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Abstract—This paper proposes a new space-time-frequency
(STF) correlation model based on the two-ring model with
both single- and double-bounced rays for miltiple-input multiple-
output (MIMO) mobile-to-mobile (M2M) multicarrier Ricean
fading channels in a non-isotropic scattering environment. The
proposed model allows us to study the correlation functions (CFs)
between any two sub-channels with different carrier frequencies
of MIMO M2M Ricean fading channels. The derived STF CF and
the corresponding space-Doppler-frequency (SDF) power spectral
density (PSD) have generic closed-form expressions including
many existing CFs and PSDs as special cases. Based on the
derived SDF PSD, the resulting Doppler PSD is investigated
in more detail in terms of some important parameters. Our
numerical evaluations show the impacts of different parameters
of the propagation environment on the Doppler PSD. More
importantly, we find that the shapes of the Doppler PSD are
completely different according to single- or double-bounced rays
for M2M channels, while they are exactly the same for fixed-
to-mobile (F2M) channels. Finally, it is worth mentioning that
some interesting observations obtained from these numerical
results can be considered as the guidance for further proposing
more realistic M2M channel models and building up future
measurement campaigns.

I. INTRODUCTION

Recently, M2M communications have received much atten-
tion due to some new applications, such as wireless mobile ad
hoc networks, relay-based cellular networks, intelligent trans-
portation systems, and dedicated short range communications
(DSRC) systems, where both the transmitter (Tx) and receiver
(Rx) are in motion and equipped with low elevation antennas.
Such M2M communication systems differ from conventional
fixed-to-mobile (F2M) cellular radio systems, where only one
terminal (mobile station) is moving while the other one (base
station) is fixed. Therefore, many existing channel models
developed solely for conventional cellular radio systems can
not directly be used for M2M communication systems. Akki
and Haber [1], [2] were the first to propose a channel model for
single-input single-output (SISO) M2M Rayleigh fading chan-
nels and further investigate the corresponding statistical prop-
erties. Recently, two-ring geometrical stochastic models con-
sidering only double-bounced rays for MIMO M2M Rayleigh
fading channels were presented in [3] and [4] for isotropic
and non-isotropic scattering environments, respectively. In [5],

the authors proposed a more general two-ring model for
MIMO M2M channels taking into account the line-of-sight
(LoS), single-, and double-bounced rays, but they did not
further study the difference between the single- and double-
bounced rays. However, all the aforementioned MIMO M2M
channel models only investigated space-time (ST) correlation
properties of MIMO M2M channels. Frequency correlation
properties of two narrowband sub-channels [6] in a MIMO
M2M channel have not been studied so far. Moreover, although
the Doppler PSD is one of the most important statistical prop-
erties that make M2M channels significantly different from
F2M channels, more detailed investigations of the Doppler
PSD in non-isotropic scattering environments are surprisingly
lacking in the open literature.

Motivated by the above gaps, our objectives are mainly two-
fold. First, we propose a new STF correlation model based on
the two-ring model considering the LoS, single-, and double-
bounced rays for MIMO M2M multicarrier Ricean fading
channels in non-isotropic scattering environments. Closed-
form expressions are derived for the STF CF and the cor-
responding SDF PSD between any two narrowband sub-
channels with different carrier frequencies. As we will see
later on, the derived STF CF and SDF PSD include many
existing CFs and PSDs as special cases, e.g., those in [3]–
[5]. Furthermore, the derived STF CF and SDF PSD are very
useful for realistic performance evaluation and comprehensive
understanding of MIMO M2M multicarrier systems, e.g.,
MIMO-orthogonal frequency-division multiplexing (MIMO-
OFDM) systems. Second, based on the derived SDF PSD
we study in more detail the Doppler PSD in a non-isotropic
scattering environment in terms of some important parameters,
e.g., the single-/double-bounced rays, mean values of the angle
of arrival (AoA) and angle of departure (AoD), angle spreads,
antenna element spacings, directions of motion, and frequency
separations. More importantly, we find that the contributions
to the Doppler PSD from single- and double-bounced rays
are not similar anymore in M2M channels, while this is true
in F2M cellular channels. Some interesting observations and
useful conclusions are obtained which can be considered as the
guidance for proposing more realistic MIMO M2M channel
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models (e.g., the one in [7]) and setting up future M2M
channel measurement campaigns.

The paper is structured as follows. In Section II, we intro-
duce the two-ring channel model with the LoS, single-, and
double-bounced components for MIMO M2M Ricean fading
channels. In Section III, the STF CF and the corresponding
SDF PSD of any two sub-channels with different carrier fre-
quencies are derived in a non-isotropic scattering environment.
Numerical results and analysis are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. THEORETICAL MODEL FOR MIMO M2M CHANNELS

Let us now consider a narrowband single-user MIMO M2M
multicarrier communication system with MT transmit and MR

receive omnidirectional antenna elements. Both the Tx and
Rx are in motion and equipped with low elevation antennas.
The propagation scenario is characterized by non-isotropic
scattering with possibly a LoS component between the Tx
and Rx. The MIMO fading channel can be described by
an MR × MT matrix H (t) = [hij (t)]MR×MT

of complex
faded envelopes, where hij (t) denotes the complex impulse
response between the jth Tx and the ith Rx.

Fig. 1 illustrates the geometry of a two-ring MIMO M2M
channel model, where the LoS, single-, and double-bounced
rays are considered. We assume that uniform linear antenna
arrays are used with arbitrary numbers of antenna elements.
As an example, MT = MR = 2 were taken in Fig. 1. The
two-ring model defines two rings of effective scatterers, one
around the Tx and the other around the Rx. Suppose there are
N1 effective scatterers around the Tx lying on a ring of radius
RT and the n1th (n1 = 1, ..., N1) effective transmit scatterer
is denoted by S(n1)

T . Similarly, assume there are N2 effective
scatterers around the Rx lying on a ring of radius RR and the
n2th (n2 = 1, ..., N2) effective receive scatterer is denoted by
S

(n2)
R . The distance between the Tx and Rx is D. The antenna

element spacings at the Tx and Rx are designated by δT and
δR, respectively. It is normally assumed that the radii RT and
RR are both much larger than the antenna element spacings
δT and δR, i.e., min{RT , RR} >> max{δT , δR}. The multi-
element antenna tilt angles are denoted by βT and βR. The Tx
and Rx move with speeds υT and υR in directions determined
by the angles of motion γT and γR, respectively. The symbol
φLoSRq

denotes the AoA of a LoS path. The AoAs of the waves

travelling from the effective scatterers S(n1)
T and S(n2)

R towards
the Rx are denoted by φ(n1)

R and φ(n2)
R , respectively. The AoDs

of the waves that impinge on the effective scatterers S(n1)
T and

S
(n2)
R are designated by φ(n1)

T and φ(n2)
T , respectively.

From the above described geometrical-based model, the
received complex impulse response at the carrier frequency
fc for the Tp−Rq link is a superposition of the LoS, single-,
and double-bounced rays, and can be expressed as [5]

hpq (t) = hLoSpq (t) + hSBpq (t) + hDBpq (t) (1)

where

hLoSpq (t) =

√
KpqΩpq
Kpq + 1

e−j2πfcτpq

×ej
[
2πfTmax t cos

(
π−φLoS

Rq
+γT

)
+2πfRmax t cos

(
φLoS

Rq
−γR

)]
(2)

hSBpq (t) =
2∑
i=1

hSBi
pq (t)

=
2∑
i=1

√
ηSBi

Ωpq
Kpq + 1

lim
N1→∞

N1∑
n1=1

1√
N1

ej(ψni
−2πfcτpq,ni)

×ej
[
2πfTmax t cos

(
φ

(ni)
T −γT

)
+2πfRmax t cos

(
φ

(ni)
R −γR

)]
(3)

hDBpq (t) =

√
ηDBΩpq
Kpq + 1

lim
N1,N2→∞

N1,N2∑
n1,n2=1

1√
N1N2

×ej(ψn1,n2−2πfcτpq,n1,n2)

×ej
[
2πfTmax t cos

(
φ

(n1)
T −γT

)
+2πfRmax t cos

(
φ

(n2)
R −γR

)]
. (4)

In (2)–(4), p = 1, 2, ...,MT , q = 1, 2, ...,MR, τpq = εpq/c,
τpq,ni

= (εpni
+ εniq)/c, τpq,n1,n2 = (εpn1 + εn1n2 + εn2q)/c

are the travel times of the waves through the link Tp − Rq,
Tp−S(n1)

T (S(n2)
R or S(n3)

TR )−Rq, and Tp−S(n1)
T −S(n2)

R −Rq,
respectively, with c denoting the speed of light. The symbol
Kpq designates the Ricean factor of the Tp − Rq link and
Ωpq denotes the total power transferred through the Tp − Rq
link. Parameters ηSBi

and ηDB specify how much the single-
bounced and double-bounced rays contribute to the total
scattered power Ωpq/(Kpq + 1). This indicates that these
energy-related parameters satisfy

∑2
i=1 ηSBi

+ ηDB = 1.
The phases ψni

and ψn1,n2 are independent and identically
distributed (i.i.d.) random variables with uniform distributions
over [−π, π), fTmax

= υT /λ and fRmax
= υR/λ are the

maximum Doppler frequencies associated with the Tx and Rx,
respectively, and λ is the carrier wavelength.

Distances εpq, εpni
, εniq, and εn1n2 in (1)–(4) can be

expressed as functions of the relevant angles, e.g., φLoSRq
, φ(ni)

T ,

and φ
(ni)
R . From Fig. 1, assuming D � max{δT , δR} and

invoking the laws of sines and cosines, these distances are

εpq ≈ ε− kqδR cos
(
φLoSRq

− βR

)
(5)

εpn1 ≈ RT − kpδT cos
(
φ

(n1)
T − βT

)
(6)

εn1q ≈ ξn1 − kqδR cos
(
φ

(n1)
R − βR

)
(7)

εpn2 ≈ ξn2 − kpδT cos
(
φ

(n2)
T − βT

)
(8)

εn2q ≈ RR − kqδR cos
(
φ

(n2)
R − βR

)
(9)

εn1n2 ≈ D −RT cosφ(n1)
T +RR cosφ(n2)

R ≈ D (10)

where kp=MT−2p+1/2, kq=MR−2q+1/2, ε≈D−kpδT cosβT ,
φLoSRq

≈π, ξn1≈D−RT cosφ(n1)
T , φ(n1)

R ≈π−ΔT sinφ(n1)
T , ξn2≈

D+RR cosφ(n2)
R , and φ

(n2)
T ≈ΔR sinφ(n2)

R with ΔT≈RT /D
and ΔR≈RR/D.
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In this paper, to characterize the AoD φ
(ni)
T and AoA

φ
(ni)
R , we use the von Mises probability density function

(PDF) [8] defined as f (φ) Δ= exp [k cos (φ− μ)] /2πI0 (k),
where φ ∈ [−π, π), I0 (·) is the zeroth-order modified Bessel
function of the first kind, μ ∈ [−π, π) accounts for the
mean value of the angle φ, and k (k ≥ 0) is a real-valued
parameter that controls the angle spread of the angle φ. For
k = 0 (isotropic scattering), the von Mises PDF reduces to the
uniform distribution, while for k > 0 (non-isotropic scatter-
ing), the von Mises PDF approximates different distributions
depending on different values of k.

III. NEW STF CF AND SDF PSD

In this section, based on the two-ring channel model in
(1)–(4), we will derive the STF CF and the corresponding
SDF PSD of any two narrowband sub-channels with different
carrier frequencies in a non-isotropic scattering environment.
We also show that the newly derived STF CF includes many
existing CFs, e.g., those in [3]– [5], as special cases.

A. New Generic STF CF

The normalized STF CF between any two complex impulse
responses hpq (t) and h

(†)
p′q′ (t) with different carrier frequen-

cies fc and f (†)
c , respectively, is defined as

ρ
hpqh

(†)
p′q′

(τ, χ) =
E
[
hpq (t)h(†)∗

p′q′ (t+ τ)
]

√
E
[∣∣hpq (t)

∣∣2]E
[∣∣∣h(†)

p′q′ (t)
∣∣∣2]

(11)

where (·)∗ denotes the complex conjugate operation, E [·] is
the statistical expectation operator, p, p′ ∈ {1, 2, ...,MT }, and
q, q′ ∈ {1, 2, ...,MR}. It should be observed that (11) is a
function of time separation τ , antenna element spacings δT
and δR, and frequency separation χ = f

(†)
c − fc.

Using (2), (5), and (11), the STF CF of the LoS component
can be obtained as

ρ
hLoS

pq h
LoS(†)
p′q′

(τ, χ) =
√
KpqKp′q′e

j2πX−j2πτY+j 2πχZ
c (12)

where X=P cosβT−Q cosβR, Y=fTmax
cos γT−fRmax

cos γR,
and Z=D−kp′δT cosβT+kq′δR cosβR, with P=(p′−p) δT /λ,
Q = (q′ −q) δR/λ, kp′ = (MT−2p′+1) /2, and kq′ =
(MR−2q′+1) /2.

Using (3), (6)–(9), and (11) and considering the von Mises
PDF of the AoA and AoD, the STF CF of the two-ring model
with single-bounced rays can be expressed as

ρ
h

SB1(2)
pq h

SB1(2)(†)
p′q′

(τ, χ) = ηSB1(2)e
jC

SB1(2)
T (R)

×
I0

{√(
A
SB1(2)

T (R)

)2
+
(
B
SB1(2)

T (R)

)2}

I0

(
k
SB1(2)

T (R)

) (13)

where parameters ASB1
T , BSB1

T , CSB1
T , ASB2

R , BSB2
R , and

CSB2
R are ASB1

T = kSB1
T cosμSB1

T −j2πτfTmax
cos γT+j2πP

× cosβT −j2πχLT /c, BSB1
T = kSB1

T sinμSB1
T −j2πτfTmax

× sin γT − j2πτfRmax
ΔT sin γR + j2πP sinβT + j2πQΔT

× sinβR−j2πχST /c, CSB1
T =2πτfRmax

cos γR−2πQ cosβR+
2πχTT /c, ASB2

R = kSB2
R cosμSB2

R − j2πτfRmax
cos γR +

j2πQ cosβR−j2πχLR/c, BSB2
R =kSB2

R sinμSB2
R −j2πτfRmax

× sin γR−j2πτfTmax
ΔR sin γT+j2πQ sinβR+j2πPΔR sinβT−

j2πχSR/c, and CSB2
R = −2πτfTmax

cos γT +2πP cosβT +
2πχTR/c, with LT =RT+kp′δT cosβT , ST =kp′δT sinβT+
kq′δRΔT sinβR, TT =RT+D+kq′δR cosβR, LR = −RR+
kq′δR cosβR, SR = kq′δR sinβR+kp′δTΔR sinβT , TR =
RR+D−kp′δT cosβT . The symbol μSB1

T

(
μSB2
R

)
denotes the

mean value of the AoD φ
(n1)
T (AoA φ

(n2)
R ) and kSB1

T

(
kSB2
R

)
controls the angle spread of the AoD φ

(n1)
T (AoA φ

(n2)
R ).

Using (4), (6), (8), (10), and (11) and considering the von
Mises PDF of the AoA and AoD, the STF CF of the two-ring
model with double-bounced rays can be given by

ρ
hDB

pq h
DB(†)
p′q′

(τ, χ) = ηDBe
jCDB

×
I0

{√(
ADBT

)2 +
(
BDBT

)2}
I0

{√(
ADBR

)2 +
(
BDBR

)2}
I0
(
kDBT
)
I0
(
kDBR
)

(14)

where CDB = 2πχ (RT+RR+D) /c, ADBT = kDBT cosμDBT −
j2πτfTmax

cos γT + j2πP cosβT − j2πχkp′δT cosβT /c,
BDBT = kDBT sinμDBT − j2πτfTmax

sin γT + j2πP sinβT −
j2πχkp′δT sinβT /c, ADBR = kDBR cosμDBR − j2πτfRmax

× cos γR + j2πQ cosβR − j2πχkq′δR cosβR/c, and BDBR
= kDBR sinμDBR − j2πτfRmax

sin γR + j2πQ sinβR −
j2πχkq′δR sinβR/c, with μDBT

(
μDBR
)

denoting the
mean value of the AoD φ

(n1)
T (AoA φ

(n2)
R ) and kDBT

(
kDBR
)

controlling the angle spread of the AoD φ
(n1)
T (AoA φ

(n2)
R ).

Since the derivations of (12)–(14) are similar, only the
derivation of (13) is given in Appendix A, while others
are omitted here for brevity. Finally, the normalized STF
CF between two time-variant complex impulse responses
hpq (t) and h

(†)
p′q′ (t) becomes a summation of the STF CFs

in (12)–(14), i.e., ρ
hpqh

(†)
p′q′

(τ, χ) = ρ
hLoS

pq h
LoS(†)
p′q′

(τ, χ) +∑2
i=1 ρhSBi

pq h
SBi(†)
p′q′

(τ, χ) + ρ
hDB

pq h
DB(†)
p′q′

(τ, χ).

The normalized STF CF ρ
hpqh

(†)
p′q′

(τ, χ) includes many ex-

isting CFs as special cases. Assuming the frequency separation
χ = 0, we can then obtain the CF (18) in [5]. Consequently,
the STF CF also includes the CFs listed in [5], e.g., the ones
in [3] and [4], as special cases.

B. New Generic SDF PSD

Taking the Fourier transform of the STF CFs in (12)–(14)
in terms of time, we can obtain the corresponding SDF PSDs.
1) In terms of the LoS component,

F

{
ρ
hLoS

pq h
LoS(†)
p′q′

(τ, χ)
}

=
√
KpqKp′q′e

j2πX+j 2πχZ
c δ (fD+Y )

(15)
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where δ (·) denotes the Dirac delta function and fD is the
Doppler frequency.
2) In the case of the single-bounced component,

F

{
ρ
h

SB1(2)
pq h

SB1(2)(†)
p′q′

(τ, χ)
}

=
ηSB1(2)2e

jU
SB1(2)
T (R)

I0

(
k
SB1(2)

T (R)

)

×
e

jO
SB1(2)
T (R)

D
SB1(2)
T (R)

W
SB1(2)
T (R) cos

[
E

SB1(2)
T (R)

W
SB1(2)
T (R)

√
W

SB1(2)

T (R) −
(
O
SB1(2)

T (R)

)2]
√
W

SB1(2)

T (R) −
(
O
SB1(2)

T (R)

)2
(16)

where OSB1
T =2π (fD−fRmax

cos γR), USB1
T =−2πQ cosβR+

2πχ (RT+D+kq′δR cosβR) /c, WSB1
T =4π2f2

Tmax
+4π2f2

Rmax

×Δ2
T sin γ2

R + 8π2fTmax
fRmax

ΔT sin γT sin γR, DSB1
T =

j2πkSB1
T fTmax

cos
(
γT − μSB1

T

)
+ j2πkSB1

T fRmax
ΔT sin γR

× sinμSB1
T −4π2PfTmax

cos (βT − γT )−4π2QΔT fTmax
sinβR

× sin γT−4π2PΔT fRmax
sinβT sin γR−4π2QΔ2

T fRmax
sinβR

× sin γR + 4π2χ (fTmax
J1/c+fRmax

ΔT sin γRH1/c), ESB1
T

=j2πkSB1
T fTmax

sin
(
γT − μSB1

T

)
+j2πkSB1

T fRmax
ΔT sin γR

× cosμSB1
T +4π2PfTmax

sin (βT − γT )+4π2QΔT fTmax
sinβR

× cos γT − 4π2PΔT fRmax
cosβT sin γR + 4π2χ (fTmax

G1/c
+fRmax

ΔT sin γRV1/c), OSB2
R = 2π (fD+fTmax

cos γT ),
USB2
R =2πP cosβT+2πχ (RR+D−kp′δT cosβT ) /c, WSB2

R =
4π2f2

Rmax
+4π2f2

Tmax
Δ2
R sin γ2

T +8π2fRmax
fTmax

ΔR sin γR
× sin γT , DSB2

R = j2πkSB2
R fRmax

cos
(
γR − μSB2

R

)
+ j2π

×kSB2
R fTmax

ΔR sin γT sinμSB2
R −4π2QfRmax

cos (βR − γR)
−4π2PΔRfRmax

sinβT sin γR−4π2QΔRfTmax
sinβR sin γT

−4π2PΔ2
RfTmax

sinβT sin γT +4π2χ (fRmax
J2/c+fTmax

ΔR

× sin γTH2/c), ESB2
R = j2πkSB2

R fRmax
sin
(
γR − μSB2

R

)
+j2πkSB2

R fTmax
ΔR sin γT cosμSB2

R + 4π2QfRmax
sin (βR

−γR) + 4π2PΔRfRmax
sinβT cos γR − 4π2QΔRfTmax

× cosβR sin γT + 4π2χ (fRmax
G2/c+fTmax

ΔR sin γTV2/c),
with J1 = RT cos γT+kp′δT cos (βT − γT )+kq′δRΔT sinβR
× sin γT , H1 = kp′δT sinβT + kq′δRΔT sinβR, G1 =
RT sin γT − kp′δT sin (βT − γT ) − kq′δRΔT sinβR cos γT ,
V1 = RT + kp′δT cosβT , J2 = −RR cos γR + kq′δR
× cos (βR − γR) + kp′δTΔR sinβT sin γR, H2 =
kq′δR sinβR + kp′δTΔR sinβT , G2 = −RR sin γR −
kq′δR sin (βR − γR) − kp′δTΔR sinβT cos γR, V2 =

−RR + kq′δR cosβR, |fD − fRmax
cos γR| ≤

√
WSB1
T /(2π),

and |fD + fTmax
cos γT | ≤

√
WSB2
R /(2π).

3) In terms of the double-bounced component,

F

{
ρ
hDB

pq h
DB(†)
p′q′

(τ, χ)
}

=
ηDBe

jCDB

I0
(
kDBT
)
I0
(
kDBR
)

×2e
j2πf

DDB
T

W DB
T

cos

(
EDB

T

WDB
T

√
WDB
T − 4π2f2

)
√
WDB
T − 4π2f2

�2e
j2πf

DDB
R

W DB
R

cos

(
EDB

R

WDB
R

√
WDB
R − 4π2f2

)
√
WDB
R − 4π2f2

(17)

where � denotes convolution, DDB
T = −4π2PfTmax

× cos (βT − γT ) + j2πkDBT fTmax
cos
(
γT − μDBT

)
+ 4π2χ

×fTmax
kp′δT cos (βT − γT ) /c, EDBT = 4π2PfTmax

sin (βT
−γT ) + j2πkDBT fTmax

sin
(
γT − μDBT

)
+ 4π2χfTmax

kp′δT
× sin (βT − γT ) /c, DDB

R = −4π2QfRmax
cos (βR − γR)+

j2πkDBR fRmax
cos
(
γR − μDBR

)
+ 4π2χfRmax

kq′δR cos (βR−
γR) /c, EDBR = 4π2QfRmax

sin (βR − γR)+j2πkDBR fRmax

× sin
(
γR − μDBR

) − 4π2χfRmax
kq′δR sin (βR − γR) /c,

WDB
T = 4π2f2

Tmax
, WDB

R = 4π2f2
Rmax

, and |fD| ≤(√
WDB
T +

√
WDB
R

)
/(2π) = fTmax

+ fRmax
. Appendix

B only gives the derivation of (16), while the derivations
of (15)–(17) are similar and therefore are omitted here
for brevity. Finally, the SDF PSD between two time-
variant complex impulse responses hpq (t) and h

(†)
p′q′ (t)

becomes a summation of the SDF PSDs in (15)–(17),

i.e., F

{
ρ
hpqh

(†)
p′q′

(τ, χ)
}

= F

{
ρ
hLoS

pq h
LoS(†)
p′q′

(τ, χ)
}

+

∑2
i=1 F

{
ρ
h

SBi
pq h

SB1i(†)
p′q′

(τ, χ)
}

+ F

{
ρ
hDB

pq h
DB(†)
p′q′

(τ, χ)
}

.

IV. NUMERICAL RESULTS AND ANALYSES

In this section, based on the derived SDF PSD in Section
III, the Doppler PSDs of the two-ring model with single-
and double-bounced rays are numerically analyzed in more
detail in terms of some important parameters, e.g., the mean
values of the AoA and AoD, angle spreads, directions of
motion, space separations of antenna elements, and frequency
separations. The following parameters are used for our nu-
merical analysis: fc = 5.9 GHz, fTmax

= fRmax
= 570 Hz,

D = 500 m, and RT = RR = 40 m.
Fig. 2 shows the influence of single-/double-bounced rays,

angle spreads, mean values of the AoA and AoD, and di-
rections of motion on the Doppler PSD. It is clear that in
isotropic scattering environments (kT = kR = 0), no matter
what the directions of motion are, the Doppler PSD for the
single-bounced rays is similar to the U -shape PSD of F2M
cellular channels, whereas the PSD for the double-bounced
rays has a peak in the middle (“rounded”-shape). We can also
observe that the Doppler PSD of the double-bounced rays
remains unchanged for different directions of motion, while
the Doppler PSD of the single-bounced rays changes according
to its position in the normalized Doppler frequency domain
keeping the same shape (U -shape). It is worth mentioning that
by setting one terminal fixed, our M2M model can reduce to
a F2M model. In this case, we restudied the Doppler PSD for
either single- or double-bounced rays and found that they have
exactly the same U -shape PSD. Due to the limited space of this
paper, the results regarding F2M channels are omitted here.
These aforementioned observations indicate that the impacts
of single- and double-bounced rays on the Doppler PSD are
completely different for M2M channels, while they are exactly
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the same for F2M channels. Furthermore, it is obvious that the
influences of single-bounced rays from different rings (ring
around the Tx or Rx) on Doppler PSD are the same for M2M
channels when the Tx and Rx move in the parallel and opposite
directions. This makes the single-bounced two-ring model
have the U -shape Doppler PSD for the parallel and opposite
moving directions. When the Tx and Rx move in the same
direction, the influences of single-bounced rays from different
rings on the Doppler PSD are completely different in terms of
the position of the Doppler PSD. Therefore, as shown in Fig. 2,
the single-bounced two-ring model has the double-U -shape
Doppler PSD for the same moving direction. In such a case,
it is desirable to take the different contributions from different
rings into account, which were never considered in the existing
M2M models, e.g., [5]. Therefore, we can conclude that the
more realistic M2M channel model should include the impacts
of both single- and double-bounced rays, which implies a
new way to construct more accurate M2M channel models.
Considering the underlying physical phenomena behind these
observations, it seems that the U -shape Doppler PSD will
appear in such a scenario that the main received powers are
from some large stationary objects (e.g., buildings or bridges)
since the AoA and AoD are highly dependent in this case.
While the “rounded”-shape Doppler PSD will appear when
the main received powers are from some moving objects (e.g.,
cars around the Tx or Rx) since in this case the AoA and
AoD are relatively independent. This conclusion needs to
be verified by further measurement results. From Fig. 2, it
can be observed that the angle spreads (related to the values
of kT and kR), mean angles (related to the values of μT
and μR), and directions of motion (related to the values of
γT and γR) significantly affect the behavior of the Doppler
PSD. Therefore, these three parameters play an important
role in the behavior of the Doppler PSD for non-isotropic
scattering environments. Obviously, in an isotropic scattering
environment, these impacts vanish.

Figs. 3 and 4 depict the influence of the antenna element
spacing and frequency separation on the Doppler PSD, respec-
tively. It is clear that both the space separation and frequency
separation introduce fluctuations in the Doppler PSD. It is
straightforward to conclude that higher separation (space or
frequency) will result in more fluctuations in the Doppler PSD.

V. CONCLUSIONS

In this paper, we have derived closed-form STF CFs and the
corresponding SDF PSDs for MIMO M2M multicarrier Ricean
fading channels in non-isotropic scattering environments based
on the two-ring model with single- and double-bounced rays.
The novelty of the proposed STF correlation model with
derived CFs and PSDs lies in the fact that it considers the
impact of the frequency correlation, which has not been
studied so far for M2M channels. Based on the derived SDF
PSD, we have further investigated the behavior of Doppler
PSD in more detail in term of some important parameters. Our
numerical evaluations have revealed that the Doppler PSD is
very sensitive to the angle spreads, mean values of the AoA

and AoD, and directions of motion in non-isotropic scattering
environments. The shapes of the Doppler PSD are completely
different according to single-bounced rays or double-bounced
rays, while they are exactly the same for F2M channels.
We have also found that both the spacing and frequency
separations introduce fluctuations in the Doppler PSD. It is
worth mentioning that these obtained interesting observations
and analyses can be considered as useful guidance for further
proposing more realistic M2M channel models and setting up
future measurement campaigns.

APPENDIX

A. Derivation of (13)

Considering the von Mises PDF and substituting (3) and
(6)–(9) into (11), we have

ρ
h

SB1(2)
pq h

SB1(2)(†)
p′q′

(τ, χ) =
e
jC

SB1(2)
T (R)

2πI0
(
k
SB1(2)

T (R)

)

×
π∫

−π
e

(
A

SB1(2)
T (R) cosφ

SB1(2)
T (R) +B

SB1(2)
T (R) sinφ

SB1(2)
T (R)

)
dφ

SB1(2)

T (R) . (18)

The definite integrals in the right hand side of the above equa-

tion can be solved by using the equality
π∫

−π
ea sin c+b cos cdc =

2πI0
(√
a2 + b2

)
[9]. After some manipulations, we can get

the closed-form expression given by (13).

B. Derivation of (16)

Based on mathematical knowledge, we know the equality
a2 + b2 = c(d2 + e2) exists. This allows us to transform

I0

[√(
A
SB1(2)

T (R)

)2
+
(
B
SB1(2)

T (R)

)2]
into the following expres-

sion for further derivation

I0

⎡
⎢⎢⎣j
√
W

SB1(2)

T (R) ×

√√√√√
⎛
⎝τ +

D
SB1(2)

T (R)

W
SB1(2)

T (R)

⎞
⎠

2

+

⎛
⎝ E

SB1(2)

T (R)

W
SB1(2)

T (R)

⎞
⎠

2
⎤
⎥⎥⎦ .

(19)

By Fourier transforming (13) in terms of time and using

(19) and the equality
∞∫
0

I0

(
jα
√
x2 + y2

)
cos (βx) dx =

cos
(
y
√
α2 − β2

)
/
√
α2 − β2 [9], we can obtain the closed-

form expression in (16) after some manipulations.
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components for a MIMO M2M channel with MT = MR = 2 antenna
elements.
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Fig. 2. Normalized Doppler PSDs of the two-ring model with single-
and double-bounced rays for different angle spreads, mean angles,
and directions of motion (δT = δR = 0, χ = 0, and MT = MR =
2). SD: same direction (γT = γR = 0); PD: parallel direction (γT =
γR = π/2); OD: opposite direction (γT = 0, γR = π). Case 1:
kT = kR = 0, μT = 0, μR = π; Case 2: kT = kR = 3, μT = 0,
μR = π; Case 3: kT = kR = 3, μT = μR = π/2.
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