs/DACs is considered. The total operation times can
be shown as 2NN, + 3NN, /N,. For the existing LS-
AS algorithm, though the grouping method is also exploited
to select the appropriate antennas, it is different from the
proposed GS-AS scheme in two aspects: random method was
used to group the antennas uniformly and the L-swapping
method was exploited to select the N,./N,, antennas from each
group via the iterative swapping technique. Hence, the main
complexity of the LS-AS algorithm depends on the inversion
operation of the matrix in each iterative swapping phase, which
can be presented as T,N,’N,(N, — N,.), where T, is the
number of iterations. On the other hand, for given N, and
Ny, Ny cycles are needed to classify the candidate antennas
into N;/N, groups, and each user only needs N;/N,, cycles to
select the optimal N, /N,, antennas. Consequently, Algorithm 2
converges.

For the decremental AS algorithm, as its main operation is
spent on removing N, — IV, antennas from the N, candidate
antennas according to their contributions in enhancing system
capacity. In this algorithm, no inversion operations of matrix
are involved, and so its complexity is lower compared to
QAG-SMV. However, quantization error is not considered
in such algorithms. The complexity of the decremental AS
algorithm can be shown as N,(N, — Nr)Nb2. To facilitate
the comparison, the computational complexity of these AS
algorithms is summarized in Table II.

To further validate the real-time performance of the
proposed AS schemes, simulation results on computational
complexity with varying N, and N, are presented. Without
loss of generality, it is assumed that the addition between two
real numbers is equivalent to 1 FLOP, and the multiplication of
two real numbers is equivalent to 4 additions. Meanwhile, the
comparison operation between two real numbers is equivalent
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Fig. 8. Complexity versus the selected antenna number and the number of
users, respectively.

to 1 addition, and solving the square root of a real number
and division between two real numbers are both equivalent to
1 multiplication between two real numbers. The impact of the
selected number of antennas [V, on the complexity is shown
in Fig. 8 (a), from which it can be seen that the complexity of
the GS-AS scheme does not vary with the increasing of NV,
while there is a slight decrease for QAG-SMV and the QAG
without SMV algorithm. The reason is owing to the fact that
their maximum complexity are proportional to (N, — N, )? and
Nb3, which depends on Ny, instead of N,.. For the decremental
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AS algorithm, the complexity decreases with the increasing
number of the selected antennas due to the fact that the
decremental algorithms eliminate antennas successively until
only [V, antennas are remaining. Interestingly, the complexity
of the LS algorithm is shown as a convex function of N,,
which increases with N, when N, < 90, and decreases
with N, when N, > 90. Fig. 8 (b) depicts the complexity
with the increasing number of users N,. It is shown that
the complexity increases with the increasing N, for the LS
algorithm and the decremental AS algorithm, and the growth
rate of complexity in the LS algorithm is significantly greater
compared to the decremental algorithms when N, becomes
increasingly larger. The complexity of the QAG-SMV scheme
and the QAG algorithm without SMV slightly increases with
N,, and the complexity of QAG-SMV algorithm surpasses
the QAG algorithm without SMV when N, > 18, while
the number of users is usually not too big in the considered
system. All these results are consistent with the theoretical
analysis on computational complexity.

D. Evaluation of the Scenarios With Multi-Antenna Users

To validate the availability of the proposed schemes for the
scenarios with multi-antenna users, some simulation results are
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presented here. In the simulation, it is assumed that each user
have four antennas, and the other settings are the same with
single-antenna scenarios. The total achievable capacities in
the uplink and the downlink transmission with the increasing
number of the selected antennas are shown in Fig. 9 and
Fig. 10, respectively.

From the simulation results, it can be seen that, similar to
the scenarios with single-antenna served users, the proposed
schemes outperform other existing strategies in the achievable
system capacity in both the uplink and downlink phase when
the resolution of ADCs/DACs are considered. Meanwhile,
it also can be observed that the achievable system capacities
are greater than that of the single-antenna served users while
the total transmit power is the same.

VII. CONCLUSION

In this paper, we have investigated the effect of ADCs/DACs
resolution on the average achievable capacity of massive
MIMO systems when AS schemes are designed in Nakagami-
m fading scenarios. Based on the AQMN model, the closed
form expression of average achievable capacity has been
derived, which is utilized to analyze the quantization noise
caused by the limited-resolution ADCs/DACs. We have
proposed two novel AS schemes for the uplink and
downlink transmissions. Numerical simulation results have
been presented to validate the performance of the proposed AS
schemes. Compared to the existing strategies, such as random
AS, decremental AS, QAD-AS and LS-AS, our proposed
schemes QAG-SMV AS and GS-AS have larger achievable
capacity in all the scenarios with the varying transmit power,
the number of served users and the quantization bits of
ADCs/DACs. Meanwhile, we also find that the impact of
ADCs/DACs resolution is also dependent on the transmit
power and channel fading. As the proposed AS schemes
in this paper are aimed at enhancing system achievable
capacity without considering the fairness among users, we will
investigate this issue in our future research.
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