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Abstract—Neural networks are becoming more and more
important for intelligent communications and their theoretical
research has become a top priority. Loss surfaces are crucial
to understand and improve performance in neural networks.
In this paper, the Hessian matrix of second order optimization
method is analyzed through the analytical framework of random
matrix theory (RMT) in order to understand the geometry
of loss surfaces. The limited spectrum distribution, extreme
eigenvalue distribution, and standard condition number (SCN)
of Hessian matrix are analyzed to understand their asymptotic
characteristics. Moreover, the relationships among the extreme
eigenvalue distribution, SCN, and the convergence of loss surfaces
are investigated. The above analyses give insight into utilizing
RMT to analyze the neural network theory.

Index Terms—Loss surfaces, Hessian matrix, random matrix
theory, standard condition number, neural networks.

I. INTRODUCTION

Communications technology is developing rapidly to satisfy

the demands of a wide variety of application scenarios, such

as the explosive growth of mobile data services and massive

terminal connectivity to mobile networks. The fifth generation

(5G) has proposed a variety of new technologies to improve

the performance of communication systems. Millimeter wave,

massive MIMO, and ultra-dense network are the three key

technologies [1]. Above technologies need to satisfy the

capability of handling large wireless data. The development

of intelligent communication emerges as the times require.

Artificial intelligence (AI) is used in various fields of com-

munication, such as cognitive radio, channel estimation and

detection, coding and decoding technology [2]–[5]. In order to

meet the communication requirements of high reliability and

low latency, the optimization performance of neural network

needs to be further improved.

Deep learning is flourishing in various aspects of life based

on the development of new hardware such as graphics process-

ing unit (GPU), network architectures (RNN, CNN, ResNet,

etc.), and improved optimization algorithms. The academic

researches on neural network have been very active in the

past decade, and hundreds of neural network models have

been proposed for pattern recognition, signal processing, fault

diagnosis, and computer vision [6]–[8]. However, theoretical

researches on neural network are still in the initial stage,

which will seriously affect the further development of the

neural network. One of the most interesting questions is the

characteristics of loss surfaces which is defined as the land-

scape of loss function relevant to the parameters in a neural

network. The loss surfaces have high dimensions (massive

data in communication with high dimensions) which often

lead to the curse of dimensionality. Furthermore, loss surfaces

are usually non-convex so that there are many local minimum

points. Therefore, understanding the loss surfaces is one of the

most confusing and incomprehensible part at present and it is

an indispensable step in studying the optimization performance

of neural networks.

The loss surfaces of neural networks have previously been

studied in several ways. Q. Nguyen et al. illustrated that the

critical point of each empirical loss is the global minimum

of zero training error and a sufficiently wide network has a

well behaved loss surfaces [9]. Y. Lecun et al. explored the

non-convex loss function of a simple model with the spherical

spin-glass model, and showed that the minimum critical value

of the random loss function is located under a well-defined

narrow band and is constrained by the global minimum [10].

J. Pennington et al. used the RMT to study the distribution of

eigenvalue of Hessian matrix at critical point to characterize

the change of the loss surfaces [11]. Sagun et al. conducted

many training and data processing, and turned out that the

Hessian is degenerate at any points, moreover, deduced that

the characteristics of the loss surfaces are determined jointly

by the structure of the network and the input dataset [12].

Louart et al. explored nonlinear problems in neural networks,

studied the Gram random matrix model in neural networks,

and found the resolvent of it [13].

However, there are still too many unknowns in exploring

loss surfaces of neural networks. The dimension of neural

network for communication is huge, every parameter in the

network is a random variable, and the training process of

neural network can be regarded as the operation process

of large dimension matrices. RMT is suitable for solving

the problems caused by the above characteristics [14]–[16].

Under this background, the random matrix becomes a good

choice. More and more disciplines of science and engineering

such as wireless communication, quantum mechanics, signal

processing, and big data have found RMT valuable [17], [18].

In this paper, a multilayer feed-forward neural network is
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built for multi-classification problem in order to explore the

loss surfaces in the network, and a second order optimization

method is adopted. The Hessian matrix which is the second

derivatives of the loss function with respect to the weight

reflects the convexity of loss surfaces. Then, exact Hessian

matrix of the model is calculated and proved to be a Wishart

matrix. The geometry of error surfaces is analyzed by using

limit spectrum theory (Marcenko-Pastur distribution), extreme

eigenvalue distribution (Tracy-Widom distribution) and SCN

(Tracy-Widom-Curtiss distribution) of infinite random matri-

ces theory (IRMT). The asymptotic characteristics of loss

surfaces are analyzed to obtain the convergence performance

of the neural network. Based on the above research, RMT

and neural network have a high correlation. To the best

of our knowledge, the analyses of extreme eigenvalue and

SCN of Hessian are still missing in the literature. The major

contributions and novelties of our work are as follows:

• Based on RMT analytical framework, the asymptotic

performance of the high-dimensional loss surfaces is

analyzed. It is proved that RMT is a powerful tool for

analyzing neural network theory.

• The extreme eigenvalue characteristics and SCN of IRMT

are firstly applied to the analysis of neural networks.

• The relationships among SCN, extreme eigenvalue and

the convergence of neural network are given. It provides

a theoretical basis for further enhancing the optimization

performance of neural network, and further ensures the

high reliability of communication.

These provide several insights into applications and shed light

into understanding the loss surfaces of neural network.

The remainder of this paper is organized as follows. Sec-

tion II describes the neural network model and calculates the

exact Hessian matrix. The analysis and derivation process of

RMT are presented in Section III. The numerical results are

discussed in Section IV. Finally, the conclusions are illustrated

in Section V.

II. SYSTEM MODEL

A. The Multi-classification Model

In this paper, a multilayer feed-forward neural network

for multi-classification problem is considered, it is widely

used in communication, such as modulation detection, signal

processing, and cognitive radio [19], [20]. The system model

is introduced in Fig. 1. The input of the neural network is a set

of data x ∈ R
M×D, which is trained to map the target vector

y ∈ R
N×D. The iterative formula ak = bk +wkhk−1 is used

to calculate the pre-activations for each layer, and h0 = x,

where aLk denotes the kth pre-activation of L layer, b is the bias

of the network, w denotes the weight of the network and hL
j

denotes the jth activation of L layer. For multiple classification

problems, the softmax activation function is used at the last

layer and can be calculated as

hL
j =

ea
L
j∑

k e
aL
k

. (1)

Fig. 1. A multilayer feed-forward neural network.

It can be found that all aLk are located in (0, 1), by using the

normalization factor,
∑

k e
aL
k , the sum of all aLk is normalized

to one. The hidden layer activation can be expressed as

h(x) = g(a(x)), where g(·) is an entry-wise rectified linear

unit (ReLU) function. The matching of log-likelihood loss

function and softmax activation function will achieve very

good training results in multi-classification problem [21], the

loss L can be calculated as

L = −
∑

k
yk log h

L
k . (2)

B. Calculate Exact Hessian Matrix

In order to obtain better convergence performance, we make

full use of second-order optimization method. The second-

order properties are crucial to the neural network, and loss sur-

faces can be studied through it. For classical back-propagation,

the Jacobian matrix, which is the first derivatives of loss

function with respect to weight matrix is considered. However,

in this network, we are more interested in the properties of the

second derivatives of loss function, which are expressed in the

form of Hessian matrix. The gradient of the loss is given by

∂L

∂w
=

∂L

∂a

∂a

∂w
=

∑
k
(hL

k − yk)(h
L−1
k )T. (3)

The Hessian matrix can be calculated as

H =
∂2L

∂w2
=

∂2L

∂a2
∂a

∂w

∂a

∂w

T

+
∂L

∂a

∂2a

∂w2
(4)

where ∂2a
∂w2 reflects the linearity of the network, and tends to 0

in that a is a linear function about the parameter w. Therefore,

a simplifying approximation of the Hessian can be calculated

as

H ∼ ∂2L

∂a2
∂a

∂w

∂a

∂w

T

=
∑

k
hL
k (1− hL

k )h
L−1
k hL−1

k

T
. (5)

Sagun in [12] proved that above approximation will become

more empirical as the training process progresses, especially

in the case of global minimum. Then, the following definitions

are obtained



G =

√
∂2L

∂a2
∂a

∂w
(6)

g =
√
hL(1− hL)hL−1. (7)

With the above information, the Hessian matrix can be rede-

fined as

H ∼ 1

N

∑
k
gkgk

T =
1

N
GGT. (8)

So the Hessian of loss is a positive semi-definite matrix, and

the form of Hessian can be taken as a covariance matrix

computed from G.

III. RANDOM MATRIX THEORY ANALYTICAL FRAMEWORK

In this section, several results of Hessian matrix are illus-

trated based on the theoretical support of RMT, which analyzes

the asymptotic statistical properties of matrices. In the large

dimensional matrix, such distribution is like the law of large

numbers in statistics. For a multilayer neural network, the

dimensions of input and parameters are very large, and so is

the dimension of Hessian. Moreover, every element of Hessian

is a random variable. With the fact, according to dimension

boundary in [22], IRMT can be a sharp tool to deal with the

problem of second-order optimization in neural network. In

this paper, we mainly focus on the analysis of asymptotic

spectrum theory.

A. Marcenko-Pastur Distribution

The Hessian matrix in (8) is in the form of Wishart

ensemble for we assume that G is independent and identically

distributed (i.i.d). Thus, the Hessian matrix can be written as

H = 1
NGGT ∼ WN (D,

∑∑∑
), where N denotes the dimension

of Hessian, D is the degree of freedom, and
∑∑∑

denotes the

covariance matrix. The eigenvalue is the steepness of the loss

along the direction of its corresponding eigenvector. There-

fore, studying the distribution of eigenvalues is particularly

important in exploring the geometric characteristics of loss

surfaces. With the help of RMT analytical framework, the

limiting spectral distribution of H follows Marcenko-Pastur

distribution. For over-parametered neural network, we can

make the following assumptions. As M , N , and D are very

large, it is assumed that M,N,D → ∞, but M is comparable

to D, and when N
D → c, where c denotes aspect ratio of

matrix, the empirical spectral distribution of matrix converges

to Marcenko-Pastur distribution with probability of one [23].

The probability density function (PDF) and cumulative

distribution function (CDF) of eigenvalue can be expressed

as [24]

fλ(x) =

{
1

2πcx

√
(b− x)(x− a) a ≤ x ≤ b

0 otherwise
(9)

Fλ(x) =
1

2
+ fλ(x) +

1− c

2π
arcsin (

(1 + c)x− (1− c)
2

2x
√
c

)

+
1 + c

2π
arcsin(

1 + c− x

2
√
c

)

(10)

where λ denotes the eigenvalue of Hessian, and λ1 ≤ λ2 ≤
λ3 ≤ · · · ≤ λN , a = (1−√

c)
2

and b = (1 +
√
c)

2
denote

upper bound and lower bound of λ, respectively. Marcenko-

Pastur distributions under different aspect ratio are shown in

Fig. 2 (a).

B. Extreme Eigenvalue Distribution

For the nonlinear system such as neural network, the ex-

treme eigenvalue is very important. In neural network, the

largest and smallest eigenvalue of Hessian matrix determine

the steepness of the loss surfaces and affect the convergence

performance. The PDF and CDF of extreme eigenvalue can

use Tracy-Widom distribution to calculate [25]

fλE
(x) =

dFλE
(x)

dx
(11)

FλE
(x)= exp(−

∫ ∞

x

(x− r)q2(x)dx) (12)

where the extreme eigenvalues are defined as λEN = λN−b
μ

and λE1 = λ1−a
ν , in which μ and ν are normalized fac-

tors and defined as μ = (
√
N +

√
D)( 1√

N
− 1√

D
)

1
3 and

ν = (
√
N −√

D)( 1√
N

− 1√
D
)

1
3 , and q(x) is the unique solu-

tion of Painlevé equation of type q′′ = xq + 2q3 and satisfied

the following boundary condition

q(x) ∼ 1

2
π− 1

2x− 1
4 exp(−2

3
x

3
2 ), x → ∞. (13)

In this analytical framework, the largest eigenvalue is an-

alyzed by the above Tracy-Widom distribution and shown in

Fig. 2 (b) with different dimensions.

C. Standard Condition Number

SCN is an important tool to study the distribution of

eigenvalues. SCN reflects the stability of systems, and shows

how fast the function changes for tiny fluctuation in input.

This is the characteristic of the matrix itself. However, it has

an unusual impact on network convergence. SCN is the ratio

of the largest eigenvalue λN to the smallest eigenvalue λ1,

and can be represented by

κ =
λN

λ1
. (14)

The PDF and CDF of κ follow Tracy-Widom-Curtiss distri-

bution [22] as

fκ(x) = − 1
μν

∫∞
0

rfλE
( rx−b

ν )fλE
( r−a

μ )dr,

Fκ(x) =
∫∞

α
μ

fλE
(−r)FλE

(x(b−μr)−a
ν )dr.

(15)

The PDF of SCN is shown in Fig. 2 (c).
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Fig. 3. The spectrum of Hessian matrix after convergence.
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IV. EXPERIMENT RESULTS

In this section, we have conducted many experiments to

calculate the exact Hessian matrix on the multi-classification

neural network in Section II. The training data are all samples

from MNIST database for handwritten digit recognition, which

is a well known datasets in multi-classification [26]. The exact

Hessian matrix can be calculated after convergence. For a

neural network with 10 hidden units, it is obversed that the

Hessian matrix which contains 7840 × 7840 elements is very

sparse, and the eigenvalue distribution is shown in Fig. 3.

It can be observed that most of the eigenvalues are con-

centrated near zero. However, there are still a small number

of larger eigenvalues. Although it seems that the empirical

distribution is quite different from Marcenko-Pastur distri-

bution, there is still much in common between them. From

Fig. 2 (a), it can be seen that the eigenvalue gap and tail

are determined by aspect ratio. The characteristics of zero

eigenvalue gap and long tails are similar to the Marcenko-

Pastur distribution with an aspect rate of 1. Just the Hessian

matrix is a square matrix that satisfies the aspect ratio of 1.

It is observed that there are still some negative quantities

in the eigenvalues. However, these values have a minimal

order of magnitude (less than 10−14 magnitude). In this case,

although the point of convergence is not a global optimum,

the local optimum is abysmally close to the global optimum.

Accordingly, the gradient descent can help escaping from the

worse local optimum in the process of training and achieving

good optimization performance. Under such conditions, largest

eigenvalue attracts more attention. It is observed that the

largest eigenvalue is far away from the high frequency center

of the distribution, that is, concentrated near zero. At the

same time, the distance difference between them exceeded

three times the standard deviation. Furthermore, the frequency

of the large eigenvalue is very small. Based on the research

hereinbefore, such a large eigenvalue is called outlier [27].

We trained a 784-5-10 neural network 500 times and the

distribution of the largest eigenvalues is shown in Fig. 4. The

PDF of largest eigenvalue is also obtained by using ksdensity

function in Matlab. The Tracy-Widom distribution which is

shown in Fig. 2 (b) is a statistical bump with a steeper

asymmetry on the left side than on the right side. It is observed

that the experimental distribution of the largest eigenvalue also



Fig. 5. The distribution of eigenvalues of different network structures.
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satisfies the above characteristics. Fig. 5 and Fig. 3 show the

distribution of eigenvalues of different network structures. It

can be observed that with the number of hidden layer units

increases, the largest eigenvalue is decreasing. Fig. 6 depicts

the change of eigenvalue distribution during training process.

We calculate Hessian matrix every 10 epochs and find that the

largest eigenvalue decreases gradually during the convergence

process.

The relationship between the largest and the smallest eigen-

value is also a key factor determining the loss surfaces. It is

known that for a quadratic loss function, the loss surface is

similar to the shape of an ellipse. The smallest eigenvector

determines the direction of the long axis, and the size of

the long axis is inversely proportional to the square root of

the smallest eigenvalue. So are the short axis and the largest

eigenvalue [28].

There are two forms of the relationship between the largest

eigenvalue and the smallest eigenvalue. The first is the differ-

ence between the two, in this neural network, the difference is

very close to the largest eigenvalue. The larger the difference,
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Fig. 7. The SCN distribution of 500 repeated tests.

the short axis of the ellipse will be shorter, and the flatter

the ellipsoid. Such the loss surface is very steep and the

optimization path needs a lot of detours, and the computation

efficiency will be very low. The second is the ratio of the two

that is SCN. In practice, the ratio of the two is very large, so we

use a cardinal number n which is equal to 1014 to represent. In

Fig. 7, we calculate the distribution of SCN of 500 repetition

test and plot the PDF of the SCN. It is observed that the density

distribution of SCN has long tail which is very similar to the

Tracy-Widom-Curtiss distribution in Fig. 2 (c). Therefore, the

experimental results coincide with the theoretical distribution

well. In Fig. 8, the convergence characteristics with different

SCN are illustrated. It can be observed that the larger the SCN,

the worse the network convergence performance. Morever,

the speed of convergence is also related to SCN, and the

convergence rate slows down with the increase of SCN. Thus,

in the intelligent communication network, we will design

neural network with small SCN to ensure timely and reliable

communication.
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V. CONCLUSIONS

In order to guarantee the low latency and high reliability

of intelligent communication, this paper tries to improve the

optimization performance of neural networks. Understanding

the loss surfaces in neural networks is particularly important

in this problem. An analytical framework has been built for

studying the Hessian matrix of second order optimization

performance. The limiting spectral distribution, extreme eigen-

value distribution, and SCN have been analyzed using IRMT,

and some asymptotic properties of loss surfaces have also been

obtained. RMT can become a powerful tool in deep learning

theory analysis. Moreover, the relationship between SCN

and convergence has been investigated. This work can shed

light into understanding the loss surfaces and improving the

optimization performance in neural networks. In the future, we

will conduct depth analysis of what causes SCN differences,

and give better suggestions in practical applications based on

SCN. Intelligent communication will further achieve better

performance based on this theory.
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