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Abstract-An algorithm for implementing higher layer 

synchronization in ECMA-368 networks is being developed within 
the framework of the EUWB research and development project.  
In this paper, we adapt three synchronization algorithms used in 
wireless sensor networks to suit an Ultra Wideband (UWB) 
network and evaluate their performance in order to determine the 
best algorithm for a video streaming application scenario.  We 
also propose some extensions to the ECMA-368 standard that 
would facilitate the implementation of these algorithms. For these 
purposes, we have simulated a UWB beacon group in OPNET. 
We observe that the algorithms that correct for clock drift are 
better suited for implementation in a UWB network. 

I. INTRODUCTION 

Short-range, high-speed wireless connectivity is an emerging 

application in various commercial sectors (including personal 

computing, consumer electronics, and mobile communications), 

especially for real-time multimedia applications such as video 

streaming.  In recent years, Ultra Wideband (UWB) has 

generated huge interest as the technology of choice for such 

applications due to its potential for enabling high data rates, 

advanced Quality of Service (QoS), and low cost systems (due 

to low complexity) [1].  The high data rate ECMA-368 UWB 

standard [2], developed by the WIMEDIA industrial 

consortium, is based on a Multi-Band Orthogonal Frequency-

Division Multiplexing (MB-OFDM) physical (PHY) layer and 

is capable of supporting data rates up to 480 Mbps for a 

distance of up to 3 m.  The maximum transmission range is 10 

m, but this is only typically achievable at the lowest data rate 

of 53.3 Mbps and usually in an ideal operating environment. 

Real-time video streaming is an important application for the 

EUWB research project [3], in which two scenarios are being 

considered: wireless aircraft cabin networks and wireless home 

entertainment systems.  The generic network model for these 

scenarios consists of a video server streaming packets to 

multiple end devices over Ethernet and UWB links, via 

switches and access points, as illustrated in Fig. 1.   

When video packets are transmitted in this way, jitter 

inevitably occurs as a result of variation in end-to-end delays 

experienced by consecutive packets from the same stream.  

This variation, typically caused by factors such as lack of 

transmission opportunity, prioritisation of different streams, 

packet retransmission or the lack of guaranteed bandwidth in 

wireless networks, reduces the QoS of the application at the 

receiver.  A jitter buffer can be used to minimise the effects of 

jitter; however large delay variations require a larger, more 

expensive buffer which ultimately results in the introduction of 

a larger amount of constant latency at the start of the 

application that is unsuitable for real-time streaming. 

Synchronization of the application (higher layer) clocks at 

the sender and receiver can reduce the amount of jitter, thus 

relaxing the size of the jitter buffer and ultimately improving 

the QoS for real-time applications.  Furthermore, when 

streaming applications are multicast to co-located devices (e.g. 

multiple loudspeakers in a home entertainment or wireless 

cabin network), there is an additional QoS requirement for 

synchronized media playback in the entire system.  Higher 

layer clock synchronization is the only way to achieve this, as 

it can take into account the variation in end-to-end packet 

delays experienced at the different devices. 

The ECMA-368 standard defines an optional higher layer 

synchronization mechanism that uses the services provided by 

the Medium Access Control (MAC) layer to accurately 

synchronize timers located in different devices.  It involves the 

multicasting of synchronization frames, containing timing 

information, to devices requiring synchronization.  In addition 

the MAC Layer Management Entity (MLME) is required to 

alert the higher layer whenever such frames are transmitted or 

received in order to achieve synchronization.  

Although the synchronization process is described in [2], the 

actual implementation of the mechanism is beyond the scope 

of the standard.  To the best of the authors’ knowledge, no 

higher layer synchronization algorithms have been proposed in 

the literature for ECMA-368-compliant UWB systems. 

There are two key requirements of the synchronization 

algorithm for the wireless cabin and home entertainment 

application scenarios.  The algorithm must be scalable, such 

Figure 1. Generic network topology. 
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that its application can be extended from a simple beacon 

group of devices to the hybrid wired/ wireless network 

illustrated in Fig. 1.  Secondly, the synchronization accuracy 

must not exceed 100 µsec across the entire network.  In this 

paper, we consider the case of a UWB beacon group. 

The rest of the paper is organized as follows.  We briefly 

describe the key features of the ECMA-368 PHY and MAC 

layers in Section II. The synchronization algorithms and the 

OPNET simulation model are presented in Sections III and IV, 

respectively.  Simulation results are discussed in Section V and 

the paper concludes in Section VI.  

 

II. AN ECMA-368-COMPLIANT UWB SYSTEM 

The 3.1 – 10.6 GHz UWB frequency spectrum is divided 

into 14 bands, each 528 MHz wide.  This band spacing ensures 

that each OFDM symbol fits perfectly within a band.  Three 

mandatory data rates (53.3, 106.7, and 200 Mbps) and five 

optional data rates (80, 160, 320, 400, and 480 Mbps) are 

specified in the ECMA-368 standard.  Time and/ or frequency 

spreading techniques combined with convolutional Forward 

Error Correction (FEC) coding are used to vary the data rates 

and provide a robust signal at low transmitter power levels. 

The MAC layer has a fully distributed architecture that 

supports ad-hoc, peer-to-peer networking.  The channel time is 

divided into periodic intervals, called superframes.  Each 

superframe is further divided into 256 Medium Access Slots 

(MAS), each of 256 µsec duration.  The superframe is also 

split into a beacon period (BP) in which beacon frames are 

transmitted for the purpose of establishing and maintaining the 

network, and a data transfer period.  During the data transfer 

period, devices may transmit their data, using either the 

Distributed Reservation Protocol (DRP) or the Prioritized 

Contention Access (PCA) mechanism.  The start of a 

superframe is the Beacon Period Start Time (BPST) and the set 

of devices that share the same BPST and exchange beacon 

frames during the BP form a beacon group.  

 

III. CLOCK SYNCHRONIZATION  

A. Definition of Terms 

A physical clock is a hardware device that periodically 

counts the oscillations of a crystal or quartz.  After a specified 

number of oscillations, the clock register is incremented by one 

clock-tick, to represent the passing of time.  A software clock 

or virtual clock is simply a transformation of the hardware 

clock.  Hardware clocks do not oscillate at the same frequency 

over time.  The rate at which the frequency changes is termed 

clock drift, and over time it causes the clock reading to 

gradually diverge from the “true” time reported by a standard 

reference time source such as Coordinated Universal Time 

(UTC).  Clock offset is the instantaneous difference between 

the clock’s reading and true time while skew refers to the 

frequency difference between the clock and true time [4].  If a 

clock is compared with another clock rather than with a 

standard time source, these terms become relative offset and 

relative skew, respectively.  Two clocks are said to be 

synchronized if their relative offset is zero.  

B. Classification of Synchronization Algorithms 

Synchronization algorithms can be classified in various ways, 

including master-slave versus peer-to-peer, clock correction 

versus free-running clocks, internal versus external 

synchronization, sender-to-receiver versus receiver-to-receiver, 

and probabilistic versus deterministic algorithms [5]. 

In master-slave protocols, slaves synchronize to the clock of 

a designated master node, while peer-to-peer protocols allow a 

node to synchronize to any other node in the network.  Clock 

correction protocols adjust the clocks after each 

synchronization round whereas in free-running clock protocols 

each node simply maintains a table of relative offsets that 

relates its local clock to other clocks on the network.   Unlike 

internal protocols, external protocols have access to a trusted 

time reference source such as UTC.   Sender-to-receiver 

synchronization is the conventional method in which a receiver 

achieves synchronization with a sender based on the timing 

information it receives from it, while receiver-to-receiver 

protocols perform synchronization between receivers by 

comparing the time at which they receive the same message.  

Lastly, probabilistic protocols provide a guarantee on the 

maximum clock offset permitted in the network, together with 

a failure probability while deterministic techniques guarantee 

an upper bound on the clock offset with certainty. 

Due to the hierarchical nature of the generic network 

illustrated in Fig. 1 and the fact that direct communication 

between devices is not required, a master-slave 

synchronization approach with clock correction would be 

necessary to ensure that all devices on the network are 

synchronized.  For the same reasons a sender-to-receiver 

protocol is implied, although a receiver-to-receiver protocol 

can be implemented provided that the time comparison occurs 

between the sender and receiver, as is the case of the 

Continuous Clock Synchronization protocol developed in [6].  

Furthermore, the algorithm will support internal 

synchronization and use a deterministic approach to guarantee 

the accuracy of the system. 

C. Description of Three Selected Algorithms 

Based on the above reasoning, the Delay Measurement Time 

Synchronization [7] and Continuous Clock Synchronization [6] 

algorithms were selected.  We further consider a Linear Rate 

Synchronization algorithm based on the notion of a virtual 

clock introduced in [6]. 

The Delay Measurement Time Synchronization algorithm 

combines a master’s timestamp with delay measurements, in 

order to achieve synchronization of the slaves. Each slave takes 

two timestamps: one when it receives the preamble of the 

synchronization message, and the other after the message has 

been processed. The difference between these timestamps is a 

measure of the data transfer time plus the processing delay. 

Each slave also estimates the time taken to transmit the 



message preamble. Finally, each slave sets its clock to the sum 

of the master’s timestamp, the data transfer time plus 

processing delay, and the preamble transmission time.  

The Continuous Clock Synchronization algorithm, described 

in [6], uses an advanced rate-adjustment algorithm to spread 

clock correction over a finite interval in order to prevent time 

discontinuity caused by instantaneous clock correction. In this 

way, the local clock time is corrected by gradually increasing 

or decreasing the clock rate. Each node in the network has both 

a physical and virtual clock. In this sense, a virtual clock is 

simply a transformation function that corrects the skew rate of 

a physical clock. For the sake of simplicity, a linear function is 

used and clock correction is achieved by changing the 

parameters of this function after every synchronization round 

so that the slave’s virtual clock matches the master’s physical 

clock as closely as possible. The algorithm assumes that 

message reception is tight, such that a master node receives its 

own broadcast message at approximately the same time as the 

slave nodes [8]. Each synchronization frame contains the time 

at which the master node received the last synchronization 

message sent and by comparing this value with its own 

reception time for the same message, a slave is able to achieve 

synchronization with the master.  

The UWB PCA and DRP data transmission mechanisms do 

not permit any node to receive its own broadcast frame, hence 

adapting the Continuous Clock algorithm to a UWB network 

requires a calculation of the expected reception time at the 

master node.  We estimate the processing delay between the 

synchronization frame being scheduled by the MAC and the 

first symbol being received on-air by the remote device and 

add this to the master’s transmission timestamp in order to 

obtain this value. 

Another possible implementation of synchronization is based 

on a linear-rate function which relates a slave’s clock to the 

master’s clock. The master sends its timestamp to the slaves in 

the form of a command frame every synchronization round and 

each slave records its local clock time when it receives the 

synchronization frame, thus building a table of pair values in 

the form [Mn Sn], where Mn is the local clock time at which the 

master sent the nth synchronization frame and Sn is the local 

time at which the slave received the same frame.  After two 

rounds the slave can calculate the relative skew ξ and relative 

offset σ as follows: 

ξ = (Mn - Mn-1)/ (Sn - Sn-1).   (1) 

σ = Mn –Snξ.     (2) 

These values are then used to update the parameters of its 

virtual clock V which transforms the hardware clock H to 

mimic the behaviour of the master’s clock as in (3). 

V = ξH + σ.     (3) 

 

D. Implementation of Higher Layer Synchronization 

The ECMA-368 standard includes three MLME primitives 

to support the higher layer synchronization function. The 

mlme_hl_sync.request primitive is sent from the higher layer to 

the MAC to initiate the synchronization mechanism, the 

mlme_hl_sync.confirm returns the result of the request, while 

the mlme_hl_sync.indication primitive indicates the 

transmission or reception of a sync frame.  

Since the goal is to synchronize the clocks of higher layer 

protocols which may reside separately from the MAC, it makes 

sense for the MAC to be responsible for implementing the 

synchronization algorithm. The MAC layer can directly access 

the PHY layer clock for the purpose of generating timestamps; 

however since the higher layer clock values are required as 

parameters in the synchronization algorithm, there is a 

requirement for mapping higher layer clock values to PHY 

layer clock values. Furthermore, after synchronization is 

complete there is an additional requirement for transferring the 

clock adjustment to the higher layer. These requirements form 

the basis for our proposed modifications to the ECMA-368 

standard. 

 The means of fulfilling the first requirement depends on 

whether the MAC and higher layer protocol reside on the same 

entity or on separate entities.  If the latter case holds, then the 

higher layer clock values can be transferred to the MAC layer 

using the timestamp field of an empty Real Time Protocol 

(RTP) packet.  In this case, the generation of the RTP packet 

will be triggered by the receipt of the mlme_hl_sync.confirm 

primitive at the higher layer.  However if the MAC and higher 

layer protocol are on the same entity, then the MAC can 

directly access the higher layer clock value by simply reading 

the corresponding register.  In either case the MAC layer reads 

the PHY layer clock value immediately it obtains the higher 

layer clock and then calculates the relative offset between the 

higher layer and PHY layer clocks.  The MAC subsequently 

uses this offset to transform a PHY layer clock reading to the 

corresponding   higher layer value.  We also propose that the 

receipt of an mlme_hl_sync.indication primitive also triggers 

the transfer of the higher layer clock to the MAC via an RTP 

packet. On receipt of this, the MAC again reads the PHY clock 

and subsequently updates the relative offset. This is 

particularly important when a synchronization frame is 

received so that the slave node can transform its PHY layer 

reception timestamp value before clock adjustment 

computations are done. 

Finally, we propose a mlme_hl_clock_update.indication 

primitive for transferring calculated clock adjustments to the 

higher layer. This primitive requires two parameters: offset and 

skew, for updating the parameters of the virtual clock.  

However the skew parameter is set to the default value of unity 

for algorithms such as the Delay Measurement Time algorithm 

that do not correct for drift. 

 

IV. NETWORK SIMULATION IN OPNET 

An OPNET [9] simulation model of the ECMA-368 standard 

has been developed for the purpose of research and 

development of UWB algorithms. Each ECMA-368 node 

consists of source and sink modules responsible for generating 

and consuming packets, respectively, a MAC Interface module 



for performing address resolution, and a simplified ECMA-368 

MAC module. Each node also contains a higher layer clock 

and a PHY layer clock, and both are based on the drifting clock 

model presented in [10].  

The system is assumed to be operating in an active quiescent 

state at the start of each simulation, i.e. operating channels 

have been selected, the nodes are initially synchronized, and a 

beacon group has been formed. Furthermore, hard DRP 

reservations have already been negotiated and the nodes are 

ready to send and receive data over these reservations. 

 

V. SIMULATION RESULTS AND DISCUSSIONS 

A simple two node scenario (AP and device) was simulated. 

The AP acts as the master while the device is the slave, with 

clock drift rates of 0ppm and -20ppm respectively.  The 

synchronization interval is 2.5 sec and the target accuracy is 

100 µsec. The simulation was run for a period of 20 sec and 

the results are provided in Fig. 2. 

As expected, without synchronization the relative clock 

offset between master and slave accumulates linearly, at a rate 

equal to the difference in their clock drifts. After each 

synchronization round, the Delay Measurement Time 

algorithm reduces the clock offset to zero but between rounds 

the offset starts accumulating again. Since the Continuous 

Clock and Linear Rate algorithms correct for clock drift, they 

perform better than the Delay Measurement Time algorithm 

and are able to maintain synchronization within the target 

accuracy for longer periods between synchronization rounds.  

To identify the best algorithm for implementation, we 

consider the effects of packet loss and temperature variation. 

Packet loss results in missed synchronization rounds while the 

latter may change the rate of clock drift. In algorithms that do 

not correct for clock drift, the effect of packet loss is similar to 

the case of no synchronization as the clock offset will 

accumulate linearly, beyond the target accuracy level. Such 

algorithms would also be least resistant to large changes in 

clock drift because they would no longer be able to achieve the 

target accuracy using the same synchronization interval. Hence 

it is clear that the Linear Rate and Continuous Clock 

algorithms are better suited for UWB than the Delay 

Measurement Time algorithm.  

The Continuous Clock algorithm has a longer convergence 

time compared to the Linear Rate algorithm, since its clock 

correction procedure is gradual rather than instantaneous. 

However once it achieves convergence, it yields a slightly 

more accurate synchronization since it incorporates an estimate 

of the processing delay. 

 

VI. CONCLUSIONS 

In this paper, we have proposed some extensions to the 

existing ECMA-368 standard to facilitate the implementation 

of the higher layer synchronization mechanism and 

demonstrated the performance of three candidate algorithms 

through network simulation.  Our results show that drift-

correcting algorithms perform better as they are able to 

maintain synchronization within the target accuracy for longer 

periods between synchronization rounds.  

In the next phase of the project, the algorithms would be 

implemented on a development platform.  
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