
EMERGING TECHNOLOGIES & APPLICATIONS

Artificial Intelligence Based Multi-Scenario mmWave Channel
Modeling for Intelligent High-Speed Train Communications

Zhang Mengjiao1, Liu Yu1,2,*, Huang Jie3,4, He Ruisi2, Zhang Jingfan1, Yu Chongyang1, Wang Chengxiang3,4

1 School of Microelectronics, Shandong University, Jinan 250101, China
2 The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
3 The National Mobile Communications Research Laboratory, School of Information Science and Engineering, Southeast University,
Nanjing 210096, China
4 The Purple Mountain Laboratories, Nanjing 211111, China
* The corresponding author, email: yuliu@sdu.edu.cn

Cite as: M. Zhang, Y. Liu, et al., “Artificial intelligence based multi-scenario mmwave channel modeling for intelligent high-speed train
communications,” China Communications, 2024, vol. 21, no. 3, pp. 260-272. DOI: 10.23919/JCC.ja.2022-0406

Abstract: A large amount of mobile data from
growing high-speed train (HST) users makes intelli-
gent HST communications enter the era of big data.
The corresponding artificial intelligence (AI) based
HST channel modeling becomes a trend. This pa-
per provides AI based channel characteristic predic-
tion and scenario classification model for millimeter
wave (mmWave) HST communications. Firstly, the
ray tracing method verified by measurement data is ap-
plied to reconstruct four representative HST scenarios.
By setting the positions of transmitter (Tx), receiver
(Rx), and other parameters, the multi-scenarios wire-
less channel big data is acquired. Then, based on the
obtained channel database, radial basis function neu-
ral network (RBF-NN) and back propagation neural
network (BP-NN) are trained for channel characteris-
tic prediction and scenario classification. Finally, the
channel characteristic prediction and scenario classi-
fication capabilities of the network are evaluated by
calculating the root mean square error (RMSE). The
results show that RBF-NN can generally achieve bet-
ter performance than BP-NN, and is more applicable
to prediction of HST scenarios.
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I. INTRODUCTION

As a typical application scenario of new generation
communication system, high-speed train (HST) com-
munications are developing rapidly, and the commu-
nication demands of HST users continue to increase.
A large number of HST users bring diverse commu-
nication demands, such as multimedia entertainment,
video conference, and online HDTV, which lead to a
rapid growth in communication data flows [1]. The
existing HST communication system is far from meet-
ing the growing requirements. Consequently, the fifth
generation communication system for railway (5G-R)
considering 5G key technologies is essential, which
can provide vast HST environment sensing, high en-
ergy efficiency, low delay, and highly reliable commu-
nication services [2]. Accurate channel model that can
capture the distinctive channel characteristics plays a
crucial role in the design, test, and network evalua-
tion of future 5G-R system [3]. Due to the expansion
of future HST channels in multiple domains and the
big data attributes presenting in various HST channels,
it is a tendency to apply artificial intelligence (AI) to
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HST channel modeling [4–6].
In the literature, the relative HST channel mea-

surements and modeling researches have been con-
ducted [7]. Sub-6 GHz HST measurement campaigns
were carried out in tunnel, open space, viaduct, and
cutting scenarios in [8, 9], where large-scale fading
and small-scale fading were analyzed. The power
delay profile (PDP) of viaduct and hilly scenarios
measured in 2.6 GHz band were compared in [10].
Based on the channel measurement results, typical
large-scale fading parameters and K-factor (KF) were
studied. In [11], a non-stationary IMT-A HST chan-
nel model with time-varying parameters was proposed
to obtain a series of time-varying small-scale char-
acteristics. Moreover, the measurement campaign at
2.4 GHz band along the Guangzhou-Shenzhen rail-
road was performed [12]. The concept of active scat-
terer region was proposed to improve the geometry
based stochastic model (GBSM). GBSM was applied
to a multi-link propagation scenario for HST commu-
nication [13], and the channel model considering line-
of-sight (LoS) component, a single-bounced one-ring
model, and a double-bounced ellipse-ring was men-
tioned. With the increasing growth of HST channel
data, the existing modeling methods have their own
challenges.

Due to the advantages of machine learning (ML)
algorithms in big data processing, AI based channel
modeling is gradually becoming one of the key meth-
ods to study future wireless channels [14]. Compared
with traditional channel modeling methods, a signifi-
cant advantage of applying AI and ML is the ability
to partially predict the wireless channel characteris-
tics of unknown scenarios, unknown frequency bands
and future moments. In addition, AI based channel
modeling methods have a wider range of application
scenarios and higher flexibility. A large amount of
valid channel data in highly complex scenarios can
be obtained without the need of huge human and ma-
terial resources. Then, high-precision channel mod-
eling and channel characteristic prediction in various
high-complexity scenarios can be achieved [6]. Fur-
thermore, the introduction of neural network algo-
rithms to train channel databases for channel charac-
teristic prediction and scenario classification was pro-
vided in [15, 16]. In [17], a fast time-varying chan-
nel prediction algorithm was proposed. It was based
on support vector machine (SVM) and genetic algo-

rithm (GA) model. In [18], 2.35 GHz band measure-
ments considering massive multiple-input multiple-
output (MIMO) systems were introduced in cutting
scenario. A Conv-CLSTM channel characteristic pre-
diction model was proposed for the prediction of chan-
nel state information (CSI), KF, root mean square
(RMS) delay spread (DS), and angular spread (AS). In
addition, measurements at 1890 MHz and 2605 MHz
bands were conducted. Based on the measured data,
a deep neural network (DNN) based weighted score
fusion model for rural, station, suburban, and multi-
link HST scenario identification was proposed [19].
The above works mainly focused on the sub-6 GHz
band. Millimeter wave (mmWave) technology, with
its high speed and large bandwidth [20, 21], will be
used as a promising communication technology for
future 5G-R HST communications [22]. Measure-
ment campaigns of 25-37 GHz mmWave channels
were carried out in conventional railway stations, tun-
nels, and open space scenarios [23, 24]. The received
power, PDP, RMS DS, and channel non-stationarity
were analyzed. A strong correlation between angle
and environment was demonstrated for rural scenario
measured at 28 GHz band [25]. However, due to
the complex operation scenario of HST and expen-
sive test equipment, HST channel measurements in the
mmWave band are very limited [26]. The ray tracing
(RT) simulation modeling method based on limited
real measurement verification was recommended [27].
In [28], 60-300 GHz mmWave measurements were
performed in a car to simulate HST. The measure-
ment results verified the effectiveness of their self-
developed RT simulator. Based on the verified RT,
typical HST scenarios were reconstructed [29]. The
received power, KF, RMS DS, and ASs were analyzed
for data obtained from the simulations [30]. Moreover,
RT deterministic modeling method with high com-
putational complexity. Considering the specificity of
the HST scenario, a GBSM containing ambient modes
was proposed, which was specifically used for 3GPP
mmWave HST [31]. The PDP, KF, DS, and ASs were
analyzed in comparison with the verified RT simula-
tion. The introduction of mmWave communication
and massive MIMO has led to a rapid growth of data
volume, which urgently requires using big data meth-
ods for mmWave channel modeling [32, 33]. Cur-
rently, AI based mmWave channel modeling has been
carried out in indoor scenarios. In [34], a measure-
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ment campaign was launched in a typical indoor sce-
nario at 60 GHz band, and the SVM+GA algorithm
was used to predict the path loss (PL) and delays. A
database of wireless channels in four indoor mmWave
bands was built, and the received power, DS, and ASs
were predicted by training feedforward neural network
(FNN) and radial basis function neural network (RBF-
NN) [35].

To the best of our knowledge, AI based channel
characteristic prediction and scenario classification for
mmWave HST communications are still in the prelim-
inary stage. Thus, it is essential to study character-
istic prediction method for complex HST scenarios,
and use channel multidimensional features to intelli-
gently distinguish HST scenarios. To fill the research
gaps, the RT method verified by measurement data
is employed to reconstruct four typical HST scenar-
ios. Moreover, two kinds of neural network algorithms
are imported for characteristic prediction and scenario
classification. The main contributions of this paper are
summarized as follows.

• A comprehensive HST channel database is estab-
lished by the RT and measurement data. Using
the limited HST channel measurement data, the
RT software in typical HST scenarios are verified.
Based on the verified RT, four HST scenarios in-
cluding viaduct, open space, hilly, and cutting are
reconstructed, and large amounts of channel data
is acquired correspondingly.

• An artificial neural network (ANN) based chan-
nel characteristic prediction modeling method for
four HST scenarios is provided. The back prop-
agation neural network (BP-NN) and RBF-NN
algorithms are introduced to achieve accurate
prediction of classic channel characteristics for
multi-scenario fusion under HST mmWave com-
munication. The performance of two algorithms
is compared and analyzed by calculating the root
mean square error (RMSE).

• HSTs usually travel through different scenarios
rapidly. An ANN based modeling method for
HST scenarios classification is provided. Dur-
ing training the ANN, the classification of vari-
ous HST scenarios is achieved by using identi-
fied numbers to label the scenario types. And
the model classification performance is verified
by the multi-scenario dataset.

The remainder of this paper is organized as follows.
Section II describes the typical scenario reconstruc-
tion and HST wireless database generation. In Sec-
tion III, typical channel characteristics are introduced
and ANN based prediction and classification model
methods are proposed. Then, the model is analyzed
and evaluated by a multi-scenario fusion database in
Section IV. Conclusion and future research work are
given in Section V.

II. HST WIRELESS DATABASE GENERA-
TION

2.1 Verification of Measurement Data

The RT software Wireless Insite (WI) is verified by
measurement data and applied to reconstruct typical
HST scenarios. The WI is a full-featured software that
can mimic complex and realistic communication sce-
narios and produce effective channel data [36]. Before
channel data collection, the RT method is verified by
related measurement data to ensure the accuracy and
availability of generated data. Since the limited HST
mmWave measurement data, the open space scenario
is selected as verification scenario [25]. All the param-
eters in RT method are kept consistent with the real
measured ones. The fitting result of RMS DS is pre-
sented in Figure 1. In this case, the channel parameters
are determined and then extended to multiple scenar-
ios of HST.
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Figure 1. DS of channel measurement and RT simulation in
open space scenario.
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2.2 Typical Scenarios Description

HST can go through multiple scenarios during travel-
ing. Typical HST scenarios are roughly divided into
six categories: open space, viaduct, cutting, hilly, tun-
nel, and station scenarios [11]. Here, we choose the
most representative four outdoor scenarios, including
open space, viaduct, cutting, and hilly scenarios for
reconstruction.

2.2.1 Viaduct Scenario

Viaduct is one of the typical HST scenarios. Over 70%
of the traveling scenarios in Beijing-Shanghai high-
speed rail line are viaducts [4]. Here, the vicinity
of Huayuan Road in Daiyue District, Tai’an City of
Beijing-Shanghai High-speed Railway is used to re-
construct. The area on both sides near the railroad
is mainly farmland and dense trees. The left side of
the railroad covers residential buildings, low build-
ings, cement road, and lawn, with the cement road in
the middle of the buildings and land, and the right side
of the railroad is a wide road as shown in Figure 2. The
viaduct height and relative base station (BS) height
have great influence on the received signal.

2.2.2 Cutting Scenario

Cutting scenario refers to the real dimensions in [18],
where cutting crown width is set to 40 m, bottom width
is set as 16 m, and depth is 5 m. SketchUp software is
used to complete the main modeling and import into
WI. The whole scenario contains dense trees, farm-
land, grass, and low buildings as shown in Figure 2.
The scenario size is 400 m×300 m. Compared with
other scenarios, there are fewer kinds of objects in cut-
ting scenario. The propagation of radio waveforms is
significantly affected by the steep walls on both sides,
and the relative height between transmitter (Tx) and
receiver (Rx) in this scenario is different from other
scenarios.

2.2.3 Open Space Scenario

The vicinity of the Beijing-Shanghai HST Jinan Jiu
Province Royal Road Tea Culture Ecological Park as
a typical open-field scene is selected as open space
scenario. The original size scenario is reconstructed
for the 400 m range of the area, with specific dimen-
sional data from Baidu Map. Both sides of the rail-

road are dominated by farmland, in which there are
several low buildings and concrete roads. Moreover,
there are dense trees along the railroad line as shown
in Figure 2. The Rx is moving with a high speed in
this area where the BS antenna is much higher than
the surroundings.

2.2.4 Hilly Scenario

The communication transmission of hilly scenario is
mainly affected by the mountain. The reconstruction
of hilly environment is referred to scenario parameters
in [10]. Similar to cutting scenario, the main model-
ing is completed in SketchUp software and imported
into WI. During the modeling, the common objects of
mountain are added, and the results are shown in Fig-
ure 2. The height of the mountain is 70-90 m, and the
main materials are gravel, trees, and dry land. In this
scenario, the radio reflection, scattering, and diffrac-
tion are mainly caused by hill distributed irregularly.

2.3 Channel Database Generation

The WI verified by measurement data is used to ob-
tain the channel data. The simulation details and pa-
rameters selection in different scenarios are set up as
in Table 1. It should be noted that the specific electro-
magnetic parameters are from International Telecom-
munication Union (ITU)-R P. 2040 [37]. The dimen-
sions and material parameters of track are identical in
all four scenarios, including steel rails, sleepers, and
roadbed. Here, we take the open space scenario as an
example to introduce the generation process of chan-
nel datasets. Firstly, the size of scenario is selected
as 400 m×300 m. The Tx with a height of 33.2 m
is located on the one side of steel rails. Meanwhile,
the Rx is placed above the front of train with 3.89 m
height. An 8×8 MIMO antenna array with antenna
elements spaced at half-wavelength is used as the Tx
antenna, while a single omnidirectional antenna de-
ployed on the Rx. Moreover, the frequency is 28 GHz
with bandwidth of 933 MHz, and transmit power is set
as 34 dBm. The traveling distance between Tx and Rx
is set as 297 m, and received data is captured every
3 m. It can totally get 64×100 sets of channel data
at 100 different positions of Rx, such as Rx1, Rx2, ...
Rx100. The Tx/Rx antenna elements coordinates are
recorded as (tx, ty, tz) and (rx, ry, rz), respectively.
Then, the Tx-Rx distance dtr is calculated according
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Typical HST Scenarios

viaduct cutting open space hilly

Figure 2. Four typical HST scenarios: Actual scenario and WI modeling reconfiguration.

to the Euclidean distance formula, htr is the height
difference between Tx and Rx antenna elements, and
hts is the height difference between Tx and the high-
est scatterer object in the scenario. A 10-dimensional
channel database including Tx/Rx coordinates, Tx-
Rx distance dtr, frequency fc, height difference be-
tween Tx and Rx htr, and height difference between
Tx and highest scattering object hts are generated, de-
scribed as [tx, ty, tz, rx, ry, rz, dtr, fc, htr, hts]. Chan-
nel data for other scenarios can be obtained by adjust-
ing simulation parameters according to specific sce-
nario features. Finally, a total of 6400×4 channel
data sets are obtained to establish channel database.
Before inputting into the network, the training set of
10-dimensional channel parameters was normalized to
preprocess.

III. NEURAL NETWORK-BASED CHAN-
NEL CHARACTERISTIC PREDIC-
TION AND SCENARIO CLASSIFICA-
TION MODELS

3.1 Typical Channel Characteristics

During the generation of channel data, multipath com-
ponents (MPCs) information including delay, ampli-
tude, phase, azimuth angle of arrival (AOA), azimuth
angle of departure (AOD), elevation angle of arrival
(EOA), and elevation angle of departure (EOD), etc.,
is obtained. Based on the channel data, the typical
channel characteristic values are obtained. The chan-
nel characteristic set is then established. Several typi-

cal channel characteristics are calculated as follows.

3.1.1 Receiver Power

Based on multipath information, the total received
power is calculated. Moreover, the PL value of Rx
located at a specific position can be calculated by sub-
tracting the transmit power from the total received
power. PL is a key indicator to assess the communi-
cation transmission quality. The total received power
can be obtained as

Ppq =

I∑
i=1

α2
pq,i, (1)

where αpq,i denotes the propagation amplitude of ith
path between pth Tx and qth Rx, and I is the total
number of multipaths.

3.1.2 Root Mean Squared Delay Spread

The RMS DS is an important small-scale fading char-
acteristic parameter which can be used to measure the
channel dispersion in delay domain. It can be ex-
pressed as

σDS =

√√√√√
∑
i

α2
pq,iτ

2
pq,i∑

i

α2
pq,i

−


∑
i

α2
pq,iτpq,i∑

i

α2
pq,i

2

, (2)

where τpq,i denotes the propagation delay of ith path
between pth Tx and qth Rx.
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Table 1. The parameter settings of simulation.

Details of Simulation

Simulation Parameter

Scenario Viaduct Cutting Open Space Hilly
Frequency 28 GHz 28 GHz 28 GHz 28 GHz
Bandwidth 933 MHz 933 MHz 933 MHz 933 MHz

Transmit Power 34 dBm 34 dBm 34 dBm 34 dBm
Tx Antenna Pattern 8*8 antenna array 8*8 antenna array 8*8 antenna array 8*8 antenna array
Rx Antenna Pattern Omnidirectional Omnidirectional Omnidirectional Omnidirectional

Reflection/Diffraction/Transmission 6/1/1 6/1/1 6/1/1 6/1/1

Object

Lake
✓
✓
✓

✓
✓
✓
✓

✓

✓

✓

✓
✓

✓
✓
✓

✓

✓

✓
✓

✓

✓
✓

✓

Road
Trees

Greenery
Farmland
Low Hills

Base Station
High-rise Buildings
Low-rise Buildings

Rail Train Sleeper Roadbed

Material Parameter

Material Permittivity Conductivity(S/m) Thickness(m)
Brick 4.44 0.001 0.125

Concrete 5.31 0.48 0.3
Dry Earth 3 0.3 0
Wet Earth 5.7 9.5 0

3.1.3 Rician Factor

The KF is a typical channel parameter for studying the
signal transmission process. It is defined as the ratio of
the LoS power to the sum of the remaining MPCs [21],
which can be expressed as

δKF =
PLoS∑I

i=1 Ppq,i − PLoS

, (3)

where PLoS denotes the power value of the direct path,
and Ppq,i is the power value of the ith path between pth
Tx and qth Rx.

3.1.4 Root Mean Squared Angular Spread

AS is a second-order statistic measuring channel dis-
persion in angular domain, including azimuth and ele-
vation angles. The AS of azimuth and elevation angles
can be obtained separately as

σASA =

√√√√√
∑
i

α2
pq,i(θpq,i)

2∑
i

α2
pq,i

−


∑
i

α2
pq,iθpq,i∑

i

α2
pq,i

2

,

(4)

σASE =

√√√√√
∑
i

α2
pq,i(φpq,i)

2∑
i

α2
pq,i

−


∑
i

α2
pq,iφpq,i∑

i

α2
pq,i

2

,

(5)

where θpq,i and φpq,i denote the azimuth and elevation
angles via the ith path between pth Tx and qth Rx,
respectively. Using similar calculation process, the
AOA spread (AAS), AOD spread (ADS), EOA spread
(EAS), and EOD spread (EDS) can be acquired.

3.2 Basic Neural Network Model

ANN are an abstraction of the neuronal network of
human brain from an information processing perspec-
tive. Following different connections way, a large
number of simply connected neurons formed a com-
plex neural network. Neuron is the basic unit of
ANN, each neuron generates a sequence of real-valued
activations [38]. With highly nonlinear characteris-
tics, ANN is capable of complex logic operations and
nonlinear relational implementations. Moreover, it
adopts parallel distributed signal processing mecha-
nism, which results in fast processing speed and strong
fault tolerance. FNN is one of the typical structures
of ANN [35]. The commonly used FNN contains BP-
NN and RBF-NN, which are easier to be implemented.
Both of them do not require very complex network
to achieve the desired results, which can better meet
the initial design requirements. Moreover, compared
with more complex networks such as CNN, BP-NN
has lower complexity and less loss of accuracy.

BP-NN is one of the most widely used neural net-
works. It can realize complex pattern classification
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and multidimensional function mapping. Structurally,
it contains input layer, hidden layer, and output layer.
The basic idea of its algorithm is to adopt the net-
work error squared as the target function, and use
the gradient descent method to calculate its minimum
value [38]. RBF-NN is another commonly used clas-
sical FNN with excellent performance. For the RBF-
NN, the input terms are mapped to a high-dimensional
space by Gaussian transform, and RBF is used as the
activation function of the hidden layer neurons. Based
on the above features, RBF-NN has better approxima-
tion ability and global optimum property [39].

Channel characteristic prediction and scenario clas-
sification are two separate networks, namely Network
1 and Network 2. Network 1 adopting BP-NN and
RBF-NN respectively, is established for key channel
characteristic prediction. After several training verifi-
cations, the following BP-NN parameter settings are
adjusted for the best results. A 10-10-7 multilayer
BP network is built. The activation functions of the
implicit layer and the output layer are ′tansig′ and
′purelin′, respectively. Levenberg-Marquardt (L-M)
optimization algorithm is used for training function,
which has the fastest convergence speed compared
with other training functions [40]. The number of
training is set to 1000, the learning rate is 0.01, and
the minimum training target error is set to 1 × 10−5.
The ′tansig′ and ′purelin′ functions are as follows

tansig (k) =
2

1 + e−2k
− 1, (6)

purelin (k) = k. (7)

The RBF-NN uses the ′newbe′ function to design
an exact radial basis network with spread set to 1. The
RBF-NN activation function uses a Gaussian kernel
function, which can be expressed as

R (x, cn) = e−
∥x−cn∥2

2σ2 , (8)

where cn is the center point of the nth neuron in the
hidden layer and σ is the width of the Gaussian kernel.

The output ym of the network is given by

ym =
N∑
n

ωmnR (x, cn) m = 1 · · ·M, (9)

where ωmn is the moderation weight between the mth
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Figure 3. Modeling framework for channel characteristic
prediction and scenario classification of HST.

neuron in the output layer and the nth neuron in the
hidden layer, N is the number of units in the hid-
den layer, and M is the number of units in the output
layer. The network-based channel characteristic pre-
diction and scenario classification model framework
is shown in Figure 3. During the prediction of chan-
nel characteristic Network 1, 10-dimensional channel
parameters are selected as inputs of Network 1, and
some typical channel characteristics are set as outputs.
Then, during scenario classification Network 2, the
predicted channel characteristics are chosen as inputs
of Network 2, and the identified numbers of different
scenarios are set as the outputs.

3.3 Channel Characteristics Prediction Net-
work

For every scenario, a total of 6400 (64×100) data
groups are generated for training and testing the neu-
ral network. The input parameters of the neural net-
work contain [tx, ty, tz, rx, ry, rz, dtr, fc, htr, hts], and
the output parameters are some key channel charac-
teristics calculated at the corresponding locations, in-
cluding receiver power, DS, KF, and ASs (AAS, ADS,
EAS, EDS). Here, we take the open space scenario
as an example to introduce the training and testing of
neural network. The total number of datasets for the
open space scenario is 6400. In the dataset of open
space scenario, the testing dataset is extracted every 80
groups regularly, and the remaining dataset is used for
the training. The ordered datasets tend to cause bias
in the training process and reduce the generalization
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of the neural network model. Training sets are ran-
domly sorted by MATLAB and then fed into network,
and the output channel characteristic predictions are
compared with their true values. The above mentioned
method is further extended to four scenarios, and the
neural network model is applied to the fusion scenario.
That is, one set of data is taken every 4 groups, and
1600 data sets in all are produced for each kind of
scenario. Then, a total number of 1600×4 groups are
taken out from the four scenarios to finally form the fu-
sion dataset. The training and testing sets generation
basis and model training method in the fusion scenario
are consistent with the open space scenario.

3.4 Scenario Classification Network

Channel environments of different HST scenarios vary
greatly, and each scenario has its unique channel char-
acteristics. Hence, studying how to describe the map-
ping relationship between wireless channel data and
HST scenarios is crucial [41]. Based on the aboved
channel characteristics dataset, Network 2 is estab-
lished for scenario classification. It is implemented by
two neural network algorithms, BP-NN and RBF-NN,
respectively. The input of ANN model use the gen-
erated fusion scenario wireless channel characteristics
dataset [P, DS, KF, AAS, EAS, ADS, EDS], and the
output of ANN model is the scenario type numbers.
Different HST scenarios are marked by different label-
ing numbers, such as open space, cutting, viaduct, and
hilly scenarios corresponding to numbers 1, 2, 3, and
4, respectively. The Network 2 above is trained, and
the output scenario numbers are compared with their
real scenario numbers, so as to achieve the purpose of
classifying HST scenarios.

IV. RESULTS AND ANALYSIS

4.1 Prediction Fitting of Typical Channel
Characteristics

The prediction performance of the model is evaluated
by using the fusion scenarios dataset, and the ANN
predicted values are compared with the RT simulated
values. The fitting results can be used to intuitively
reflect the overall prediction effect. Both the BP-NN
and RBF-NN models can predict the overall variation
trends very well. Moreover, the prediction results of
RBF-NN are significantly better than those of BP-NN.

Figure 4. Fitting results of receiver power for BP-NN pre-
diction, RBF-NN prediction, and simulated datasets.
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Figure 5. Fitting results of DS for BP-NN prediction, RBF-
NN prediction, and simulated datasets.

The RBF-NN has very high accuracy for prediction
of received power, DS, KF, and ASs. The BP-NN
has lower accuracy for prediction of KF than received
power, DS, and ASs.

Figure 4 shows the fitting results of received power
among two neural network predictions as well as sim-
ulated datasets. The x-axis denotes the testing dataset
number, and the y-axis is the received power value of
the corresponding data index. The range of received
power is between -125 dBm and -90 dBm. Figure 5
describes the predicted DS values, which has a con-
centrated range of 0 ns to 50 ns. Moreover, there are
several spots in the series between 50 ns and 200 ns. It
might be caused by more scatterers in some scenarios
and/or the train being far away from the Tx.
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Figure 6. Fitting results of KF for BP-NN prediction, RBF-
NN prediction, and simulated datasets.

The predicted KF values among two neural network
predictions as well as simulated datasets are presented
as shown in Figure 6. It can be seen that the prediction
performance of BP-NN for KF is relatively weak, and
the overall fluctuation of KF with large difference at
a certain place reflects the time-varying nature of KF.
The sudden drop of KF value at a certain moment may
be caused by the blockage of other scatterers, such as
trees during the train operation. In addition, when the
train runs to a certain moment, there is no blocking
between Tx and Rx, and at this time, the LoS path
between Rx and Tx is strong [42]. As illustrated in
Figure 6, the above described situation occurs when
data index is 49, leading to a significant increase of
KF value.

The predicted values of ASs, including AAS, EAS,
ADS, and EDS are shown in Figures 7–10, respec-
tively. The EAS ranges from 0◦ to 10◦ and AAS ranges
from 0◦ to 40◦. The angles range of ADS is the largest,
which reaches 0◦-90◦, while the maximum of EDS
does not exceed 3◦. The floating range of azimuth an-
gle is larger than the elevation angle, for which EDS
has the highest prediction accuracy.

4.2 Scenario Classification Results

By labeling category of each scenario, the numbers
1, 2, 3, and 4 are used to represent open space, cut-
ting, viaduct, and hilly scenarios, respectively. The
scenario label dataset is obtained as the output of Net-
work 2. In the classification process, the testing groups
are randomly sorted and input into the Network 2.

The related classification results for BP-NN predic-
tion, RBF-NN prediction, and simulated datasets are
illustrated as Figure 11. From this figure, both BP-
NN and RBF-NN predictions can achieve good per-
formance in scenario classification. Compared with
RBF-NN, BP-NN classification is more accurate and
stable in this application.
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Figure 7. Fitting results of AAS for BP-NN prediction, RBF-
NN prediction, and simulated datasets.
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Figure 8. Fitting results of EAS for BP-NN prediction, RBF-
NN prediction, and simulated datasets.

4.3 Performance Evaluation of ANN Models

The RMSE is used to measure the performance of
ANN models. It is a commonly used statistical in-
dicator, which responds to the deviation between the
predicted and real values. The detailed calculation of
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Figure 9. Fitting results of ADS for BP-NN prediction,
RBF-NN prediction, and simulated datasets.
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Figure 10. Fitting results of EDS for BP-NN prediction,
RBF-NN prediction, and simulated datasets.

RMSE can be expressed as

µRMSE =

√√√√1

a

a∑
b=1

[yreal(b)− ypred(b)]2, (10)

where a is the total number of dataset groups, yreal and
ypred are the real and predicted values of the bth group,
respectively.

To compare the prediction performance, the RMSEs
of BP-NN and RBF-NN applied to the fusion scenario
are calculated as listed in Table 2. The smaller the
RMSE value, the closer the predicted value is to the
real value, and the model prediction is better. When
the value of RMSE is equal to 0, the predicted value is
equal to the true value, and it is called a perfect model.
For prediction of EDS, both RBF-NN and BP-NN can
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Figure 11. The classification results of multi-scenario fu-
sion for BP-NN prediction, RBF-NN prediction, and simu-
lated datasets.

provide good performance. Furthermore, the RMSE
of EDS using RBF-NN prediction is only 0.02, which
indicates that EDS is highly correlated with the input
features. However, for prediction of KF, both method
can not achieve good performance, which means that
the correlation between KF and the input features is
relatively lower. Meanwhile, the RMSE values are
calculated according to the scenario classification re-
sults. The classification ability of the Network 2 is ver-
ified. Meanwhile, both RBF-NN and BP-NN exhibit
excellent classification performance, and the classifi-
cation ability of BP-NN is stronger than RBF-NN. The
RMSE obtained with RBF-NN is 0.47, while BP-NN
corresponds to 0.32.

V. CONCLUSION

In this paper, ANN based models for channel char-
acteristic prediction and scenario classification have
been proposed. Four typical HST scenarios have been
reconstructed using the RT method, which has been
verified by the limited real measurement data. Then,
the channel data for four HST communication sce-
narios in mmWave bands has been acquired and the
corresponding channel database has been established.
Based on the channel datasets, the Network 1 and
Network 2 have been used for characteristic predic-
tion and scenario classification, respectively. In each
network, two neural network algorithms, BP-NN and
RBF-NN, have been selected for implementation. Fi-
nally, the prediction performance of BP-NN and RBF-
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Table 2. RMSEs comparison for BP-NN and RBF-NN in multi-scenarios.

Type Power DS KF AAS EAS ADS EDS Classification
BP-NN 1.33 21.24 37.85 8.92 1.95 7.28 0.44 0.32

RBF-NN 0.11 0.81 1.45 0.24 0.12 0.79 0.02 0.47

NN has been compared. The two neural network algo-
rithms have achieved the best prediction performance
for EDS, indicating that EDS is highly correlated with
physical channel parameters. The worst prediction
performance has been obtained for KF, and both neural
networks algorithms have the same performance trend
of superior and inferior prediction for each channel
characteristic. Moreover, the prediction performance
and classification ability of the proposed models have
been verified by fusion dataset. The results show that
both networks can realize the basic functions. RBF-
NN has higher stability and is more suitable for char-
acteristics prediction of HST channels, while BP-NN
outperforms RBF-NN in classification of HST scenar-
ios. The proposed ANN models can extend the appli-
cability conditions to multi-frequency bands and more
HST multi-scenarios as well as the same type of HST
scenarios in different regions.
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