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Abstract—In this paper, we compare the performance of
three different massive multiple-input-multiple-output (MIMO)
channel models using key statistical properties and performance
metrics such as channel correlation and capacity, respectively.
The channel models studied belong to the widely-used class
of geometry-based stochastic models (GBSMs). In addition, we
study the influence of the elevation angles and the von Mises
k-factor (angular spread) on the channel capacity predicted by
two three-dimensional (3-D) GBSMs employing spherical and
parabolic wavefronts, respectively. Finally, we present simulation
results comparing the channel correlation of the three models
and demonstrate the potential impact of the elevation angles and
k-factor on the massive MIMO channel capacity.

I. INTRODUCTION

Nowadays, one of the most successful technologies is the
wireless communication technology, due to the fact that wire-
less traffic has increased with an exponential rate over a cen-
tury [1]. As an emerging technology, massive MIMO greatly
scales up the magnitude of conventional MIMO compared to
current state-of-art [2]. It can greatly enhance the efficiency
of both the spectrum and energy versus conventional MIMO
system [3].

To better analyze the performance and capability of a
real massive MIMO system, accurate and efficient small-
scale fading channel models are reqiured [4]. MIMO channel
models are usually sorted into two kinds: correlation-based
stochastic models (CBSMs) and GBSMs [3]. Among them,
conventional MIMO GBSMs include the one-ring model,
double-ring model, and ellipse model [5], [6]. In the past,
conventional two-dimensional (2-D) and 3-D MIMO channel
models were proposed. In [7] a multiple 2-D circular-ring
GBSM was employed to model cooperative MIMO systems. In
[8] and [9], the cylindrical geometry was studied to model 3-D
MIMO channel properties. A combined approach was used in
[10] and [11] where the ellipse and two-ring models were
employed to study MIMO vehicular communication systems.

In recent years, for better describing the characteristics
of massive MIMO channels, such as the so-called near-field
effects, a number of GBSMs were proposed. A 2-D ellipse
model [4] for massive MIMO channels was proposed. In this
model spherical instead of plane wavefronts were employed
to capture non-stationary properties of the channel. On the
other hand, a 3-D twin-cluster massive MIMO channel model
[12] was proposed, which abstracted the complex scattering
conditions as a virtual connection between the first and last

bounce of the propagation path. In [13], the performances
of the above two models were compared. Moreover, in [14],
authors proposed a new 3-D broadband parabolic wavefront
model, which was able to capture near-field effects through
a second-order wavefront with lower complexity as compared
to that of the spherical wavefront. Other new characteristics
found in recent measurements such as cluster evolution [15],
[16], were considered in all these models.

Although in [4], [12], [14], the authors have already studied
the statistical properties of the above-mentioned models, chan-
nel capacities predicted by these have not been investigated
yet.

The reminder of this paper is organized as follows. Section
II presents the 2-D ellipse model, 3-D twin-cluster model, and
3-D parabolic wavefront model for massive MIMO channels.
Results and discussions are presented in Section III. Section
IV concludes this paper.

II. THREE MASSIVE MIMO CHANNEL MODELS

A. 2-D Ellipse Model

In Fig. 1, the 2D broadband ellipse model is depicted in-
cluding the spherical wavefront effect and the (dis)appearance
of clusters over the array. A uniform linear array (ULA) with
NT (NR) equally spaced omnidirectional antenna elements
at the transmitter (receiver) side is employed. The spacing
between antennas is δT and δR. The receiver and transmitter
antenna arrays are at a distance of 2f where f is the focal
length of these confocal ellipses and their location are the
focal points. The transmit antenna l is denoted as ATl and the
receive antenna k is denoted as ARk . Cluster n exists on the
ellipse n, corresponding to the major axis of length 2an. The
angle βT (βR) denotes the transmit (receive) tilt angle and αv
denotes the angle between the motion direction of the receiver
and the x-axis. The carrier wavelength is λ. The maximum
Doppler frequency is fmax.

Let CTl (CRk ) denote a collection of clusters which can be
observed by ATl (ARk ). Birth-death processes are used to model
the generation of CTl and CRk . In addition, let Ntotal denote
the sum of the clusters which can be observed by one or more
antennas at transmitter side and receiver side. Here, Ntotal is
given by [12]

Ntotal = card

(
NT⋃
l=1

NR⋃
k=1

(
CTl (t)

⋂
CRk (t)

))
(1)
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TABLE I
MAIN PARAMETERS OF THE 2-D ELLIPSE MODEL.

Parameter Definition
δT (δR) transmit (receive) antenna spacing
NT (NR) number of transmit (receive) antennas
βT (βR) transmit (receive) title angles
fmax maximum Doppler frequency
λ wavelength of the carrier

ATl , A
R
k antenna l at th transmitter, antenna k at the receiver

fLOSkl Doppler frequency of the LOS path from transmit antenna l to receive antenna k
fn,i Doppler frequency of cluster n via the path i
ϕLOSkl phase of the LOS path from transmit antenna l to receive antenna k
ϕkl,n,i phase of cluster n between transmit antenna l and receive antenna k via the path i

Fig. 1. 2-D ellipse model [4].

where card(·) represents the cardinality of a collection set.
If and only if Clustern ∈

{
CTl
⋂
CRk
}

, we can say cluster,
Clustern(n 6 Ntotal), is observed by both ATl and ARk .

According to the analysis above mentioned and the sum-
mary of main parameters in Table I, the channel can
be modeled as an NR × NT complex matrix H(t, τ) =
[hkl(t, τ)]NR×NT

, where k = 1, 2, · · · , NR and l =
1, 2, · · · , NT .

The power of cluster n is denoted as Pn and one cluster
counts on S subpaths or rays. The angle of arrival of the i-
th path in the n-th cluster is αRn,i with respect to the center
of the receiving array and αTn,i with respect to the center of
the transimiting array. The parameter K denotes the Rician
factor. When S →∞, the channel impulse response (CIR) of
the theoretical model hkl(t, τ) between ATl and ARk at delay
τ can be obtained as

hkl(t, τ) =

Ntotal∑
n=1

hkl,n(t)δ(τ − τn) (2)

where we model the channel gain hkl,n(t) of Clustern as

-if Clustern ∈
{
CTl
⋂
CRk
}

,

hkl,n(t) = δ(n− 1)

√
K

K + 1
ej(2πf

LOS
kl t+ϕLOS

kl )︸ ︷︷ ︸
LOS

+

√
Pn

K + 1
lim
S→∞

1√
S

S∑
i=1

ej(2πfn,it+ϕkl,n,i)

︸ ︷︷ ︸
NLOS

(3)

-if Clustern /∈
{
CTl
⋂
CRk
}

,

hkl,n(t) = 0. (4)

In [4], details of parameter calculations in Table I can be
found.

B. 3-D Twin-Cluster Model

In the 3D twin-cluster model depicted in Fig. 2, only the
first and last-bounce clusters are modeled and the propagation
between them is abstracted as a virtual link. Ntotal denotes
the sum of clusters in a twin-cluster channel model, and
each cluster, Clustern(n = 1, · · · , Ntotal) consists of two
representations, ClusterTn at the transmitter representing the
first bounce and ClusterRn at the receiver side representing
the last bounce. A virtual connection is modeled as the
communication environment between the two delegates.

ULAs of NT and NR antennas are equiped at both sides.
The antenna spacing is δT at the transmit array and δR at
the receive array. Then, let the LOS Rician factor be K, the
maximum Doppler frequency be fmax, and the transmit signal
starts at the phase of ϕ0. In addition, suppose that the power
of cluster n is Pn and there are S1 and S2 paths within
the representation at the transmitter and receiver. According
to the analysis above and the summary of main parameters
definitions in Table II, the channel matrix will be denoted as
an NR × NT complex matrix H(t, τ) = [hkl(t, τ)]NR×NT

where k = 1, 2, · · · , NR and l = 1, 2, · · · , NT . The complex
CIR hkl(t, τ) from transmit antenna l to receive antenna k
where the time is t and delay is τ , can be calculated as

hkl(t, τ) =

Ntotal∑
n=1

hkl,n(t)δ(τ − τn(t)) (5)



TABLE II
MAIN PARAMETERS OF THE 3-D TWIN-CLUSTER MODEL.

Parameter Definition
vRE receive elevation angles
vTE transmit elevation angles
vRA receive azimuth angles
vTA transmit azimuth angles
ξRn,i1 receive elevation angles of the path i1 and cluster n
θRn,i1 receive azimuth angles of the path i1 and cluster n
ξTn,i2 transmit elevation angles of the path i2 and cluster n
θTn,i2 transmit azimuth angles of the path i2 and cluster n

Fig. 2. 3-D twin-cluster model [12].

-if Clustern ∈
{
CTl (t)

⋂
CRk (t)

}
,

hkl,n(t) = δ(n− 1)

√
K

K + 1
ej(2πf

LOS
kl t+ϕLOS

kl )︸ ︷︷ ︸
LOS

+

√
Pn

K + 1
lim

S1,S2→∞

S1∑
i1=1

S2∑
i2=1

ej(2πfkn,it+ϕkl,n,i1i2
)

√
S1S2︸ ︷︷ ︸

NLOS

(6)

-if Clustern /∈
{
CTl (t)

⋂
CRk (t)

}
hkl,n(t) = 0. (7)

In [12], details of parameter calculations in Table II can be
found.

C. 3-D Parabolic Wavefront Model

Next, as depicted in Fig. 3, we consider a channel model
in a 3-D space where the base station (BS) or transmitter
is equipped with a ULA of NT antennas which are equally
spaced by δT and oriented by the elevation and azimuth angles
βT and αT , respectively. The receiver or the mobile station
(MS) is similarly equipped with NR δR-spaced antennas

oriented by the elevation and azimuth angles βR and αR,
respectively. ATp and ARq denote the transmit antenna p and
the receive antenna q. Furthermore, the MS is moving at a
constant speed denoted as vR. Its moving direction is modeled
by the elevation and azimuth angles ζR and ξR, respectively.
The receive signal at the MS consists of the LOS components
and the scattered components via CS single-bounce clusters
(SBCs) and CM multiple-bounce clusters (MBCs).

The channel matrix is denoted as H(t, τ) =
[hpq(t, τ)]NR×NT

for p = 1, 2, · · · , NT and q = 1, 2, · · · , NR.
The CIR hqp(t, τ) consists of the LOS, SBC, and MBC
elements, which can be obtained as

hqp(t, τ) = hLqp(t)δ(τ − τL) +

CS∑
c=1

hSBqp,c(t)δ(τ − τSBc )

+

CM∑
c=1

hMB
qp,c (t)δ(τ − τMB

c ) (8)

where LOS, SBC, and MBC components are shown in
the superscripts. The propagation delays τL, τSBc , and τMB

c

are geometrically calculated as τL = rL/c0, τ
SB
c = (rST

c +
rSR
c )/c0, and τMB

c = (rMT
c +rMR

c )/c0+τV L, with c0 denoting
the speed of light and τV L denoting the delay of the virtual
link. The delay τV L is a random variable uniformly distributed
over the interval (τL, τmax], with τmax denoting the maximum
delay of the virtual connection [12]

Furthermore, the LOS, SBC, and MBC elements are ob-
tained as

hLqp(t) =
√
PLqp(t)e

jk0D
L
qp(t) (9)

hSBqp,c(t) =
√
PSBqp,c(t) lim

Ic→∞

Ic∑
i=1

ac,ie
−j(k0DSB

qp,c,i(t)−ΘSB
c,i )

(10)

hMB
qp,c (t) =

√
PMB
qp,c (t)

× lim
Mc→∞
Nc→∞

Mc,Nc∑
m=1
n=1

ac,mne
−j(k0DMB

qp,c,mn(t)−ΘMB
c,mn) (11)

where k0 = 2π/λ, ΘSB
c,i and ΘMB

c,mn, which are i.i.d. random
variables with uniform distribution over the interval (0, 2π],



Fig. 3. 3-D parabolic wavefront model [14].

TABLE III
MAIN PARAMETERS OF THE 3-D PARABOLIC WAVEFRONT MODEL.

Parameter Definition
δT , δR transmit antenna spacing, receive antenna spacing

r
ST (R)
c , R

MT (R)

C Distances from the transmitter (receiver) center to C
ST (R)

C and C
MT (R)

C

D
ST
p,c,i(t), D

SR
q,c,i(t) Distances from ATp to CST

c,u and from ARq to CSR
c,i

D
MT
p,c,m(t), D

MR
q,c,n(t) Distances from ATp to CMT

c,m and from ARq to CMR
c,n

rL Distance between the transmitter and receiver
θlc, φ

l
c Elevation and azimuth angles of Clc, where l ∈ {ST , SR,MT ,MR}

θ
ST (R)

c,i , φ
ST (R)

c,i Elevation and azimuth angles of C
ST (R)

c,i

θ
MT (R)

c,m(n)
, φ
MT (R)

c,m(n)
Elevation and azimuth angles of C

MT (R)

c,m(n)

θL, φL Elevation and azimuth angles of the receiver versus the transmitter
ζlc, ξ

l
c Elevation and azimuth angles of the speed of Clc, where l ∈ {ST , SR,MT ,MR}

ζR, ξR Elevation and azimuth angles of the speed vector of the receiver
βT (R), αT (R) Elevation and azimuth orientation angles of the transmitter (receiver)

vlc, vR Speeds of the cluster Clc, where l ∈ {ST , SR,MT ,MR} and speed of the receiver

denote the phase change caused by the scatterers. The path
amplitudes ac,i and ac,mn are subject to E[a2

c,i] = 1/Ic and
E[a2

c,mn] = 1/NcMc, where E[·] denotes the expectation
operator. The processes PLqp(t), P

SB
qp,c(t), P

MB
qp,c (t) denote the

mean powers of the LOS, SBCs, and MBCs components, and
they are space-time variant.

In this model, the distances between the clusters and the
receiver and transmitter are approximated through a second-
order Taylor polynomial that leads to the so-called parabolic
wavefront of reduced complexity. Further details of this model
can be found in [14].

III. RESULTS AND ANALYSIS

The normalized spatial cross correlation function(CCF)
ρkl,k′l′,n(δT , δR, t,∆t) between the channel gains hkl,n(t) and
hk′l′,n(t) is defined as [12]

ρkl,k′l′,n(δT , δR, t,∆t) = E

[
h∗kl,n(t)hk′l′,n(t+ ∆t)

|h∗kl,n(t)||hk′l′,n(t+ ∆t)|

]
(12)

where k, l, k′, l′ represent the indexes of antenna elements
at the transmitter and receiver. n denotes the cluster index.
δT , δR represent the transmit and receive antenna spacing. t
and ∆t denote absolute and relative time (time difference),
respectively.

Assuming the channel experiences slow fading, absolute
values of cluster-level CCF of the 2-D ellipse model, 3-D twin-
cluster model, and 3-D parabolic wavefront wavefront model
for massive MIMO are depicted in Fig. 4. It shows that the
predicted correlation function of the 3-D twin-cluster model
is lower than that of the the 2-D ellipse model. Furthermore,
comparing with above two models, the spatial correlation
of the 3-D parabolic wavefront model is the lowest. The
differences between these 3-D models can be attributed to
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Fig. 4. Comparison of cluster-level spatial CCF of three massive MIMO
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Fig. 5. Capacitiy comparisons for the 3-D twin-cluster model with different
elevation angles of arrival (AoAs) (NR = 8, NT = 32, fc = 2GHz, ||D|| =
100m, vRA = π/4, vTA = π/3, vTE = π/4).

both the wavefront and angular distribution of the scatterers.
Whereas in [13] authors used independent elevation and az-
imuth von Mises distributions, authors in [14] employed a
VMF distribution that jointly models elevation and azimuth
angles.

Assuming slow fading, the channel may remain approxi-
mately constant long enough to allow reliable estimation of
the channel state at the receiver (perfect CSIR) and timely
feedback of this state information to the transmitter (perfect
CSIT). The optimum input covariance matrix that maximizes
ergodic capacity is the scaled identity matrix, i.e., the transmit
power is divided equally among all the transmit antennas.
Thus, the ergodic capacity is given by [17]

C = EH

[
log
∣∣∣∣INR

+
P

NT
HHH

∣∣∣∣] (13)
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Fig. 6. Capacity comparisons for the 3-D parabolic wavefront model with
different von Mises-Fisher (VMF) k-factor values (fc = 2GHz, NT =
100, δT = λ/2, βT = π/2, αT = 0, θµ = 3π/4, φµ = π/3, ζ

MT
c =

π/6, ξ
MT
c = π/6, r

MT
v = 30m, v

MT
c = 5m/s).

where H is the channel matrix. P is the transmit power.
(H) represents the conjugate transpose and Tr(·) represents
the trace. I denotes the identity matrix.

Fig. 5 compares the channel capacities for the 3-D twin-
cluster model with different elevation angles of arrival. When
the elevation angle equals π/2, the channel capacity is much
higher than that of the rest. Furthermore, it can be observed
that the capacities of all other elevation angles are very close
on the low signal-to-noise ratio (SNR) regime, and the capacity
reaches a minimum at the angle π/6. However, in the high
SNR regime, all the capacities of different elevation angles
will differ more.

The channel capacities predicted by the 3-D parabolic
wavefront model with different values of VMF k-factor are
depicted in Fig. 6. In the low SNR regime, the predicted
channel capacity is barely affected by the angular concentra-
tion parameter as noise is the limiting factor. However, in the
high SNR regime, it can be seen that larger values of the k-
factor, i.e., lower angular spreads, reduce the effective channel
capacity due to an increase of spatial correlation.

IV. CONCLUSIONS

In this paper, the channel capacities predicted by three
massive MIMO GBSMs have been studied. An important
effect on the capacities of the massive MIMO channels by
the elevation angles has been demonstrated. The impact of
elevation angles on the channel capacity indicates the im-
portance of accurate 3D models. The differences in channel
correlation between the 3D models studied can be attributed
to both the wavefront considered and the interdependence of
the elevation and azimuth angles. We have also shown that
the models predict correctly the negative effect of the angular
concentration parameter (inversely proportional to the angular
spread) on the channel capacity.
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