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Abstract—A multiuser massive MIMO system with mutual
coupling is investigated in finite-dimensional channel scenarios.
The uplink ergodic achievable rate is analytically derived for
a multiuser massive MIMO system equipped with a rectangular
planar uniform antenna array at the base station (BS). Numerical
results show that the mutual coupling effect reduces the uplink
achievable rate of multiuser massive MIMO systems when the
antenna distance decreases. But when the size of the antenna
array is fixed, the uplink achievable rate increases with the
growing of antenna number.

Index Terms—Massive MIMO; mutual coupling; multiuser
MIMO; finite-dimensional channel.

I. INTRODUCTION

Over the last decade, the cellular system throughput and
reliability have been greatly improved due to the application
of MIMO technology. In order to satisfy the user’s requirement
on the growing transmission rate, utilizing the large-scale
antenna array, or massive MIMO, is considered as a promising
method to further improve the spectral efficiency in future 5G
communication systems. Compared with conventional MIMO
systems, the massive MIMO system integrated at the base
station (BS) consists of hundreds of antennas, simultaneously
serving dozens of user terminals [1], [2]. Previous studies
have proved that the massive MIMO system could achieve the
spectral efficiency up to 10-20bit/s/Hz and improve the energy
efficiency even when using simple linear precoding algorithms
[3]. However, in practical massive MIMO antenna arrays, due
to the limit of array size and the large number of antennas,
the distance between adjacent antennas is usually less than
half a wavelength. In this case, the mutual coupling effect is
very severe and the favorable propagation condition cannot be
satisfied strictly, which greatly affects the performance of the
massive MIMO communication systems [1], [4]. Therefore,
it is important to analyze the impact of the mutual coupling
effect on massive MIMO systems.

The mutual coupling effect was widely studied in the topic
of antenna propagation [5], [6]. With the emerging of multi-
antenna technology in wireless communications, the mutual
coupling effect was also studied in wireless communications
[7]–[9]. Based on the scattering parameter matrix, a matching
network was introduced and a closed-form capacity expression

of the MIMO system with mutual coupling was derived in [7].
The impact of matching network on the bandwidth of antenna
arrays was further investigated in [8]. At the subscriber unit
on 2 × 2 MIMO channels, the impact of mutual coupling
induced by two closed spaced minimum scattering antennas
was investigated in [9]. Moreover, for broadband systems with
uniform circular arrays, a unified framework was presented to
evaluate diversity limits of coupled broadband systems with
varying antenna spacing [10]. However, the above studies
were based on traditional MIMO systems, i.e. the number
of transmitting and receiving antennas is less than 8 × 8.
In massive MIMO systems employing hundreds of antennas
at the BS, the mutual coupling effect on wireless communi-
cations was explored in recent literatures [11], [12]. It was
demonstrated that the mutual coupling effect has practical
limits on the spectrum efficiency of multiuser massive MIMO
systems equipped with a 2-D square lattice array [11]. But
only the impact of mutual coupling on the downlink SINR
was investigated by the traditional Kronecher model in [11].
Considering mutual coupling as well as the finite dimensional
channel model [13], the performance of massive MIMO sys-
tem with a uniform linear array (ULA) was analyzed in [12].
However the maximum antenna number was only 30 during
simulation results. Therefore, the impact of mutual coupling on
the multiuser massive MIMO systems with the antenna number
up to several hundreds needs to be further investigated.

This paper studies the multiuser massive MIMO system
with mutual coupling equipped with a rectangular antenna
array. Comparing with the linear arrays, rectangular arrays
and other planar arrays are more space-efficient because they
contain more antennas in a fixed area. And for the simplicity
of distances between antenna elements, the rectangular array
is selected. A lower bound of the uplink achievable rate is
analytically derived for massive MIMO systems with mutual
coupling in the single-cell multiuser scenario. When the size
of the antenna array is fixed, the impact of mutual coupling on
the uplink achievable rates is analyzed by numerical results.
These results provide some guidelines for designing suitable
antenna numbers and distances in the fixed-size antenna array
to optimize the uplink achievable rate for multiuser massive
MIMO systems.
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Fig. 1. System model.

The remainder of this paper is outlined as follows. Section
II describes a system model for multiuser massive MIMO
systems. In section III, the lower bound of uplink achievable
rate is analytically derived in a finite dimensional channel
scenario. Numerical results and discussions are presented in
section IV. In the end, conclusions are drawn in section V.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a scenario with multiusers
uniformly located in a single cell. A BS equipped with M
antennas simultaneously serves K active user terminals (UTs).
Each UT has a single antenna, while M antennas integrated at
the BS make up a rectangular uniform planar array. The size
of the rectangular array is assumed as aλ× bλ, where λ is the
wavelength of the wireless signal, a and b are the length and
width of the array, respectively. The distance between adjacent
antennas is denoted as d, The number of antennas in each
row and column is m and n respectively. Therefor we have
d = aλ

m−1 = bλ
n−1 and M = mn.

A. Signal and Channel Model

In this paper, we focus on uplinks of multiuser massive
MIMO systems. The received uplink signal at a BS is ex-
pressed as

y =
√

SNRUTCAHx+w, (1)

where SNRUT is the signal-to-noise ratio (SNR) at UTs,
x ∈ CK×1 is a vector denoting the symbols simultaneously
transmitted from K active UTs (CM×1 refers to an M × 1
vector), and w ∈ CM×1 denotes the additive white Gaussian
noise (AWGN) in wireless channels with zero mean and unit
variance. C is the M × M mutual coupling matrix which
represents the impact on the received signal caused by mutual
coupling effects. A ∈ CM×P is the array steering matrix

denoting the limited number of incident directions in the finite-
dimensional channels [12]. H ∈ CP×K is the propagation
response matrix standing for both small scale fading and large
scale fading, which is expressed as

H = [h1, ...,hk, ...,hK ] ∈ CP×K , (2a)

with
hk = β

1/2
k [hk,1, ..., hk,q, ...hk,P ]

T
, (2b)

where βk is the large scale fading coefficient of the kth
UT, hk,q (1 6 q 6 P ) is the complex small scale fading
coefficient which corresponds to the qth incident direction
transmitted from the kth UT. The small scale fading of
different incident directions or different UTs is assumed to
be subject to independent and identical Gaussian distributions
with zero mean and unit variance, i.e. hk,q ∼ CN (0, 1).

B. Modeling of Array Steering Matrix

In wireless systems employing massive MIMO, it may
exceed the degree of freedom that the physical channel can
offer if the antenna number keeps rising without bound [13].
The finite dimensional physical channel model is proposed to
represent this phenomenon. In this model, the incident signals
to the antenna array is divided into P finite directions in
angular domain. In general, the larger value of P corresponds
to the richer scattering environment around the BS.

Each independent incident direction has its identical az-
imuth angle ϕq and elevation angle θq (ϕq ∈ [−π, π],
θq ∈ [−π/2, π/2], q = 1, ..., P ). For the signal originating
from the qth incident direction, its response on the antenna
located at the cth row and eth column of the rectangular array
(c = 1, ..., n ; e = 1, ...,m) is denoted by

aqce = exp

{
j
2π

λ
[(c− 1)dcosϕqsinθq + (e− 1)dsinϕqsinθq]

}
.

(3)
(3) is based on the assumption that the antenna located at
the first row and first column is the reference point with zero
phase response and the amplitude responses of all antennas
are normalized as 1.

Therefore, the response of the qth incident direction on the
whole array containing M antennas is denoted by

a (ϕq, θq) = [1, ..., aqce, ..., a
q
nm]

T ∈ CM×1. (4)

Considering all P independent incident directions, the M×
P array steering matrix of the whole array is given by

A = [a (ϕ1, θ1) , ...,a (ϕq, θq) , ...,a (ϕP , θP )] ∈ CM×P .
(5)

C. Modeling of Mutual Coupling

The mutual coupling matrix C ∈ CM×M is expressed as
[9]

C = ZL(ZLIM + ZC)
−1

, (6)

where ZL is the load impedance which is assumed to be
constant for all antenna elements. IM is an M×M unit matrix
and ZC is the M×M mutual impedance matrix. According to
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the rectangular antenna array in Fig. 1, the mutual impedance
matrix ZC can be constituted by n × n sub-matrices, i.e.,
ZC = [Zst]n×n. The sub-matrix Zst is an m × m mutual
impedance matrix consists of the mutual impedances between
the m antennas at the sth(s = 1, ..., n) row and the m antennas
at the tth(t = 1, ..., n) row in the rectangular antenna array.
Zst is expressed as

Zst =


zst11 zst12 ... zst1m
zst21 zst22 ... zst2m

...
...

. . .
...

zstm1 zstm2 ... zstmm

 , (7)

where zstuv is the mutual impedance between Antsu and Anttv .
Antsu refers to the antenna located at the sth row and
uth column (u = 1, ...,m) of the rectangular array; Anttv
refers to the antenna located at the tth row and vth column
(v = 1, ...,m). Furthermore, the distance between Antsu and

Anttv is expressed as dstuv = d

√
(t− s)

2
+ (v − u)

2. There-
fore, the mutual impedance zstuv can be calculated based on
results in [9]. Since the calculation is quite straight forward,
we omit the detailed expression of zstuv here.

Assuming that all the array elements are the same, the
mutual impedance zstuv only depends on the distance between
antennas. Since the distance between adjacent antennas re-
mains unchanged in the uniform array, the following properties
are obtained as

zstuv = zst(u+1),(v+1), (8a)

zstuv = zstvu. (8b)

Furthermore, similar properties for the matrix Zst are de-
rived as

Zst = Z(s+1),(t+1), (9a)

Zst = Zts. (9b)

According to (7), (8) and (9), the M×M mutual impedance
matrix ZC is derived by calculating M entries in the first
row of the mutual impedance matrix. If there are hundreds
of antennas located in the antenna array, this is a much more
convenient and efficient way to obtain ZC than calculating
all mutual impedances directly. As a consequence, the mutual
coupling matrix C can be derived from (6).

III. ACHIEVABLE RATES

In Section II, we have first derived all parameters in
(1). Furthermore, we try to investigate the uplink achievable
rate, which considers mutual coupling as well as the finite
dimensional channel.

The whole channel gain is denoted as G = CAH =
[g1, ...,gk, ...,gK ] which is acquired via perfect channel es-
timation. Then we utilize a conventional linear detecting
scheme, i.e., maximum-ratio combining (MRC) scheme, to
estimate the received signal. The estimated signal vector after
the MRC detector is expressed as

ỹ = G†y =
√
SNRUTG

†Gx +G†w. (10)

Furthermore, the estimated symbol from the kth UT is
extended as

ỹk =
√

SNRUTg
†
kgkxk+

√
SNRUT

∑K

l=1,l ̸=k
g†
kglxl+g†

kw,

(11)
where gk and gl are the channel vectors of the kth and lth
UT respectively, as given by

gk = CAhk,gl = CAhl. (12)

Considering the independence between hk and hl, gk and
gl are independent from each other as well.

After signal detection, the SINR at the BS is expressed as

SINRBS =
SNRUT

∣∣∣g†
kgk

∣∣∣2
SNRUT

K∑
l=1,l ̸=k

∣∣∣g†
kgl

∣∣∣2 + ∥∥∥g†
k

∥∥∥2 . (13)

Based on the Shannon theorem, the ergodic uplink achiev-
able rate of the kth UT is derived by

Rk = E

log2
1 +

SNRUT

∣∣∣g†
kgk

∣∣∣2
SNRUT

K∑
l=1,l ̸=k

∣∣∣g†
kgl

∣∣∣2 + ∥∥∥g†
k

∥∥∥2

 .

(14)
Based on the convexity of log2

(
1 + 1

x

)
and Jensen’s in-

equality [13], we have

Rk > log2

1 +

E

SNRUT

K∑
l=1,l ̸=k

∣∣∣g†
kgl

∣∣∣2 + ∥∥∥g†
k

∥∥∥2
SNRUT

∣∣∣g†
kgk

∣∣∣2


−1
 .

(15)
We set the determinate matrix F = CA. According to the

singular value decomposition, F = UΣV† is extended, where
U and V are an M ×M unitary matrix and a P ×P unitary

matrix, respectively, and Σ =

(
∆ 0
0 0

)
is an M×P matrix,

with ∆ being an r×r diagonal matrix whose none-zero entries
ε1, ε2, · · · , εr are singular values of F. Furthermore, the term∣∣∣g†

kgl

∣∣∣ is derived as

∣∣∣g†
kgl

∣∣∣ = ∣∣∣h†
kVΣ†U†UΣV†hl

∣∣∣
= Trace(hlh

†
kΣ

†Σ) =
r∑

i=1

ε2ihl,ih
†
k,i

. (16)

Substituting (16) into (15), the expectation term in (15) is
derived as

Globecom 2014 - Signal Processing for Communications Symposium

3298



E


SNRUT

K∑
l=1,l ̸=k

∣∣∣g†
kgl

∣∣∣2 + ∥∥∥g†
k

∥∥∥2
SNRUT

∣∣∣g†
kgk

∣∣∣2


=

K∑
l=1,l ̸=k

E


(

r∑
i=1

ε2ihl,ih
†
k,i)

2

(
r∑

i=1

ε2ihk,ih
†
k,i)

2



+
1

SNRUT
E


r∑

i=1

ε2i |hk,i|2(
r∑

i=1

ε2i |hk,i|2
)2


(a)
=

 K∑
l=1,l ̸=k

βl

( r∑
i=1

ε4i

)
E


r∑

i=1

|hk,i|2

(
r∑

i=1

ε2i |hk,i|2)
2



+
1

SNRUT
E

 1
r∑

i=1

ε2i |hk,i|2



, (17)

where (a) is obtained based on the independence between
hl,i and hk,i, and hl,i, hk,i ∼ CN (0, 1). According to the
Chebyshev’s inequality expressed as 11.115 in [15], we can
write

r∑
l=1

ε2i |hk,i|2 > 1

r

r∑
l=1

ε2i

r∑
l=1

|hk,i|2. (18)

Combining (18) with (17), we derive (19) at the top of the
next page, where (b) is obtained via the property of Wishart
matrix [16] expressed as

E

 1
r∑

i=1

|hk,i|2

 = E
[
tr
(
W−1

)]
=

1

βk (r − 1)
, (20)

with W = h†
k,ihk,i, which is a 1 × 1 Wishart matrix.

Substituting (17) and (19) into (15), the analytical expression
of the lower bound of the uplink ergodic achievable rate for
the kth UT is derived as (21), which is below (19) on the next
page. Moreover, the lower bound for the total achievable rate

for all K UTs is denoted by R̃ =
K∑

k=1

R̃k.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section the proposed lower bound of the ergodic
achievable rate for all UTs are numerically simulated. The
impact of the mutual coupling effect on multiuser massive
MIMO systems is analyzed considering the finite-dimensional
channel. In the following analysis, some default parameters are
configured: the ratio of the length and width of the rectangular
antenna array is set as a/b = 2, the type of antennas is the

Fig. 2. Lower bound of uplink ergodic achievable rate with respective
to the antenna distance considering different antenna numbers.

dipole antenna whose length is 0.5λ, the load impedance ZL

at every antenna is 50 ohms [12], the large scale fading factor
for each UT is reasonably normalized as 1 for simplicity [13],
the transmit SNR at the UT is 10dB, and the number of the
incident direction P is set as 70.

The lower bound of uplink ergodic achievable rate for
all UTs with respective to the antenna distance considering
different antenna numbers is illustrated in Fig. 2. When the
antenna number is fixed, the lower bound of uplink ergodic
achievable rate increases with the increasing of the antenna
distance. This is consistent with the results in [9] that the
larger antenna distance leads to the smaller correlation which
leads to higher capacity. The fluctuation of curves is due to the
up-and-down of the mutual impedance when antenna distance
increases [14]. When the antenna distance is fixed, the larger
antenna number leads to the larger achievable rate.

Fig. 3 shows the total uplink achievable rates for all UTs rise
with the growing of antenna number when antenna distance
is fixed. Meanwhile, the larger antenna distance corresponds
to the higher achievable rate. But the gap between the two
curves of 0.8λ and 0.5λ is smaller than that between the two
of 0.5λ and 0.2λ. This is also consistent with the phenomenon
in Fig. 2 where the rising rate of the achievable rates slows
down when the antenna distance increases.

When the array size is fixed, the lower bound of uplink
ergodic achievable rate for all UTs with respective to the
antenna distance is investigated in Fig. 4. Without loss of
generality, the size of the antenna array is fixed as 6λ × 3λ.
In the fixed-size array, a tradeoff exists between the antenna
distance and the antenna number, since the increasing antenna
distance leads to the decreasing antenna number. As shown
in Fig. 4, no matter the mutual coupling or limited incident
directions are considered or not, the lower bound of uplink
ergodic achievable rate decreases with the increasing of an-
tenna distance. When the number of incident directions P is
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 K∑
l=1,l ̸=k

βl

( r∑
i=1

ε4i

)
E


r∑

i=1

|hk,i|2

(
r∑

i=1

ε2i |hk,i|2)
2

+
1

SNRUT
E

 1
r∑

i=1

ε2i |hk,i|2



6

 K∑
l=1,l ̸=k

βl

( r∑
i=1

ε4i

)
E


r2

r∑
i=1

|hk,i|2

(
r∑

i=1

ε2i )
2

(
r∑

i=1

|hk,i|2)
2

+
1

SNRUT
E

 r

(
r∑

i=1

ε2i )(
r∑

i=1

|hk,i|2)



=

r2Trace
(
(F†F)

2
)
)( K∑

l=1,l ̸=k

βl

)
(Trace(F†F))

2 E

 1
r∑

i=1

|hk,i|2

+
r

SNRUT (Trace(F†F))
E

 1

(
r∑

i=1

|hk,i|2)



(b)
=

r2SNRUTTrace
(
(F†F)

2
)( K∑

l=1,l ̸=k

βl

)
+ rTrace(F†F)

βk (r − 1)SNRUT (Trace(F†F))
2

(19)

Rk > R̃k = log2

1 +
βk (r − 1)SNRUT

(
Trace(F†F)

)2
r2SNRUT

(
K∑

l=1,l ̸=k

βl

)
Trace ((F†F)(F†F)) + rTrace(F†F)

 (21)

Fig. 3. Lower bound of uplink ergodic achievable rate with respective
to the antenna number considering different antenna distances.

fixed as 70, the lower bound of uplink ergodic achievable
rate with mutual coupling is less than that with no mutual
coupling. When P approaches infinity, the lower bound of
uplink ergodic achievable rate with mutual coupling is also less
than that with no mutual coupling. Fig. 4 illustrates both the
mutual coupling and limited incident directions in the finite-
dimensional channel have a negative impact on the achievable
rate.

In Fig. 5, the lower bound of uplink ergodic achievable

Fig. 4. Lower bound of uplink ergodic achievable rate with respective
to the antenna distance while the array size is fixed.

rate for all UTs with respective to the increasing number
of UTs is investigated while the antenna array is fixed. The
size of the antenna array is fixed as 6λ × 3λ. The antenna
distance is fixed as 0.38λ and antenna number is fixed as 128.
Fig. 5 illustrates that the lower bound of the uplink ergodic
achievable rate for all UTs increases when the number of UTs
increases. When the number of incident directions P is fixed
as 70, the lower bound of the uplink ergodic achievable rate
with mutual coupling is below that without mutual coupling.
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Fig. 5. Lower bound of uplink ergodic achievable rate with respective
to the number of UTs while the antenna array is fixed.

And when P approaches infinity, the lower bound of the
uplink ergodic achievable rate is also less than that without
mutual coupling. This conforms with the finding in Fig. 4 that
both mutual coupling and limited incident directions have an
adverse impact on the achievable rate.

V. CONCLUSION

In this paper, the impact of mutual coupling effect on
multiuser massive MIMO systems employing a rectangular
uniform planar antenna array is investigated. Moreover, a
lower bound of the uplink ergodic achievable rate has been
analytically derived for a multiuser massive MIMO system.
In the finite-dimensional channel scenarios, numerical results
show that the mutual coupling and limited incident directions
reduce the achievable rate in multiuser massive MIMO sys-
tems, especially when the antenna distance is small or the
number of UTs is large. In a fixed-size rectangular array,
where the antenna distance and the antenna number change
simultaneously, the achievable rate increases with the growing
of antenna number in multiuser massive MIMO systems. In
the future, we will explore the new conformal antenna array
and the new precoding and detection schemes to reduce the
negative impact of mutual coupling on the multiuser massive
MIMO systems.
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[16] A. M. Tulino and S. Verdú, “Random matrix theory and wireless
communications,” Foundations Trends Commun. Inf. Theory, vol. 1, no.
1, pp. 1–182, June 2004.

Globecom 2014 - Signal Processing for Communications Symposium

3301


