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Abstract—As the requirements related to resolution or the data
rate increase, most angle-of-arrival (AoA) estimation problems
can be assumed to be under a broadband signal model. In this
paper, AoA estimation using a nonuniform planar array (NUPA),
which aims to resolve more signals and reduce mutual coupling,
is considered under a broadband signal model. The analysis
is conducted in both the space and frequency domains, and a
broadband co-array is proposed to improve the performance
of the AoA estimation. The broadband co-array is generated
as follows: First, the received broadband signal is decomposed
into several narrowband signals, and the samples from different
frequency bins are transformed to space-domain samples to
generate a virtual array. Then, the second-order statistics of the
virtual array are used to generate the broadband co-array. The
virtual array can decrease the number of element pairs with
small interelement spacing to reduce mutual coupling in AoA
estimations. With the help of the virtual array, the following
broadband co-array can greatly increase the degrees of freedom,
resulting in more resolvable signals and lower Cramer-Rao
bounds of AoA estimation. An optimization method based on
sparse recovery is proposed to locate the array. The simulation
results confirm the AoA estimation performance achieved by the
designed NUPA.

Index Terms—Nonuniform planar array (NUPA), broadband
signals, visualization, optimization of array pattern, co-array,
AoA estimation.

I. INTRODUCTION

ACcurate angle-of-arrival (AoA) estimations play impor-

tant roles in many applications, such as radar, astronomy
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and communications [1]–[6]. Classic AoA estimation methods,

i.e., multiple signal classification (MUSIC) [7], estimation of

signal parameters via rotational invariance techniques (ES-

PRIT) [8], and their generalizations [9], [10], have been widely

studied. To achieve high precision, various estimation methods

[11], [12] have been developed to approach the Cramer-Rao

bound (CRB) [13], which expresses the minimum achievable

variance on AoAs. An extended direction of arrival (DoA)-

matrix method, which can make full use of the information in

the autocorrelation and cross-correlation matrices, was studied

to enhance the performance [11]. A high-resolution AoA

method was proposed under the hybrid analog and digital

structure [12]. In fact, it can also be inferred from the CRB that

the location of an array impacts the estimation performance.

Furthermore, most methods are confined to the case of tradi-

tional arrays, i.e., uniform linear arrays (ULAs), which suffer

from significant mutual coupling brought by many element

pairs with small interelement spacing (IES) [14]–[16] and limit

the number of resolvable signals.

Nonuniform arrays, which are used to resolve more sig-

nals and reduce mutual coupling effects, have been widely

investigated. Previous works on nonuniform arrays include

[17]–[29]. The number of sensor pairs with small IESs in

nonuniform arrays is usually much smaller than that in ULAs,

so nonuniform arrays lead to lower mutual coupling. Fur-

thermore, with the help of co-arrays [20], nonuniform arrays

can dramatically increase the degrees of freedom (DoFs).

Using only the second-order statistics of the impinging signals,

an array with 𝑀 physical elements can generate a co-array

yielding O(𝑀2) DoFs [20]. Classic one-dimensional (1-D)

nonuniform arrays include the minimum redundancy array

[19], nested array [20], the coprime array [18], super nested

array [21] and other generalizations. A co-array is generated

from the second-order statistics, and the AoA is estimated via

spectral or sparsity-based methods [30]–[32]. The designed

arrays should have co-arrays that are hole-free or offer high

DoFs. Experiments have also been conducted to confirm the

effectiveness of nonuniform arrays [22].

To sense high-dimensional space, two-dimensional (2D)

nonuniform arrays, i.e., billboard arrays [29], open box arrays

[28], 2D coprime arrays [23], [26], hourglass arrays [24] and

2D nested arrays [25], [27] were studied. A 2D coprime

array is derived by extending a 1-D coprime array to a

2D nonuniform array. The coprime planar array geometry,

which consists of two uniform planar subarrays the size of

two coprime integers, was proposed in [26], and a new 2D

coprime array was further proposed to increase the DoFs and
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enhance the estimation performance [23]. Hourglass arrays

were proposed to reduce the mutual coupling in open box

arrays [24]. A 2D nested array was obtained by systematically

nesting two arrays, one with sensors on a sparse lattice and

the other on a dense lattice, where the lattices have a certain

relation with each other [25], [27].
Using the studied nonuniform arrays, the corresponding

AoA estimation methods were proposed [33]–[36]. The 2D

AoA estimation method using parallel coprime arrays and

parallel nested arrays were developed in [33] and [35], re-

spectively. In [35], AoA estimation for coprime multiple-

input multiple-output radar was studied, and a combined

unitary estimation of signal parameters via an ESPRIT-based

algorithm was proposed. A novel virtual array interpolation-

based method for coprime arrays was proposed to enhance the

AoA estimation performance [36].
A narrowband signal is assumed for 2D nonuniform arrays

in [23]–[27], [29] and the corresponding AoA estimation

methods in [33]–[36]. As the requirements related to resolution

or the data rate increase, the signal bandwidth increasingly

widens [37]. Using broadband signals, coherent signal sub-

space methods (CSSMs), which design focusing matrices to

combine the information from different frequency subbands,

have been studied [38]–[40]. However, CSSM requires the

input of initial values to find focusing matrices, and poor

initial values can lead to biased estimates [41]. The existence

of the beamforming matrix depends on the size of the field of

view, and the performance of focusing matrices dramatically

decreases when the bandwidth becomes too wide. Using these

methods, the number of resolvable signals is still limited by the

number of physical elements. In [42], the method of wideband

direction of arrival (DoA) estimation with sparse linear arrays,

which uses Jacobi-Anger expansion to express the received

signal, was studied, and its superior performance was shown.

However, Jacobi-Anger expansion cannot be directly extended

to 2D arrays.
In this study, on the basis of broadband signals, an NUPA is

proposed to estimate multiple AoAs. The element locations in

the proposed NUPA are then obtained by exploiting the benefit

of broadband signals and optimizing the performance of the

broadband co-array. The broadband co-array is obtained in two

steps. In the first step, the relationship between frequency-

domain samples and space-domain samples is studied to

generate a virtual array. In the second step, the second-order

statistics of the virtual array are used to generate a broadband

co-array. The contributions of this paper are summarized as

follows:

• First, the relationship between frequency- and space-

domain samples is exploited. Under certain conditions

related to the array aperture and relative bandwidth of

the transmitted signal, frequency-domain samples can be

transformed into space-domain samples to generate a

virtual array. The maximum number of virtual elements

is also analyzed, and the proposed broadband co-array

can enhance the benefits achieved by the virtual array to

resolve more signals and lower the CRB of the AoA.

• Second, a physical element and a virtual element or two

virtual elements contributed by the virtual array can be

used to format an element pair with a small IES to

perform Nyquist sampling in the space domain. Thus,

the number of physical element pairs with small IESs is

largely decreased to reduce mutual coupling.

• Third, the concept of broadband co-arrays is extended

to existing arrays to enhance the AoA estimation per-

formance. To ensure the estimation performance in sce-

narios with fewer elements, a method that optimizes the

broadband co-array performance is proposed for locating

elements.

The rest of this paper is organized as follows. In Section II,

the signal model is presented. In Section III, AoA estimation

of broadband signals using NUPA is considered. In Section

IV, CRB analysis is performed. Simulations are conducted to

confirm the effectiveness of the proposed NUPA in Section V.

Finally, Section VI concludes this paper.

Notations: We use upper (lower) bold-face letters to denote

matrices (vectors). Superscript (·)H denotes the Hermitian

transpose, (·)T denotes the transpose, and (·)∗ denotes the

complex conjugate. ⊗ represents the Kronecker product, and �

represents the Khatri-Rao product (i.e., the columnwise Kro-

necker product). We use vec{·} to denote matrix vectorization

and �·� to denote the floor operation.

II. SYSTEM MODEL

Suppose 𝐾 broadband uncorrelated signals with bandwidth

𝐵 impinge on a planar array with 𝑀 elements. The 𝑚-th

element is assumed to be placed on the grid (𝑖𝑚𝑑, 𝑗𝑚𝑑)
(1 ≤ 𝑚 ≤ 𝑀), where (𝑖𝑚, 𝑗𝑚) is a nonnegative integer-

valued vector and 𝑑 is the half-wavelength corresponding to

carrier frequency 𝑓c. The elements are assumed to be located

at M = {(𝑑𝑖𝑚, 𝑑 𝑗𝑚)}. A diagram of the signal model for

a physical array is displayed in Fig. 1(a). At each element,

the received broadband signal is first sampled at the Nyquist

rate, and the samples are then partitioned into 𝑄 frequency

subbands by discrete Fourier transform. Assume that the

frequency of broadband signals is divided into 𝑄 subbands

and that the discrete frequency axis is set as
[
𝑓1, 𝑓2, · · · , 𝑓𝑄

]
,

where 𝑓𝑞 = 𝑓c − 𝐵/2 + (𝑞 − 1)𝐵/(𝑄 − 1). For the received

broadband signal, the 𝑛-th snapshot of array M at frequency

𝑓𝑞 is denoted as

rM,𝑞,𝑛 = C
𝐾∑
𝑘=1

𝜌𝑘,𝑛aM,𝑘,𝑞 + nM,𝑞,𝑛, (1)

where C is the mutual coupling matrix [14] and 𝜌𝑘,𝑛 is

the amplitude of the 𝑘-th signal (1 ≤ 𝑘 ≤ 𝐾) at the 𝑛-th

snapshot. The transmitted signal is assumed to have a flat

spectrum, i.e., phase-modulated orthogonal frequency division

multiplexing (OFDM) signal, and is known to the receiver. In

(1), the frequency envelope of the transmitted signal has been

removed from the received broadband signal rM,𝑞,𝑛 in the pre-

processing stage. Therefore, the amplitude 𝜌𝑘,𝑛 is assumed

to be uncorrelated with frequency and the transmitted signal.

nM,𝑞,𝑛 denotes the noise at frequency 𝑓𝑞 , and aM,𝑘,𝑞 is the

steering vector of the 𝑘-th signal at frequency 𝑓𝑞 , which is

denoted as follows:
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(a)

(b)

Fig. 1. Diagram of the signal model: (a) Physical array; (b) Virtual array.

aM,𝑘,𝑞 =
[
𝑎1,𝑘,𝑞 , 𝑎2,𝑘,𝑞 , · · · , 𝑎𝑀,𝑘,𝑞

]T
, (2)

where

𝑎𝑚,𝑘,𝑞 = 𝑒− 𝑗2𝜋 (u𝑚 )Tb𝑘
𝑐 𝑓𝑞 , (3)

u𝑚 = [𝑖𝑚𝑑, 𝑗𝑚𝑑]
T, (4)

b𝑘 = [cos 𝜑𝑘 cos 𝜃𝑘 , sin 𝜑𝑘]
T, (5)

with (𝜑𝑘 , 𝜃𝑘) denoting the AoA of the 𝑘-th signal and 𝑐
denoting the speed of the wave.

The signals are assumed to follow the unconditional model

[43] and to be temporally uncorrelated E
{
𝜌𝑘,𝑛

(
𝜌𝑘′ ,𝑛′

)∗} = 0.

The power of the 𝑘-th signal is 𝜎2
𝑘 . The noise nM,𝑞,𝑛 is additive

white Gaussian noise with variance 𝜎2
0 .

In this study, we do not consider the gain and phase

calibration and AoA estimation simultaneously and assume

that the gain and phase impairments of NUPA have been

calibrated. Though gain and phase impairments for NUPA

could be more challenging to be dealt with than those for

simple uniform linear arrays, some recent studies [44], [45]

can be directly used to estimate gain and phase impairments

beforehand.

When mutual coupling is absent, the received signal can be

simplified from (1) as follows:

rM,𝑞,𝑛 =
𝐾∑
𝑘=1

𝜌𝑘,𝑛aM,𝑘,𝑞 + nM,𝑞,𝑛. (6)

Under the assumption of the narrowband signal model, the

spatial samples are acquired at carrier frequency 𝑓c and can

be derived from (6) as follows:

rM,𝑛 =
𝐾∑
𝑘=1

𝜌𝑘,𝑛aM,𝑘 + nM,𝑛, (7)

where

aM,𝑘 =

[
𝑒− 𝑗2𝜋 (u1 )

Tb𝑘
𝑐 𝑓c , · · · , 𝑒− 𝑗2𝜋 (u𝑀 )Tb𝑘

𝑐 𝑓c

]T
. (8)

The AoA estimation method, i.e., MUSIC, can be applied

to estimate (𝜑𝑘 , 𝜃𝑘) using 𝑁 snapshots of (7). However, when

using rM,𝑛 to estimate AoAs directly, the number of resolvable

signals is at most 𝑀 − 1. To increase the DoFs and estimate

more signals, a co-array is considered [25]. The covariance

matrix RM is derived from (7) as follows:

RM =
𝑁∑
𝑛=1

rM,𝑛rH
M,𝑛

= AM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
1 0 · · · 0

0 𝜎2
2 · · · 0

...
...

. . .
...

0 0 · · · 𝜎2
𝐾

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
AH
M
+ I𝑀𝜎2

0 ,

(9)

where I𝑀 is an 𝑀-dimensional identity matrix and

AM =
[
aM,1, aM,2, · · · aM,𝐾

]
. (10)

Note that the second equation in (9) holds when the signals

are uncorrelated. By vectorizing the covariance matrix RM and

ignoring the noise term, the following is obtained:

vec {RM} =
𝐾∑
𝑘=1

𝜎2
𝑘a∗
M,𝑘 ⊗ aM,𝑘

=
𝐾∑
𝑘=1

𝜎2
𝑘aH,𝑘 ,

(11)

where aH,𝑘 = a∗
M,𝑘 ⊗ aM,𝑘 denotes the steering vector for co-

array H and vec {RM} can be viewed as a snapshot of the

co-array located at H, with

H = {(𝑖ℎ𝑑, 𝑗ℎ𝑑) |𝑖ℎ = 𝑖𝑚 − 𝑖𝑚′ , 𝑗ℎ = 𝑗𝑚 − 𝑗𝑚′ ,

(𝑖𝑚𝑑, 𝑗𝑚𝑑) ∈ M, (𝑖𝑚′𝑑, 𝑗𝑚′𝑑) ∈ M} .
(12)

By removing the repetitive elements in H, the co-array location

is derived as H̄. Then, one snapshot of the co-array is derived

from (11) as follows:

r
H̄
=

𝐾∑
𝑘=1

𝜎2
𝑘a
H̄,𝑘 . (13)

Sparsity-based methods, or spectral methods, can be used

to estimate (𝜑𝑘 , 𝜃𝑘) (1 ≤ 𝑘 ≤ 𝐾) in (13). For an array with
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𝑀 physical elements, the corresponding co-array has O(𝑀2)
elements [25]. Most existing estimation methods assume a

narrowband signal model. As the requirements related to

the resolution or rate increase, the bandwidth of the signals

progressively widens; thus, AoA estimation with broadband

signals should be considered.

III. AOA ESTIMATION OF BROADBAND SIGNALS USING

NUPA

In this section, AoA estimation under a broadband signal

model is analyzed. We propose the broadband co-array to

enhance the AoA estimation performance. Moreover, to en-

sure adequate estimation performance in scenarios with fewer

elements, an optimization method is proposed to improve the

radiation pattern of the broadband co-array.

A. Analysis of the Broadband Co-array

An example is first presented to illustrate the benefits

brought by broadband signals. Considering the space-domain

samples of the 𝑚-th element at frequencies 𝑓𝑞 and 𝑓𝑞′

( 𝑓𝑞′ > 𝑓𝑞) as 𝑎𝑚,𝑘,𝑞 and 𝑎𝑚,𝑘,𝑞′ , respectively, the following

is obtained:

𝑎𝑚,𝑘,𝑞′ = 𝑒− 𝑗2𝜋
𝑓𝑞′ / 𝑓𝑞 [𝑖𝑚𝑑, 𝑗𝑚𝑑]b𝑘

𝑐 𝑓𝑞 (14)

It can be inferred from (3) that when ( 𝑓𝑞′ − 𝑓𝑞)
2 (𝑖2𝑚+ 𝑗

2
𝑚) = 𝑓 2

𝑞 ,

𝑎𝑚,𝑘,𝑞′ can be regarded as a space-domain sample of a virtual

element 𝑑 away from the 𝑚-th element. Thus, the broadband

characteristics can be utilized to generate virtual elements to

enhance the AoA estimation performance.

The analysis of a planar array receiving broadband signals

yields the following theorem.

Theorem 1: Suppose that signals with bandwidth 𝐵 and

carrier frequency 𝑓c are received by a planar array located

at M = {(𝑑𝑖𝑚, 𝑑 𝑗𝑚)} (1 ≤ 𝑚 ≤ 𝑀); a virtual array can

be generated to increase the number of effective elements

when there is at least one element in the array that satisfies√
𝑖2𝑚 + 𝑗2𝑚 ≥ 1/𝜂 − 0.5, where 𝜂 = 𝐵/ 𝑓c denotes the relative

bandwidth. The number of effective elements is at most

𝑀virtual, where

𝑀virtual = 𝑀 +

𝑀∑
𝑚=1

⌊
2𝜂

√
𝑖2𝑚 + 𝑗2𝑚

2 − 𝜂

⌋
. (15)

Proof: The proof is shown in Appendix A.

The condition
√
𝑖2𝑚 + 𝑗2𝑚 ≥ 1/𝜂 − 0.5 means that the

maximum IES of the physical array should be larger than

0.5𝑐/𝐵−0.25𝑐/ 𝑓c. A larger array size may lead to a reduction

in the bandwidth. Under the above conditions, broadband

signals can be exploited to increase the DoFs and thus enhance

the estimation performance. In the extreme case where all the

elements are far from reference element (0, 0), 𝑀virtual can

nearly approach the value 𝑀 + 4𝐵𝑀𝐷max/(2𝑐 − 𝜂𝑐), where

𝐷max denotes the maximum IES.

As the array aperture, i.e.,
√
𝑖2𝑚 + 𝑗2𝑚, or the relative band-

width 𝜂 increases, the number of virtual elements increases as

well. From the proof in Appendix A, we can also find that the

condition
√
𝑖2𝑚 + 𝑗2𝑚 ≥ 1/𝜂 − 0.5 requires the space samples at

distinct frequencies to be far enough apart, which means that

the space samples of several narrow-band signals can also be

used to formulate a virtual array.

Furthermore, with the generated virtual elements, a physical

element and a virtual element, or two virtual elements, can be

used to format an element pair with a small IES to perform

Nyquist sampling in the space domain. Thus, the number of

physical element pairs with small IESs is largely decreased to

reduce mutual coupling. With the limited number of physical

elements, physical elements are located far away from others

to reduce mutual coupling and enlarge the aperture of the array,

virtual elements which are generated from broadband signal

and are usually located near physical elements help to resolve

ambiguity in the angle domain.

A diagram of the signal model for the virtual array is

presented in Fig. 1(b). The location of the virtual array is

derived as follows:

V =
{
(𝑖𝑣𝑑, 𝑗𝑣𝑑) |𝑖𝑣 = 𝑓𝑞𝑖𝑚/ 𝑓1, 𝑗𝑣 = 𝑓𝑞 𝑗𝑚/ 𝑓1,

1 ≤ 𝑞 ≤ 𝑄, (𝑖𝑚𝑑, 𝑗𝑚𝑑) ∈ M} .
(16)

With the virtual array V, the 𝑛-th snapshot rV,𝑛 is reformu-

lated from (6) as follows:

rV,𝑛 =
𝐾∑
𝑘=1

𝜌𝑘,𝑛aV,𝑘 + nV,𝑛, (17)

where aV,𝑘 and nV,𝑛 represent the steering vector of the 𝑘-th

signal and the noise at the 𝑛-th snapshot, respectively.

With 𝑁 snapshots, the covariance matrix RV is derived from

(17) as follows:

RV = E
{
rV,𝑛rH

V,𝑛

}

= AV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
1 0 · · · 0

0 𝜎2
2 · · · 0

...
...

. . .
...

0 0 · · · 𝜎2
𝐾

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
AH
V
+ I |V |𝜎2,

(18)

where I |V | denotes the identity matrix of size |V| and

AV =
[
aV,1, aV,2, · · · aV,𝐾

]
. (19)

Note that the second equation in (18) holds when the signals

are uncorrelated. By vectorizing the covariance matrix RV and

ignoring the noise term, the following is derived:

vec {RV} =
𝐾∑
𝑘=1

𝜎2
𝑘a∗
V,𝑘⊗aV,𝑘

=
𝐾∑
𝑘=1

𝜎2
𝑘aW,𝑘 ,

(20)

where aW,𝑘 = a∗
V,𝑘⊗aV,𝑘 denotes the steering vector for

broadband co-array W and vec {RV} can be viewed as a

snapshot of a broadband co-array located at W, with

W = {(𝑖𝑤𝑑, 𝑗𝑤𝑑) |𝑖𝑤 = 𝑖𝑣 − 𝑖𝑣′ , 𝑗𝑤 = 𝑗𝑣 − 𝑗𝑣′ ,

(𝑖𝑣𝑑, 𝑗𝑣𝑑) ∈ V, (𝑖𝑣′𝑑, 𝑗𝑣′𝑑) ∈ V} .
(21)

By removing the repetitive elements and the elements that are

less than 𝑑 away from some other element, the broadband
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co-array location is derived from W as W̄. Note that when

two elements are less than 𝑑 away from each other, we prefer

to retain the one which is farther away from the reference

element. Especially at the boundary of the array, the farther

one helps to provide a larger aperture. Then, one snapshot of

the broadband co-array is derived from (20) as follows:

r
W̄

=
𝐾∑
𝑘=1

𝜎2
𝑘a
W̄,k. (22)

In matrix form, (22) can be denoted as follows:

r
W̄

= A
W̄
𝛿, (23)

where A
W̄

=
[
a
W̄,1, · · · , aW̄,𝐾

]
and 𝛿 =

[
𝜎2

1 , · · · , 𝜎
2
𝐾

]T
.

Discretizing 𝜑 and 𝜃 into 𝑁𝜑 and 𝑁𝜃 grids, respectively,

(23) can be expressed as follows:

r
W̄

= Ā
W̄
𝛿, (24)

where Ā
W̄

=
[
a
W̄,1,1, · · · , aW̄,𝑁𝜑 ,𝑁𝜃

]
and 𝛿 =[

𝜎2
1,1, · · · , 𝜎

2
𝑁𝜑 ,𝑁𝜃

]T

. Ā
W̄

is an overcomplete dictionary

with 𝑁𝜑𝑁𝜃 columns, and 𝛿 =
[
𝛿1,1, · · · , 𝛿𝑁𝜑 ,𝑁𝜃

]T
is a 𝐾

sparse vector. Note that (24) is under the assumption that

the (𝜑𝑘 , 𝜃𝑘) (1 ≤ 𝑘 ≤ 𝐾) are located at the discrete grids

(𝜑𝑛𝜑 , 𝜃𝑛𝜃 ) (1 ≤ 𝑛𝜑 ≤ 𝑁𝜑 ,1 ≤ 𝑛𝜃 ≤ 𝑁𝜃 ). The AoA estimation

is then transformed into the sparse recovery problem as

follows: ˆ̄𝛿 = arg min
𝛿

��𝛿��0, s.t. rW = ĀW𝛿, (25)

which can be solved by orthogonal matching pursuit [32] or

other sparsity-based methods. When (𝜑𝑘 , 𝜃𝑘) (1 ≤ 𝑘 ≤ 𝐾)

are not exactly located at the discrete grids, some gridless

methods [46], [47] can be used to improve the estimation

performance. If multiple snapshots of (22) are available, some

spectral methods, i.e. MUSIC [7], can be used to perform the

estimation.

In contrast to existing studies, we generate the virtual array

before generating the co-array. The generated virtual elements

can substantially increase the number of elements in the co-

array. As shown in Theorem 1, at most 𝑀virtual effective virtual

elements can be generated. Therefore, the corresponding co-

array has at most O
(
𝑀virtual

2) elements.

Analyzing the performance of the broadband co-array, the

following theorem is given.

Theorem 2: Suppose that signals with bandwidth 𝐵 and

carrier frequency 𝑓c are received by a planar array located

at M = {(𝑑𝑖𝑚, 𝑑 𝑗𝑚)} (1 ≤ 𝑚 ≤ 𝑀); a virtual array can be

generated to increase the number of effective elements in the

co-array when there is at least one element pair (𝑖𝑚𝑑, 𝑗𝑚𝑑)
and (𝑖𝑚′𝑑, 𝑗𝑚′𝑑), satisfying the following:√

(𝑖𝑚 + 𝑖𝑚′ )2 + ( 𝑗𝑚 + 𝑗𝑚′ )2 ≥
1
𝜂
− 0.5. (26)

Proof: The proof is shown in Appendix B.

Note that (26) can be simplified to 2
√
𝑖2𝑚 + 𝑗2𝑚 ≥ 1/𝜂 − 0.5

when the IES of element pair (𝑖𝑚𝑑, 𝑗𝑚𝑑) and (𝑖𝑚′𝑑, 𝑗𝑚′𝑑) is

much smaller than
√
𝑖2𝑚 + 𝑗2𝑚. This means that the maximum

IES of the physical array should be larger than 0.25𝑐/𝐵 −

0.125𝑐/ 𝑓c. Comparing this condition with that in Theorem 1,

we can find that the broadband co-array helps to release the

constraint on the physical array size and further enlarges the

benefit conferred by the virtual array.

The estimation performance is improved by generating

much more elements offered by broadband co-array. There-

fore, when some classical methods, i.e., spectral methods or

sparsity-based methods, are applied to perform AoA estima-

tion, the computational complexity increases in proportion to

the elements offered by broadband co-array.

Analysis of the performance of the broadband co-array

yields the following theorem.

Theorem 3: Suppose that signals with bandwidth 𝐵 and

carrier frequency 𝑓c are received by a planar array located

at M = {(𝑑𝑖𝑚, 𝑑 𝑗𝑚)} (1 ≤ 𝑚 ≤ 𝑀). The maximum IES

at the X-axis and Y-axis is denoted as 𝑑𝑖max and 𝑑 𝑗max,

respectively. When min(𝑖max, 𝑗max) ≥ 1/𝜂 − 0.5 holds, the

generated broadband co-array can enlarge the maximum IES

at most to 𝑙X and 𝑙Yat the X-axis and Y-axis, respectively,

where

𝑙X = 2
(⌊
𝑖max +

2𝑖max𝜂

2 − 𝜂

⌋)
𝑑,

𝑙Y = 2
(⌊

𝑗max +
2 𝑗max𝜂

2 − 𝜂

⌋)
𝑑.

(27)

Proof: The proof is shown in Appendix C.

The width of the main lobe of the radiation pattern is

determined by the maximum IES, so it can be inferred from

Theorem 3 that when applied to some existing 2D arrays,

the broadband co-array can help to narrow the main lobe of

the radiation pattern and promote the estimation performance.

Moreover, as the relative bandwidth increases, the main lobe

of the broadband co-array narrows.

B. Array Design Method

In this subsection, the performance of the broadband co-

array is employed as the metric to design the array. Among

the studies focusing on designing arrays, some CRB-based

methods [48], [49] have been proposed, but most of them are

analyzed under the assumption of one signal, which may not

be suitable in scenes with multiple signals. Some DoF-based

methods [24], [25], [27] have also been proposed. However,

we can infer from [50] that the AoA estimation performance

depends not only on the DoFs but also on the performance of

the manifold matrix of the co-array.

Considering the manifold matrix rW̄ = A
W̄
𝛿 in (24), the

maximum DoF offered extends to the number of rows of

A
W̄

. Note that the maximum DoF is not suitable for arbitrary

multiple signals. If A
W̄

is not full rank in a multi-signal

scene, the corresponding CRB is not valid, and the estimation

performance cannot be guaranteed [50].

We then consider both the DoFs and the performance of

A
W̄

to design an array. Obviously, when the condition stated

in Theorem 3 is satisfied, the broadband can help to increase

the DoF. One way to increase the possibility that A
W̄

is full

rank in a multi-signal scene is to decrease the coherence

between steering vectors of two arbitrary signals. Some related

results have been studied from the perspective of compressive
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sensing [51], [52]. In compressive sensing, the Gram matrix

of a dictionary is designed to approach the identity matrix as

closely as possible for better performance [52]. As noted in the

previous subsection, the AoA estimation can be transformed

into a sparse recovery problem as in (24) and (25). Exploiting

this, we can normalize the columns of dictionary Ā
W̄

and

optimize the array to make the Gram matrix of dictionary

ĀH
W̄

Ā
W̄

approach the identity matrix as closely as possible.

Given the constrained size of the array 𝑖max and 𝑗max, four

elements, i.e., (0, 0), (𝑑𝑖max, 0), (0, 𝑑 𝑗max) and (𝑑𝑖max, 𝑑 𝑗max),
are first established to ensure the array aperture, and the

other elements, with locations denoted as M1, are set by the

following optimization problem:

M1 = arg
M1

min
���I − ĀH

W̄
Ā
W̄

���2

𝐹

s.t.

{
0 ≤ 𝑖𝑚 ≤ 𝑖max

0 ≤ 𝑗𝑚 ≤ 𝑗max

(28)

where ‖·‖2
𝐹 denotes the Frobenius norm. It is difficult to

derive the closed-form solution of (28). Some optimization

method, i.e. a genetic algorithm (GA), can be used to solve

(28). We also find that the optimization in (28) is equivalent

to suppressing the sidelobes of the radiation pattern of the

broadband co-array in all discrete directions.

IV. CRAMER-RAO BOUNDS

The CRB for the unconditional model was described in [43],

but it is not suitable when the number of sources is larger

than the number of elements. Research on the co-array was

proposed in [50], which studied the CRB for 1-D AoA with

a narrow-band signal.

We first extend the result in [50] to the CRB for a 2D AoA

with a narrow-band signal and then derive the CRB for a 2D

AoA with a broadband signal.

Given (6), the parameter vector is defined as follows:

𝜉 =
[
𝜉𝜑,𝜃 , 𝜉𝜎

]T
(29)

with

𝜉𝜑,𝜃 = [𝜑1, 𝜃1, · · · , 𝜑𝐾 , 𝜃𝐾 ], (30)

𝜉𝜎 = [𝜎2
1 , · · · , 𝜎

2
𝐾 , 𝜎

2
0 ] . (31)

The Fisher information matrix is then derived as follows

[50]:

FIM = 𝑁

[
𝜕rH
𝜕𝜉

]H

(RT
M
⊗ RM)

−1 𝜕rH
𝜕𝜉

, (32)

where
𝜕rH
𝜕𝜉

= [AH𝚲,AH, vec {I𝑀 }] , (33)

𝚲 = diag
(
[𝜎2

1 , 𝜎
2
1, · · · , 𝜎

2
𝐾 , 𝜎

2
𝐾 ]

)
, (34)

AH = A∗
M
� AM + A∗

M
� AM, (35)

AM =

[
𝜕aM,1

𝜕𝜑1
,
𝜕aM,1

𝜕𝜃1
, · · · ,

𝜕aM,𝐾

𝜕𝜑𝐾
,
𝜕aM,𝐾

𝜕𝜃𝐾

]
, (36)

AH =
[
aH,1, aH,2, · · · aH,𝐾

]
. (37)

Note that RM is positive definite, so (RT
M
⊗ RM)−1

is

positive definite and its square root (RT
M
⊗ RM)−1/2

exists.

The partitioned Fisher information matrix is then derived as

follows:

FIM1 = 𝑁

[
DH
H,1DH,1 DH

H,1DH,2
DH
H,2DH,1 DH

H,2DH,2

]
, (38)

where

DH,1 = (RT
M
⊗ RM)

−1/2AH𝚲, (39)

DH,2 = (RT
M
⊗ RM)

−1/2
[AH, vec {I𝑀 }] . (40)

The CRB matrix for the 2D AoAs with narrowband signals

is then derived by blockwise inversion from (38) as follows:

CRBH,𝜑, 𝜃 =
1
𝑁

(
DH
H,1𝚷

⊥
H

DH,1
)−1

, (41)

where 𝚷⊥
H
= I |H | − DH,2

(
DH
H,2DH,2

)−1
DH
H,2.

With a broadband signal, the virtual array V is first derived,

and the samples of virtual array V can be viewed as space

domain samples at a single frequency. Therefore, we derive

the CRB for a 2D AoA with a broadband signal following

(41) as follows:

CRBW,𝜑, 𝜃 =
1
𝑁

(
DH
W,1𝚷

⊥
W

DW,1

)−1
, (42)

where

DW,1 = (RT
V
⊗ RV)

−1/2AW𝚲, (43)

DW,2 = (RT
V
⊗ RV)

−1/2 [
AW, vec

{
I |V |

}]
, (44)

𝚷⊥
W

= I |W | − DW,2

(
DH
W,2DW,2

)−1
DH
W,2, (45)

AW = A∗
V
� AV + A∗

V
� AV, (46)

AV =

[
𝜕aV,1
𝜕𝜑1

,
𝜕aV,1
𝜕𝜃1

, · · · ,
𝜕aV,𝐾
𝜕𝜑𝐾

,
𝜕aV,1
𝜕𝜃𝐾

]
, (47)

AW =
[
aW,1, aW,2, · · · aW,𝐾

]
. (48)

When the condition discussed in Theorem 1 is satisfied, the

virtual array V offers more elements than the physical arrayM,

and the lower CRB is acquired [43]. This indicates that the

broadband signal can help to improve the CRB for a given

array.

The element locations in the proposed array are obtained by

optimization, and the closed-form locations can not be derived,

so it is difficult to compare the CRB of the proposed array

with that of other arrays mathematically. In the next section,

the CRBs will be compared through simulation.
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Fig. 2. DoFs of two kinds of arrays versus relative bandwidth.
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Fig. 3. Rate of successful estimations versus the number of signals for
different bandwidths.

V. NUMERICAL RESULTS

In this section, simulations are conducted to illustrate the

AoA estimation performance using broadband signals and

NUPA. The performance achieved by the designed NUPA

is presented and then compared with that achieved by other

methods. Some broadband signal-based methods, i.e., coherent

signal subspace methods (CSSM) [38]–[40], have been thor-

oughly studied. However, the number of resolvable signals is

still limited by the number of physical elements. Although the

wideband DoA estimation with sparse linear arrays is studied

in [42], Jacobi-Anger expansion, which plays a crucial role in

the method, cannot be directly extended to 2D arrays. There-

fore, the above methods are not considered the benchmark.

We compare the performance achieved by the designed NUPA

with that achieved by nested array [25]. In the simulations,

the carrier frequency is set to 𝑓c = 26.5 GHz, which is used

in millimeter-wave channel measurements. For Monte Carlo,

five hundred trials are conducted. The co-arrays are generated

from second-order statistics as in (18), and 𝑄 is set to be 5

for the broadband co-array. Both the sparsity-based method,

i.e., OMP [32], and the spectral method, i.e., MUSIC [7],
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Fig. 4. Rate of successful estimation versus SNR for different bandwidths.
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Fig. 5. Rate of successful estimation versus SNR for different numbers of
snapshots.

are used to perform AoA estimation. OMP is conducted with

one snapshot of the broadband co-array and its achievable

resolution is closely correlated to the radiation pattern of the

broadband co-array. It is difficult to be guaranteed to promote

the estimation performance, even when the interval of discrete

angle is too small. So we discretize the angle with the interval

of 5◦. When using OMP, the signals are assumed to be located

at the discrete grids following a discrete uniform distribution in

the range −60◦ ∼ 60◦ for both the elevation angle and azimuth

angle. The rate of successful estimation, where one successful

estimation means that the estimated 2D-AoA is consistent with

the set 2D-AoA, is taken as the performance metric for OMP.

MUSIC is conducted with multiple snapshots of the broadband

co-array and it can achieve super-resolution. The small search

interval helps to promote the estimation performance. So the

search interval is set to be 0.2◦. When using MUSIC, both the

elevation angle and azimuth angle of the signals are assumed

to follow a uniform distribution in the range −60◦ ∼ 60◦. The

root mean square error (RMSE) is taken as the performance
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Fig. 6. The element locations of the physical array for different arrays: (a) Nested array; (b) NUPA.
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Fig. 7. The element locations of the co-array for different arrays: (a) Nested array; (b) NUPA.

metric and defined as follows:

RMSE = E
{��(𝜑, 𝜃) − (𝜑̂, 𝜃)

��
2
}
, (49)

where (𝜑̂, 𝜃) denotes the estimation of (𝜑, 𝜃).
The robustness to mutual coupling is also simulated, where

the entries of the mutual coupling matrix 〈C〉𝑚,𝑚′ (1 ≤

𝑚, 𝑚′ ≤ 𝑀) are set as

〈C〉𝑚,𝑚′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, 𝑚 = 𝑚′,

0.15, 1 < ‖(𝑖𝑚, 𝑗𝑚) − (𝑖𝑚′ , 𝑗𝑚′ ) ‖2 ≤ 2,
0.25, 0 < ‖(𝑖𝑚, 𝑗𝑚) − (𝑖𝑚′ , 𝑗𝑚′ ) ‖2 ≤ 1,

0, otherwise.

(50)

The performance achieved by the designed NUPA is first

presented. The DoFs of virtual arrays and broadband co-arrays

versus relative bandwidth are shown in Fig. 2. The sizes of

arrays 𝑖max and 𝑗max are both 60, and the number of elements

𝑀 is 32. The axis of relative bandwidth extends from 0.75%
to 6.04% with an interval of 0.75%, where the corresponding

bandwidth axis is from 200 MHz to 1.6 GHz with an interval

of 200 MHz. Obviously, the broadband signal helps to largely

increase the DoFs of both virtual arrays and broadband co-

arrays as the relative bandwidth increases. In the case of

200 MHz, when the condition in Theorem 1 is not satisfied,

the number of DoFs of the virtual array remains 32. When

the bandwidth reaches 400 MHz, the condition is satisfied,

and the DoFs increase to 37. As shown in Fig. 2, the DoFs

of the virtual array are limited by 𝑀virtual as (15), and the

corresponding increasing rate versus the relative bandwidth is

less than that of 𝑀virtual. As the relative bandwidth increases,

more virtual elements are generated, which leads to many

element pairs with IESs less than 𝑑. Therefore, some of

the generated virtual elements are removed as noneffective

elements. It is known that the co-array of a physical array
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Fig. 8. The co-array radiation patterns for different arrays: (a) Nested array; (b) NUPA.
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Fig. 9. Rate of successful estimation versus SNR for different arrays.

with 32 elements offers a DoF limit of 1,024. We can see

from Fig. 2 that the DoFs offered by broadband co-array

surpass twice the limit even with a relative bandwidth of

2.26%. Furthermore, the increasing rate of DoFs offered by

the broadband co-array is larger than that offered by the virtual

array, which indicates that the broadband co-array can further

enhance the benefit produced by the virtual array.

The estimation performance with different bandwidths is

compared. The situation where only one snapshot of (23) is

available is first considered. Therefore, OMP is used to per-

form the AoA estimation, and the rate of successful estimation

is taken as the metric. The 𝑁 value is set to 700. Note that

setting a high value of 𝑁 is used to guarantee the performance

when solving several hundred signals. When several signals

are present, the value of 𝑁 can be set to a small number.

The rate of successful estimation versus the number of signals

is shown in Fig. 3 when the SNR is -5 dB. A larger relative

bandwidth (𝜂 = 3.77%) leads to more DoFs and, thus, helps to

solve more signals. Although 𝜂 = 3.77% can offer 2,531 DoFs,
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Fig. 10. Rate of successful estimations versus the number of signals for
different arrays.

as shown in Fig. 2, the estimation performance decreases

when the number of signals exceeds 400. This is because

the maximum DoF value is not suitable for arbitrary multiple

signals, and the manifold matrix of the co-array should be

guaranteed to be full rank. The rate of successful estimation

versus SNR is shown in Fig. 4 when the number of signals

is 300. As shown in Fig. 2, 𝜂 = 3.77% and 𝜂 = 1.5% can

increase the effective elements of the co-array to 2,531 and

1,195, respectively. A large number of effective elements can

also help to increase the robustness to noise.

The estimation performance for different numbers of snap-

shots is presented in Fig. 5, where the number of signals is

40 and 𝜂 = 3.77%. All snapshot numbers are set to be larger

than the number of signals to ensure that the manifold matrix

of the broadband co-array is full rank. More snapshots lead to

enhanced robustness performance. It can be inferred that the

required number of snapshots needs only to be larger than the

number of signals to guarantee the performance for practical
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Fig. 11. CRB versus the number of signals for different arrays.

deployment.

The performance achieved by the designed NUPA is then

compared with that achieved by the nested array. The band-

width is set to 𝐵 = 1 GHz. A nested array with 41 elements is

generated according to [25], and an NUPA with 41 elements

is generated by a GA. To maintain the same aperture as the

nested array, we set 𝑖max = 20 and 𝑗max = 20.

The element locations of the two arrays are presented in

Fig. 6. Compared with the nested array, the NUPA has much

fewer element pairs with IESs less than 2𝑑. The details are

shown in Table V, where the NUPA has only 25 element

pairs with IESs less than 2𝑑. This finding confirms that the

virtual array leads to fewer element pairs with small IESs to

reduce mutual coupling. The corresponding co-arrays and the

radiation patterns on (50◦, 40◦) are shown in Fig. 7 and Fig.

8, respectively. As shown in Fig. 7, the broadband signal can

help to enlarge the aperture of the co-array. Owing to the larger

aperture and the optimization as (28), the NUPA can achieve

a better radiation pattern with a narrower main lobe and lower

side lobes.

The estimation performance with one snapshot of the co-

array for the two arrays is compared in Fig. 9 and Fig. 10,

where the rate of successful estimation versus SNR is shown in

Fig. 9 when the number of signals is 100 and the rate versus

the number of signals is shown in Fig. 10 when the SNR

is 10 dB. The 𝑁 is set to 300. When the bandwidth is too

wide, the reflection coefficient may vary with the frequency

slightly. We consider the coefficient inconsistency at different

frequencies and set the maximum inconsistency of power to

3 dB. The robustness to mutual coupling is also compared,

TABLE I
PERFORMANCE COMPARISONS OF THE PROPOSED NUPA WITH THE

NESTED ARRAY.

Array type DoFs of Co-array
Number of element pairs

with IES less than 2𝑑
Nested array 881 80

NUPA 925 25
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Fig. 12. RMSE versus number of signals for different arrays, where SNR =
20 dB.
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Fig. 13. RMSE versus SNR for different arrays, where the number of signals
is 200.

and the model is set as previously defined. Similar to the

comparisons of DoFs and radiation patterns, the rate achieved

by the NUPA outperforms that achieved by the nested array

in Fig. 9. More effective elements and fewer element pairs

with small IESs, as shown in Table I, make the NUPA more

robust to noise and mutual coupling. Note that the nested

array cannot resolve 100 signals with rate 100% even when

the SNR exceeds 10 dB. Although the co-array generated

from the nested array can offer 881 DoFs, as shown in

Table I, the manifold matrix of the co-array is not always

guaranteed to be full rank when many signals are present.

This may decrease the estimation performance. We find that

the coefficient inconsistency at different frequencies has only

a minimal effect on the performance achieved by NUPA. As

shown in Fig. 10, the designed NUPA can solve 200 signals

even with only 41 physical elements, while the nested array

cannot always guarantee the estimation performance when

many signals are present.

The two arrays are then compared in the situation where

𝑁 is set to 400, and 400 snapshots of (23) are available.
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A large number of snapshots of (23) is set to guarantee

the performance when solving several hundred signals using

MUSIC, and the number can be set low when several signals

are present. As discussed in [50], the CRBs for co-arrays work

well when the SNR is sufficiently high. This means that it is

more suitable to compare CRBs versus the number of signals.

The CRBs of NUPA and the nested array are shown in Fig. 11.

Even though the CRB of the co-array cannot cover the entire

range of SNRs, it somewhat confirms the superior performance

of NUPA over the nested array.

The estimation performance results by MUSIC are shown

in Fig. 12 and Fig. 13. Fig. 12 shows the RMSE versus the

number of signals when the SNR is 20 dB. As the number

of signals increases, the performance achieved by the nested

array rapidly decreases, while the RMSE achieved by NUPA

approaches 0.1◦ even when the number of signals exceeds 200.

The result is consistent with that shown in Fig. 10. Fig. 13

illustrates the RMSE versus SNR when the number of signals

is 200. We find that the RMSE achieved by the nested array

remains 0.5◦ even when the search interval is 0.2◦ and the

SNR approaches 20 dB. This further verifies the effectiveness

of the proposed NUPA.

VI. CONCLUSION

AoA estimation of broadband signals using NUPA has

been considered in this work. A broadband co-array has been

proposed to enhance the estimation performance from the

perspective of mutual coupling, DoFs and CRB. The analysis

of the relationship between frequency-domain samples and

space-domain samples has indicated that the generated virtual

array not only reduces mutual coupling but also increases the

DoFs of the broadband co-array. We have also verified that

the CRB can be improved with the help of broadband signals.

To ensure adequate estimation performance in scenarios with

fewer elements, an optimization method has been proposed to

improve the performance of the broadband co-array.

APPENDIX A

PROOF OF THEOREM 1

The space domain samples of the 𝑚-th element at fre-

quencies 𝑓𝑞 and 𝑓𝑞′ ( 𝑓𝑞′ > 𝑓𝑞) are denoted as 𝑎𝑚,𝑘,𝑞

and 𝑎𝑚,𝑘,𝑞′ , respectively. According to (3), 𝑎𝑚,𝑘,𝑞′ can be

equivalent to a space-domain sample of virtual element[
𝑓𝑞′ / 𝑓𝑞𝑖𝑚𝑑, 𝑓𝑞′ / 𝑓𝑞 𝑗𝑚𝑑

]
. When space sampling is performed,

it is assumed that only the virtual element that is at least

𝑑 away from others does not oversample and is considered

an effective virtual element. Therefore, to generate effective

virtual elements, it is expected that(
𝑓𝑞′

𝑓𝑞
𝑖𝑚𝑑 − 𝑖𝑚𝑑

)2
+

(
𝑓𝑞′

𝑓𝑞
𝑗𝑚𝑑 − 𝑗𝑚𝑑

)2
≥ 𝑑2. (51)

Simplification of (51) yields the following:

( 𝑓𝑞′ − 𝑓𝑞)
2 (𝑖2𝑚 + 𝑗2𝑚) ≥ 𝑓 2

𝑞 . (52)

Note that 𝑓𝑞 and 𝑓𝑞′ are constrained as follows:

𝑓c −
𝐵

2
≤ 𝑓𝑞 < 𝑓𝑞′ ≤ 𝑓c +

𝐵

2
. (53)

By substituting (53) into (52), it is derived that√
𝑖2𝑚 + 𝑗2𝑚 ≥

2 𝑓c − 𝐵

2𝐵
=

1
𝜂
− 0.5.

(54)

Thus, a virtual array can be generated to increase the number

of effective elements when there is at least one element in

array (𝑖𝑚𝑑, 𝑗𝑚𝑑) that satisfies
√
𝑖2𝑚 + 𝑗2𝑚 ≥ 1/𝜂 − 0.5.

Denoting 𝑀𝑚 as the number of virtual elements generated

by the 𝑚-th element, it can be directly derived from (54) that

𝑀𝑚 satisfies the following:

𝑀𝑚 ≤

⌊
2𝐵

√
𝑖2𝑚 + 𝑗2𝑚

2 𝑓c − 𝐵

⌋
. (55)

For an array with 𝑀 elements, the total number of elements

in the virtual array satisfies the following:

𝑀 +

𝑀∑
𝑚=1

𝑀𝑚 ≤ 𝑀 +

𝑀∑
𝑚=1

⌊
2𝐵

√
𝑖2𝑚 + 𝑗2𝑚

2 𝑓c − 𝐵

⌋

= 𝑀 +

𝑀∑
𝑚=1

⌊
2𝜂

√
𝑖2𝑚 + 𝑗2𝑚

2 − 𝜂

⌋
.

(56)

APPENDIX B

PROOF OF THEOREM 2

The generation of broadband co-arrays can be viewed

as operations on space samples at distinct frequencies. To

simplify the analysis, we take the space samples from the

𝑚-th element and 𝑚′-th element at 𝑓𝑞 and 𝑓𝑞′ , respectively.

Without loss of generality, it is assumed that 𝑓𝑞′ > 𝑓𝑞 ,

(𝑖𝑚′ + 𝑗𝑚′ )2 > (𝑖𝑚 + 𝑗𝑚)
2 and (𝑖𝑚′ − 𝑖𝑚)

2 + ( 𝑗𝑚′ − 𝑗𝑚)
2 ≥ 1).

Therefore, the corresponding virtual array V′ is derived as

follows:

V
′ =

{(
𝑓𝑞′

𝑓𝑞
𝑖𝑚𝑑,

𝑓𝑞′

𝑓𝑞
𝑗𝑚𝑑

)
,

(
𝑓𝑞′

𝑓𝑞
𝑖𝑚′𝑑,

𝑓𝑞′

𝑓𝑞
𝑗𝑚′𝑑

)
,

(𝑖𝑚′𝑑, 𝑗𝑚′𝑑) , (𝑖𝑚𝑑, 𝑗𝑚𝑑)}

(57)

The location of broadband co-array W′ is then derived as

follows:

W
′ = {(𝑖𝑤𝑑, 𝑗𝑤𝑑) |𝑖𝑤 = 𝑖𝑣 − 𝑖𝑣′ , 𝑗𝑤 = 𝑗𝑣 − 𝑗𝑣′ ,

(𝑖𝑣𝑑, 𝑗𝑣𝑑) ∈ V
′, (𝑖𝑣′𝑑, 𝑗𝑣′𝑑) ∈ V

′} .
(58)

If only the space samples at frequency 𝑓𝑞 are considered,

the location of co-array H′ is derived as follows:

H
′ = {(𝑖𝑚𝑑, 𝑗𝑚𝑑), (𝑖𝑚′𝑑, 𝑗𝑚′𝑑), (𝑖𝑚𝑑 − 𝑖𝑚′𝑑, 𝑗𝑚𝑑 − 𝑗𝑚′𝑑),

(𝑖𝑚′𝑑 − 𝑖𝑚′𝑑, 𝑗𝑚𝑑 − 𝑖𝑚𝑑)} .
(59)

Note that the elements increased by the co-array are cen-

trosymmetric. In H′, the number of increased elements by the

co-array is 2, and there is 1 increased element on each side.

Similarly, in W′, the number of increased elements by the

broadband co-array is 12, and there are 6 increased elements

on each side. The element pairs with maximum interelement

spacing on the positive side can be derived from (57) as

follows:

(𝑖𝑤𝑑, 𝑗𝑤𝑑) =

((
𝑖𝑚′ −

𝑓𝑞′

𝑓𝑞
𝑖𝑚

)
𝑑,

(
𝑗𝑚′ −

𝑓𝑞′

𝑓𝑞
𝑗𝑚

)
𝑑

)
, (60)
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(𝑖𝑤′𝑑, 𝑗𝑤′𝑑) =

((
𝑓𝑞′

𝑓𝑞
𝑖𝑚′ − 𝑖𝑚

)
𝑑,

(
𝑓𝑞′

𝑓𝑞
𝑗𝑚′ − 𝑗𝑚

)
𝑑

)
. (61)

Comparing W′ with H′, if the virtual elements help to

generate more effective elements in the broadband co-array,

there should be at least 2 effective elements among 6 increased

elements on each side. It is expected that the interelement

spacing between (𝑖𝑤𝑑, 𝑗𝑤𝑑) and (𝑖𝑤′𝑑, 𝑗𝑤′𝑑) is larger than

𝑑 to ensure at least 2 effective elements, so the following is

derived: √
(𝑖𝑤𝑑 − 𝑖𝑤′𝑑)2 + ( 𝑗𝑤𝑑 − 𝑗𝑤′𝑑)2 ≥ 𝑑. (62)

Simplification of (62) yields the following:√
(𝑖𝑚′ + 𝑖𝑚)

2 + ( 𝑗𝑚′ + 𝑗𝑚)
2 ≥

𝑓𝑞

𝑓𝑞′ − 𝑓𝑞
. (63)

Note that 𝑓𝑞 and 𝑓𝑞′ are constrained as (53). Substituting (53)

into (63) yields the following:√
(𝑖𝑚′ + 𝑖𝑚)

2 + ( 𝑗𝑚′ + 𝑗𝑚)
2 ≥

2 𝑓c − 𝐵

2𝐵
=

1
𝜂
− 0.5.

(64)

Thus, a virtual array can be generated to increase the number

of effective elements in the co-array when there is at least one

element pair (𝑖𝑚𝑑, 𝑗𝑚𝑑) and (𝑖𝑚′𝑑, 𝑗𝑚′𝑑) satisfying (64).

APPENDIX C

PROOF OF THEOREM 3

It can be derived from (55) that when 𝑖max ≥ (2 𝑓c−𝐵)/(2𝐵)
holds, the corresponding element can generate 2𝐵𝑖max/(2 𝑓c −
𝐵) virtual elements, so the maximum IES of the virtual

array at the X-axis is derived as (�𝑖max + 2𝑖max𝐵/(2 𝑓c − 𝐵)�)𝑑.

According to the principles used in generating the co-array, the

maximum IES of the broadband co-array at the X-axis is twice

that of the virtual array and is derived as follows:

𝑙X = 2
(⌊
𝑖max +

2𝑖max𝐵

2 𝑓c − 𝐵

⌋)
𝑑

= 2
(⌊
𝑖max +

2𝑖max𝜂

2 − 𝜂

⌋)
𝑑.

(65)

The same results can be derived at the Y-axis, i.e., the

maximum IES of the broadband co-array at the Y-axis is as

follows:

𝑙Y = 2
(⌊

𝑗max +
2 𝑗max𝜂

2 − 𝜂

⌋)
𝑑. (66)

Therefore, when min(𝑖max, 𝑗max) ≥ (2 𝑓c − 𝐵)/(2𝐵) holds, the

generated broadband co-array can enlarge the maximum IES

to at most 𝑙X and 𝑙Y at the X-axis and Y-axis, respectively.
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