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Abstract—This paper proposes a new space-time-frequency
(STF) correlation model based on the two-ring model with
both single- and double-bounced rays for miltiple-input multiple-
output (MIMO) mobile-to-mobile (M2M) multicarrier Ricean
fading channels in a non-isotropic scattering environment. The
proposed model allows us to study the correlation functions (CFs)
between any two sub-channels with different carrier frequencies
of MIMO M2M Ricean fading channels. The derived STF CF and
the corresponding space-Doppler-frequency (SDF) power spectral
density (PSD) have generic closed-form expressions including
many existing CFs and PSDs as special cases. Based on the
derived SDF PSD, the resulting Doppler PSD is investigated
in more detail in terms of some important parameters. Our
numerical evaluations show the impacts of different parameters
of the propagation environment on the Doppler PSD. More
importantly, we find that the shapes of the Doppler PSD are
completely different according to single- or double-bounced rays
for M2M channels, while they are exactly the same for fixed-
to-mobile (F2M) channels. Finally, it is worth mentioning that
some interesting observations obtained from these numerical
results can be considered as the guidance for further proposing
more realistic M2M channel models and building up future
measurement campaigns.

I. INTRODUCTION

Recently, M2M communications have received much atten-
tion due to some new applications, such as wireless mobile ad
hoc networks, relay-based cellular networks, intelligent trans-
portation systems, and dedicated short range communications
(DSRC) systems, where both the transmitter (Tx) and receiver
(Rx) are in motion and equipped with low elevation antennas.
Such M2M communication systems differ from conventional
fixed-to-mobile (F2M) cellular radio systems, where only one
terminal (mobile station) is moving while the other one (base
station) is fixed. Therefore, many existing channel models
developed solely for conventional cellular radio systems can
not directly be used for M2M communication systems. Akki
and Haber [1], [2] were the first to propose a channel model for
single-input single-output (SISO) M2M Rayleigh fading chan-
nels and further investigate the corresponding statistical prop-
erties. Recently, two-ring geometrical stochastic models con-
sidering only double-bounced rays for MIMO M2M Rayleigh
fading channels were presented in [3] and [4] for isotropic
and non-isotropic scattering environments, respectively. In [5],

the authors proposed a more general two-ring model for
MIMO M2M channels taking into account the line-of-sight
(LoS), single-, and double-bounced rays, but they did not
further study the difference between the single- and double-
bounced rays. However, all the aforementioned MIMO M2M
channel models only investigated space-time (ST) correlation
properties of MIMO M2M channels. Frequency correlation
properties of two narrowband sub-channels [6] in a MIMO
M2M channel have not been studied so far. Moreover, although
the Doppler PSD is one of the most important statistical prop-
erties that make M2M channels significantly different from
F2M channels, more detailed investigations of the Doppler
PSD in non-isotropic scattering environments are surprisingly
lacking in the open literature.

Motivated by the above gaps, our objectives are mainly two-
fold. First, we propose a new STF correlation model based on
the two-ring model considering the LoS, single-, and double-
bounced rays for MIMO M2M multicarrier Ricean fading
channels in non-isotropic scattering environments. Closed-
form expressions are derived for the STF CF and the cor-
responding SDF PSD between any two narrowband sub-
channels with different carrier frequencies. As we will see
later on, the derived STF CF and SDF PSD include many
existing CFs and PSDs as special cases, e.g., those in [3]-
[5]. Furthermore, the derived STF CF and SDF PSD are very
useful for realistic performance evaluation and comprehensive
understanding of MIMO M2M multicarrier systems, e.g.,
MIMO-orthogonal frequency-division multiplexing (MIMO-
OFDM) systems. Second, based on the derived SDF PSD
we study in more detail the Doppler PSD in a non-isotropic
scattering environment in terms of some important parameters,
e.g., the single-/double-bounced rays, mean values of the angle
of arrival (AoA) and angle of departure (AoD), angle spreads,
antenna element spacings, directions of motion, and frequency
separations. More importantly, we find that the contributions
to the Doppler PSD from single- and double-bounced rays
are not similar anymore in M2M channels, while this is true
in F2M cellular channels. Some interesting observations and
useful conclusions are obtained which can be considered as the
guidance for proposing more realistic MIMO M2M channel
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models (e.g., the one in [7]) and setting up future M2M
channel measurement campaigns.

The paper is structured as follows. In Section II, we intro-
duce the two-ring channel model with the LoS, single-, and
double-bounced components for MIMO M2M Ricean fading
channels. In Section III, the STF CF and the corresponding
SDF PSD of any two sub-channels with different carrier fre-
quencies are derived in a non-isotropic scattering environment.
Numerical results and analysis are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. THEORETICAL MODEL FOR MIMO M2M CHANNELS

Let us now consider a narrowband single-user MIMO M2M
multicarrier communication system with My transmit and Mg
receive omnidirectional antenna elements. Both the Tx and
Rx are in motion and equipped with low elevation antennas.
The propagation scenario is characterized by non-isotropic
scattering with possibly a LoS component between the Tx
and Rx. The MIMO fading channel can be described by
an Mg x My matrix H(t) = [h; ()], ,ps, Of complex
faded envelopes, where h;; (t) denotes the complex impulse
response between the jth Tx and the ith Rx.

Fig. 1 illustrates the geometry of a two-ring MIMO M2M
channel model, where the LoS, single-, and double-bounced
rays are considered. We assume that uniform linear antenna
arrays are used with arbitrary numbers of antenna elements.
As an example, M = Mpr = 2 were taken in Fig. 1. The
two-ring model defines two rings of effective scatterers, one
around the Tx and the other around the Rx. Suppose there are
N effective scatterers around the Tx lying on a ring of radius
Ry and the nith (nqy = 1, ..., N7) effective transmit scatterer
is denoted by S(Tnl). Similarly, assume there are N, effective
scatterers around the Rx lying on a ring of radius Rz and the

nath (ng = 1, ..., Ny) effective receive scatterer is denoted by
Sg”). The distance between the Tx and Rx is D. The antenna

element spacings at the Tx and Rx are designated by dp and
dR, respectively. It is normally assumed that the radii Ry and
Rp are both much larger than the antenna element spacings
dr and g, ie., min{Rp, Rp} >> max{dr,dr}. The multi-
element antenna tilt angles are denoted by Br and Sg. The Tx
and Rx move with speeds v and vg in directions determined
by the angles of motion 7 and ~yp, respectively. The symbol
(bL"S denotes the AoA of a LoS path. The AoAs of the waves

travelling from the effective scatterers S (") and Sk (n2) towards
the Rx are denoted by ¢ ("1) and ¢(”2 respectively. The AoDs
of the waves that impinge on the effective scatterers S;nl) and
SI(;"’) are designated by ¢("1 and (i)(Tn 2, respectively.

From the above described geometrical-based model, the
received complex impulse response at the carrier frequency
fe for the T,, — R, link is a superposition of the LoS, single-,
and double-bounced rays, and can be expressed as [5]

hpg (t) = hE2S (8) + WP (t) + hDP (t) (1)

where
hLoS (t) _ KPQQPQ e—jQﬂchpq
pPq qu + 1
><€ [27rmeaztcos(7r tbﬁ”er’YT) +27TmeaItCOS(¢é{;Sf’yR)} (2)
ol (t Z ho?
2
Z 7753 lim Z 3 (%n, — zﬂfcqum,i)
i—1 Kpq + 1 Nl%oo m
A L
Ny, N.
hDB (t) _ nDBqu li 12:2 1
Pq Kpg+1 Nl’N2—>OOn1,n2 . \/m
xBj(wnl 772_27|'fc7'pq ni, 712)
wel [QTFfT,,LMtCOb(¢(T"1)—7T> +27Tme“tCOS(Gﬁ(nz)—VR)] (4)

In (2)-(4), p=1,2,.... Mp, g = 1,2,.... MR, Tpq = €pq/C,
Tpani = (€pns + €niq)/C Tpgnane = (Epny + €nyny + €ngg)/C
are the travel times of the waves through the link T, — R,,
T,—S%) (5% or 83— R, and T, — 87 — 51" — R,
respectively, with ¢ denoting the speed of light. The symbol
K, designates the Ricean factor of the T, — R, link and
2,4 denotes the total power transferred through the 7, — R,
link. Parameters nsp, and npp specify how much the single-
bounced and double-bounced rays contribute to the total
scattered power €2,,/(Kp, + 1). This indicates that these
energy-related parameters satisfy Zle nsp, + Mpp = 1.
The phases 1,,, and v, », are independent and identically
distributed (i.i.d.) random variables with uniform distributions
over [—m,m), fr,... = vr/A and fr, . = vg/A are the
maximum Doppler frequencies associated with the Tx and Rx,
respectively, and A is the carrier wavelength.

Distances €pq, €pn;> €n;q» aNd €pyp, in (1)=(4) can be
expressed as functions of the relevant angles, e.g., gZ)LOS gb(M),

and gbg“). From Fig. 1, assuming D > max{dr,0r} and
invoking the laws of sines and cosines, these distances are

€pg ~ €—kybrcos ( LoS _ 51?,) (5)
€pn, ~ Rp — kyor cos ( (n1) _ ) (6)
€nig ~ &n, — kgdRcos (¢("1) R) @)
o R Eny — Ry cos (672 — o) ®)
€nyg ~ Rp—k4dRcos ( R ﬁR) )

€mny ~ D — Rpcos ") + Rpcos ' ~ D (10)

where k,=Mp2pH /2, kyg=Mpr—2¢+1/2, e~D — k, 07 cos Br,
phoS~m, €, ~D—Rr cos ¢, ¢ mmAr sin o), €.,
D+Rpcos g%, and ¢ ~ A sin ¢\7) with Ap~Ryp/D
and AR%RR/D
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In this paper, to characterize the AoD qSE,? 2

(ni)
R

and AoA
, we use the von Mises probability density function
(PDF) [8] defined as f (¢) 2 exp [k cos (¢ — )] /271y (k).
where ¢ € [—7, ), Iy (+) is the zeroth-order modified Bessel
function of the first kind, ¢ € [—m,m) accounts for the
mean value of the angle ¢, and k (k > 0) is a real-valued
parameter that controls the angle spread of the angle ¢. For
k = 0 (isotropic scattering), the von Mises PDF reduces to the
uniform distribution, while for £ > 0 (non-isotropic scatter-
ing), the von Mises PDF approximates different distributions
depending on different values of k.

III. NEw STF CF AND SDF PSD

In this section, based on the two-ring channel model in
(1)-(4), we will derive the STF CF and the corresponding
SDF PSD of any two narrowband sub-channels with different
carrier frequencies in a non-isotropic scattering environment.
We also show that the newly derived STF CF includes many
existing CFs, e.g., those in [3]- [5], as special cases.

A. New Generic STF CF

The normalized STF CF between any two complex impulse
responses iy, (t) and hg;, (t) with different carrier frequen-
cies f. and féT), respectively, is defined as

P'q’
Phyanty), (T2X) =
\/E [yhpq (t)ﬂ E [

where ()" denotes the complex conjugate operation, E[-] is
the statistical expectation operator, p,p’ € {1,2, ..., M}, and
q,¢" € {1,2,..., Mp}. It should be observed that (I11) is a
function of time separation 7, antenna element spacings
and 0, and frequency separation y = fc(T) — fe.

Using (2), (5), and (11), the STF CF of the LoS component
can be obtained as

. s 27X 2
phLoshL/Os;(T) (7', X) = 4 /quKp/q/eJQTrX J2rTY 45 =72
pa plq

where X=P cos Q) cos Or, Y=fr,_ .. cosvrr,. .. COSYR,
and Z=D—k, 07 cos Br+ky Og cos Br, with P=(p'—p) d1 /A,
Q = (¢ —q9or/N ky = (Mp—2p'+1)/2, and k, =
(Mr—2¢'+1) /2.

Using (3), (6)—(9), and (11) and considering the von Mises
PDF of the AoA and AoD, the STF CF of the two-ring model
with single-bounced rays can be expressed as

E (g (1) Y1y (¢ 4+ 7)]

(11

il

12)

jCSBl(Z)
hSBl(Q)(T) (T7 X) = 1SBy(»€ T(R)

of i ) )
Io (kg en®)

AFB BoB B ARP2 . BEPBand

kgBl cos ,ugBl —j2nT fr,, .. cosyr+j2m P

P, SBy2
hpq (2)

X

13)

where parameters
SBs SBy _
Cp™* are A77" =

x cos fr —j2nxLr/c, B3P = k3Prsin u5Pr — jonr fr,

xsinyp — j2n7fr, .. Arsinyg + j2rPsin By + j2rQArp
x sin Bp—j2mxSt/¢C, CgBl =277 fR,, .. COSYR—2T() cos Or+
orxTr/c, A3P? = kP2 cosppP? — j2n7fr,.,. COSYR +
j27@ cos Br—j2nxLR/c, BlgB? :k}gBQ sin N%B2—j27r7f3mm
x sinyr4277 fr,,.. Arsinyr927Q sin Srtg2r PA R sin Sr—
j2mxSg/c, and C’ﬁBz = 277 fr,, ., cosyr+2mP cos Br+
ZWXTR/C, with L= RT—‘rk‘p/ o1 cos Br, St = k‘p/ o7 sin B+
kq/5RAT sin Br, Tr = RT+D+kq/(5R cosPBr, Lr = —Rpr+
k:q/éR cos Br, Sp = kq/5R sin Bg + kp/CSTAR sin By, T =

Rp+D—ky 67 cos Br. The symbol p32! (ulsf 2

mean value of the AoD ¢\ (AoA ¢"%)) and k5P (k;?;B)

controls the angle spread of the AoD (/)é? 2 (AoA q’)%”)).

Using (4), (6), (8), (10), and (11) and considering the von
Mises PDF of the AoA and AoD, the STF CF of the two-ring
model with double-bounced rays can be given by

denotes the

-cDB
Pposypem (T,X) = nppe’
Pq p/q/

o {/(42)7+ (52)7 b 1o { (3% + (587

Io (k77) Io (k7")

X

(14)

where CPB =2mx (Rp+Rgr+D) [c, ARB =kPP cos 2P —
J2nTfr, .. cosyr + j2nPcosfr — j2mwxky dr cosPr/e,
BRE = kRBsinuRB — jorrfr, . sinyr + j27Psin B —
j2mxkyérsinBr/e, ARB = kRBcosuBP — j2rnrfp,. ..
X cos g + j2mQ cos Br — j2mxky R cos Br/c, and BEB
=  kRBsinuBB — j2rrfr,.. sinyg + j27QsinfBr —
j2nxkyOpsinBr/c, with pRB (ugB) denoting the
mean value of the AoD ¢\ (AoA ¢'r?)) and KRB (kD5)
controlling the angle spread of the AoD ¢§? Y (AoA gbgm)).
Since the derivations of (12)-(14) are similar, only the
derivation of (13) is given in Appendix A, while others
are omitted here for brevity. Finally, the normalized STF
CF between two time-variant complex impulse responses
hpg (t) and hg;, (t) becomes a summation of the STF CFs

in (12)_(14)s ie., p} (M (T7 X) = phLoS} LoS(t) (T7 X) +
9 altprgr pa Mplgl
izt Pyspiysmn (T,X) + Ppsgosm (T, X)-
r.q paq
The normalized STF CF p, , ) (7,X) includes many ex-
rq ‘p’q’

isting CFs as special cases. Assuming the frequency separation
X = 0, we can then obtain the CF (18) in [5]. Consequently,
the STF CF also includes the CFs listed in [5], e.g., the ones
in [3] and [4], as special cases.

B. New Generic SDF PSD

Taking the Fourier transform of the STF CFs in (12)-(14)
in terms of time, we can obtain the corresponding SDF PSDs.
1) In terms of the LoS component,

o X 27X Z
F{Phlg;shﬁ,‘j”) (7, X)}—\/ Kpg Ky €776 (fp+Y)
(15)
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where § () denotes the Dirac delta function and fp is the
Doppler frequency.
2) In the case of the single-bounced component,

SB1 5

(2)

} M5B, 26" T
SBi(2)

1o (Kpcas”)

F{p 551(2)h551(2)(f> (T X)

pq

sB 531(2)
. 12) Pr(r)
joO SB

e ;(BR1>(2> Tu;)(z) 531<2>7 SBuz) 2
¢ Wa® Wr(r) Or(r)

X
SBi2) SBuz)
\/W S = (070”) 16)
where 032" =27 (fp—fr,,.. cos WR) U2B =—27Q cos B+

2wy (RT—I-D—i—k 10 cos Br) [c, W7 5B 47r2fT - +47r2me“
xAZsinv% + 872 fr,.. fr,... A7 sinyr sinyg, DT =
J2mkSB fr 55) + 2mkEE

max Cos |\ Yr — IU’T AT Sin’YR

x sin pg ' 4m? P fr, ., cos (Br — 40472 QAr ., sin Br
x sin 77~4772PATmeM sin Br sin ypAT2QAZ fR, ... sin Br
x sinyg +47%x (fr,,.. 1 /ct+fRr,.. ArsinyrHi /c), SBl
7]271_]{:531 fr,..sin (yr — u“;Bl)Jerﬂk;Bl fRoun AT sin YR

X o8 ySB 4T P f,_sin (B — yrWAm*QAr fr,... sin B
X cosyr — 4m*PAr fr,,.. cos frsinyg + 4n?x (f1,,..G1/c
Hr,,..ArsinyrVi/c), SB? = 27 (fpt+fr,,.. COS’)/T)
USB =27 P cos Br+2mx (RR—i—D k07 cos Br) /e, W
47T2fR7m +an?ff | Afsingg+ 82 JRoaw [Tae ARSINVR
X sinyr, D§B2 = j27rk:§32fR"m cos <’YR — u}S%BQ) + 527
kSB"‘ f1,... AR sinyr sin u% —47%Qfr,, .. cos (Br — YR)
—47T2PARmeM sin Br sin VR—4W2QARmeM sin B sin yr
~Am? PAR f1,,,, 50 B S YD +4T°X (fRppas T2/ CHfT0n AR

x sinyrHa/c), EaP? = j2rkyP* fr. . sin (yg — upt?

2k fr,,., . Agsinyrcos pi”* + AnQfg,,, sin (Br
—r) + 47°PARgfR,,, sinfrcosyr — 41°QARfr,..
X cos Br sinyr + 472X (fr,,..Go/ctfr,.. ArsinyrVa/c),
with J1 = Ry cosyr~+ky o1 cos (Br — yr)+kqdrArsin Br
X sinyr, Hi = kip/(STSinﬂT + kq/dRATsinﬂR, Gy =
RT Sil’l"}/T — kp/(5T sin (6'1" *'YT) - kq/(SRAT sinﬂR CoS YT,
Vi = Rpr + kp/chos/BT, Js = —Rprcosvyr + kq/5R
xcos(Br —Yr) + kpdrAgsinfrsinyg,  Ho =
kiq/(SRSinﬁR + k'pl(STARSiDﬁT, Gs = —Rpgsinyg —
kydrsin (Br —vr) — kpdrAgsinfBrcosyr, Vo =
—Rp + kg dr cos Br. | fp = fRypa, cosvr] < /WP /(27),

and |fp + fr,,,, cosvyr| < /WP /(2n).
3) In terms of the double-bounced component,

F p—

\Pgougzn (0} = 1B 7 g

<V€§Z N 47r2f2)
A /WQPB — 4m2f2

max

nDBejCDB

DRB COS
j2nf WDB

X 2e

., DRE COS ( EgB wphB — 47T2f2>
@2¢ " WRE (17)
[WDB _ 4z2f2
where © denotes convolution, DR = —47r2P me“

x cos (Br — yr) + j27kRB fr, . cos ('yT — R ) + 4m?y

XmeaTk 5T COS (,BT — 'YT) /C EDB = 47T2PmeaI sin (/BT
—7) + j2rkRB fr.  sin (’yT — ) + 4n3xfr,... kp 0
x sin (Br — vr) /¢, DDB = —4m2Qfr,,.. cos (Br — Yr) +
j2rnkEB fr  cos ('yR - ,ugB) + 472X fR, 0. kg OR cOS (B
vr) /¢ ERP = 4n*Qfr,,., sin (Br — r) +527kR" fr,...
X sin (”yR—uR ) 47F2Xmealkq’5RSin(ﬁR_”)/R) /C,
WPP S adlfy WP = G, and [fo] <

WEE +\/WEP ) /(27) = [1,.. + fR,..- Appendix
B only gives the derivation of (16), while the derivations
of (15)—(17) are similar and therefore are omitted here
for brevity. Finally, the SDF PSD between two time-
variant complex impulse responses hy, (t) and h;%' (t)

becomes a summation of the SDF PSDs in (15)—(17),
ie., F{ph (D (’T,X)} =
Prq lp'q’

Z?:l F P, SB;, SB1; (1) (T7 X) +F phDBhDB(T) <T7 X) .
hpq }Lp,q, Pq pq’

F QP ospresh (T,X) ¢ +
Pq p/q/

IV. NUMERICAL RESULTS AND ANALYSES

In this section, based on the derived SDF PSD in Section
III, the Doppler PSDs of the two-ring model with single-
and double-bounced rays are numerically analyzed in more
detail in terms of some important parameters, e.g., the mean
values of the AoA and AoD, angle spreads, directions of
motion, space separations of antenna elements, and frequency
separations. The following parameters are used for our nu-
merical analysis: f. = 5.9 GHz, fr,,.. = fr,... = 570 Hz,
D =500 m, and R = Rr = 40 m.

Fig. 2 shows the influence of single-/double-bounced rays,
angle spreads, mean values of the AoA and AoD, and di-
rections of motion on the Doppler PSD. It is clear that in
isotropic scattering environments (k7 = kg = 0), no matter
what the directions of motion are, the Doppler PSD for the
single-bounced rays is similar to the U-shape PSD of F2M
cellular channels, whereas the PSD for the double-bounced
rays has a peak in the middle (“rounded”-shape). We can also
observe that the Doppler PSD of the double-bounced rays
remains unchanged for different directions of motion, while
the Doppler PSD of the single-bounced rays changes according
to its position in the normalized Doppler frequency domain
keeping the same shape (U-shape). It is worth mentioning that
by setting one terminal fixed, our M2M model can reduce to
a F2M model. In this case, we restudied the Doppler PSD for
either single- or double-bounced rays and found that they have
exactly the same U-shape PSD. Due to the limited space of this
paper, the results regarding F2M channels are omitted here.
These aforementioned observations indicate that the impacts
of single- and double-bounced rays on the Doppler PSD are
completely different for M2M channels, while they are exactly
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the same for F2M channels. Furthermore, it is obvious that the
influences of single-bounced rays from different rings (ring
around the Tx or Rx) on Doppler PSD are the same for M2M
channels when the Tx and Rx move in the parallel and opposite
directions. This makes the single-bounced two-ring model
have the U-shape Doppler PSD for the parallel and opposite
moving directions. When the Tx and Rx move in the same
direction, the influences of single-bounced rays from different
rings on the Doppler PSD are completely different in terms of
the position of the Doppler PSD. Therefore, as shown in Fig. 2,
the single-bounced two-ring model has the double-U-shape
Doppler PSD for the same moving direction. In such a case,
it is desirable to take the different contributions from different
rings into account, which were never considered in the existing
M2M models, e.g., [S]. Therefore, we can conclude that the
more realistic M2M channel model should include the impacts
of both single- and double-bounced rays, which implies a
new way to construct more accurate M2M channel models.
Considering the underlying physical phenomena behind these
observations, it seems that the U-shape Doppler PSD will
appear in such a scenario that the main received powers are
from some large stationary objects (e.g., buildings or bridges)
since the AoA and AoD are highly dependent in this case.
While the “rounded”-shape Doppler PSD will appear when
the main received powers are from some moving objects (e.g.,
cars around the Tx or Rx) since in this case the AoA and
AoD are relatively independent. This conclusion needs to
be verified by further measurement results. From Fig. 2, it
can be observed that the angle spreads (related to the values
of kr and kgr), mean angles (related to the values of up
and ppr), and directions of motion (related to the values of
~r and yg) significantly affect the behavior of the Doppler
PSD. Therefore, these three parameters play an important
role in the behavior of the Doppler PSD for non-isotropic
scattering environments. Obviously, in an isotropic scattering
environment, these impacts vanish.

Figs. 3 and 4 depict the influence of the antenna element
spacing and frequency separation on the Doppler PSD, respec-
tively. It is clear that both the space separation and frequency
separation introduce fluctuations in the Doppler PSD. It is
straightforward to conclude that higher separation (space or
frequency) will result in more fluctuations in the Doppler PSD.

V. CONCLUSIONS

In this paper, we have derived closed-form STF CFs and the
corresponding SDF PSDs for MIMO M2M multicarrier Ricean
fading channels in non-isotropic scattering environments based
on the two-ring model with single- and double-bounced rays.
The novelty of the proposed STF correlation model with
derived CFs and PSDs lies in the fact that it considers the
impact of the frequency correlation, which has not been
studied so far for M2M channels. Based on the derived SDF
PSD, we have further investigated the behavior of Doppler
PSD in more detail in term of some important parameters. Our
numerical evaluations have revealed that the Doppler PSD is
very sensitive to the angle spreads, mean values of the AoA

and AoD, and directions of motion in non-isotropic scattering
environments. The shapes of the Doppler PSD are completely
different according to single-bounced rays or double-bounced
rays, while they are exactly the same for F2M channels.
We have also found that both the spacing and frequency
separations introduce fluctuations in the Doppler PSD. It is
worth mentioning that these obtained interesting observations
and analyses can be considered as useful guidance for further
proposing more realistic M2M channel models and setting up
future measurement campaigns.

APPENDIX
A. Derivation of (13)

Considering the von Mises PDF and substituting (3) and
(6)-(9) into (11), we have

. SBya)
eJCT(R)
S S T =
phpfl(z)hp/?(z)m ( aX) orly (kSBl(Z))
T(R)
” SBq(2) SB1(g) SBy(gy . ,SBi(a
AT(R)( cos d)T(R)( +BT(R)( )Sln¢T(R)( ) SBi(2

(2)

[ e dg507. (18)

The definite integrals in the right hand side of the above equa-

tion can be solved by using the equality [ e® sinetbeoseqe —
2rly (Va? +b2) [9]. After some manipulations, we can get
the closed-form expression given by (13).

B. Derivation of (16)

Based on mathematical knowledge, we know the equality

a’? + b? = ¢(d?® + €?) exists. This allows us to transform
SBia)) 2 S$By\ 2| . .
Iy (AT( R) ) + (BT( R) ) into the following expres-
sion for further derivation
331(2) 2 SB1(2)
D E
. SB T(R T(R
I [y Wi < 7+ =55 | + | =55
1% 1(2) W, 1(2)
T(R) T(R)

(19)

By Fourier transforming (13) in terms of time and using
(o)

(19) and the equality [ I (ja\/a:2+y2) cos (Bz)dr =
0

cos (y\/ a2 — (2) /\/a® — (32 [9], we can obtain the closed-
form expression in (16) after some manipulations.

REFERENCES

[1] A. S. Akki and F. Haber, “A statistical model for mobile-to-mobile land
communication channel,” IEEE Trans. Veh. Technol., vol. 35, no. 1, pp.
2-10, Feb. 1986.

A. S. Akki, “Statistical properties of mobile-to-mobile land communica-
tion channels,” IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 826-831,
Nov. 1994.

M. Pitzold, B. O. Hogstad, N. Youssef, and D. Kim, “A MIMO mobile-
to-mobile channel model: Part I-the reference model,” Proc. IEEE
PIMRC’05, Berlin, Germany, Sept. 2005, pp. 573-578.

(2]

(3]

998



[4] A. G. Zaji¢ and G. L. Stiiber, “Space-time correlated MIMO mobile-to-
mobile channels,” Proc. IEEE PIMRC’06, Helsinki, Finland, Sep. 2006,
pp.1-5.

[5] A. G. Zaji¢ and G. L. Stiiber, “Space-time correlated mobile-to-mobile 5§
channels: modelling and simulation,” IEEE Trans. Veh. Technol., vol. 57,
no. 2, pp. 715-726, Mar. 2008.

[6] C.-X. Wang, M. Pitzold, and Q. Yao, “Stochastic modeling and simulation
of frequency correlated wideband fading channels,” IEEE Trans. Veh.
Technol., vol. 56, no. 3, pp. 1050-1063, May 2007.

[7] X. Cheng, C.-X. Wang, D. I. Laurenson, H. H. Chen, and A. V. Vasilakos,
“A generic geometrical-based MIMO mobile-to-mobile channel model,”

-15

e

Normalized space-Doppler PSD (dB)

-20 FEIRY v
IEEE IWCMC’08, Chania Crete Island, Greece, Aug. 2008, accepted for A Vo L
P O L VA | —8,/A=8.1=0, double
publication. i v Vo R
[8] A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the 25 ; \ —dy/A=8gh=1, double
distribution of the angle of arrival and the associated correlation function f N s df’“ble
and power spectrum at the mobile station,” IEEE Trans. Veh. Technol., _30- ! ---3,/A=81=0, ang'e
vol. 51, no. 3, pp. 425-434, May 2002. - -8,/A=8g=1, single
[9] L. S. Gradshteyn, and 1. M. Ryzhik, Table of Integrals, Series, and ‘ ‘ ‘ ‘ ‘ ‘ - - -8;/A=8)=5, single
Products. 5th ed, A. Jeffrey, Ed. San Diego, CA: Academic, 1994. 3% 08 06 04 02 0 02 04 06 08 1
Normalized Doppler frequency, fD/fmax

Fig. 3. Normalized Doppler PSDs of the two-ring model with single-
and double-bounced rays for different antenna element spacings
(kr = kr =0, x =0, pr =0, pp = 7w, Y0 = Yr = 7/2,
and MT = MR = 2).
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Fig. 1. Two-ring model with the LoS, single-, and double-bounced
components for a MIMO M2M channel with My = Mg = 2 antenna
elements.
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Fig. 2. Normalized Doppler PSDs of the two-ring model with single-
and double-bounced rays for different angle spreads, mean angles,
and directions of motion (67 = dr =0, x =0, and My = Mpr =
2). SD: same direction (yr = yr = 0); PD: parallel direction (yr =
vr = m/2); OD: opposite direction (yy = 0, yr = ). Case 1:
kr =kr =0, ur =0, ur = m; Case 2: kr = kr =3, ur =0,
MR = T, Case 3: k’TszZ?), /LTZMRIﬂ/2.
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