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This paper addresses the problem of frequency synchronization in multiple-input multiple-output (MIMO) orthogonal frequency-
division multiplexing (OFDM) systems with periodic preambles. Two Maximum Likelihood Estimators (MLEs) and four low
complexity Best Linear Unbiased Estimators (BLUEs) are proposed.When cyclic shift delay is applied to periodic preambles, MLEs
can adopt a unique structure which employs diversity and correlation calculation in the estimator. We first propose a multiple-
antenna estimator named as MLE-MA, which has an estimation range of the entire signal bandwidth. MLE-MAS is a simplified
version of MLE-MA, which reduces the computational load at the cost of a narrower estimation range. Moreover, phases or
differential phases obtained from the autocorrelation of periodic sequences with different delays can be used to estimate carrier
frequency offset (CFO). The weighting coefficients of all BLUEs are derived in closed form and shown to be independent from the
signal-to-noise ratio (SNR). BLUEs have asymptotically consistent variances. Theoretical and simulation results demonstrate that
all estimators can asymptotically approach the theoretical Cramer Rao Lower bound (CRLB) at different SNRs.

1. Introduction

Multiple-input multiple-output (MIMO) systems have
greater capacities than single-input and single-output (SISO)
systems. This capacity increases linearly with the minimum
of transmitter and receiver antenna [1, 2] if uncorrelated
Tx-Rx antenna pairs are assumed. Diversity andmultiplexing
techniques can be employed to improve the reliability and
spectral efficiency of MIMO systems [3], respectively. For
more practical case, one can refer to some useful MIMO
channel models [4, 5] for capacity analysis and simulations.
Orthogonal frequency-division multiplexing (OFDM) splits
a wide frequency band into a bank of narrow subbands.
Although the whole bandwidth may be subject to frequency
selective fading, each subband normally undergoes flat
fading. This flat fading effect can be easily compensated by
a single-tap frequency domain equalizer. Therefore, OFDM
can overcome inter-symbol interference (ISI) very well [6]
compared with single carrier systems. MIMO combined with

OFDM [3] is seen as an essential technique for advanced
communication systems.

Frequency synchronization is crucial to any communi-
cation system. In particular, OFDM is sensitive to carrier
frequency offset (CFO), which is caused by oscillator mis-
match between transmitter (Tx) and receiver (Rx) and/or
Doppler shift. If CFO is not compensated at the Rx, accumu-
lated phase rotation, amplitude degradation, and intercarrier
interference (ICI) will severely degrade the overall system
performance [7].Thus, accurateCFOestimation is indispens-
able for OFDM systems. In MIMO scenarios, signals from
different transmit antennas are superimposed at the Rx, so
that the accuracy and reliability of CFO estimation can be
improved using diversity techniques.

Synchronization techniques for SISO systems have been
well documented. Due to its low complexity, periodic pream-
bles are widely utilized in wireless standards, such as IEEE
802.11a/n [8]. Schmidl and Cox [9] employed two training
symbols to accomplish the synchronization task. Timing and
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fractional CFO estimations were obtained by the first symbol,
which is composed of two identical short sequences. CFO
was calculated as the phase of timing metric at the correct
timing position.The second symbol was exploited to estimate
the integer CFO. However, the use of two data symbols
caused extra overhead. TwoMaximumLikelihoodEstimators
(MLEs) and an ad hoc CFO estimator for signal transmission
over frequency selective channels were considered in [10].
The MLEs were based on Fast Fourier Transform (FFT)
implementation and the ad hoc method was based on best
linear unbiased estimator (BLUE). The sensitivity of the
BLUE algorithms to quantization errors of the arg function
(the argument of a complex number) was analyzed and quan-
tified in [11]. Further discussions on BLUEs were presented
by Minn et al. in [12], where three BLUEs were proposed.
However, the weighting coefficients were calculated based
on simulations. Therefore, the weighting coefficients were
not closed form and depend on the signal-to-noise ratio
(SNR). The above papers all concentrated on single antenna
systems. For synchronization in MIMO-OFDM systems,
some contributions have been reported [13, 14]. Through
solving the roots of a real polynomial, fractional CFO was
estimated in [13]. A practical and low complexity algorithm
without solving polynomial was discussed in [14]. After a
coarse compensation, fractional CFO estimation was found
by trigonometric approximation and integer CFO was also
obtained by a search method.

This paper proposes novel frequency synchronization
methods for MIMO-OFDM systems with periodic pream-
bles. Unlike the above-mentioned schemes [9, 10, 12–14], the
presence of cyclic delay is further considered in this paper.
After joint estimation of channel and CFO, we first propose
two MLEs which employ spatial diversity and weighted
correlation calculation in the estimator.Weighting coefficient
for correlation calculation only relies on the number of pilots,
which is totally independent ofmodulation signals. Although
different cyclic delays may be introduced in the preambles,
the proposed estimators have a definite and unique structure.
Compared with nonperiodic preambles, correlation based
estimator for periodic preambles has lower complexity and
simpler structure. Similar to the estimators in [10], FFT
implementation and numerical interpolation are exploited
in the proposed MLEs. The first MLE has a very large esti-
mation range up to the signal bandwidth of OFDM but
requires a large point FFT implementation. The second
MLE can reduce complexity but has a smaller estimation
range. Furthermore, four different low complexity BLUEs are
proposed. The accumulated phase increases linearly as time
elapses in OFDM, so the phase of time delay autocorrelation
for periodic sequences is mainly overwhelmed by CFO. This
characteristic is utilized to estimate CFO. BLUE-PA and
BLUE-PA-N take the phase of correlationmetrics directly and
a coarse estimation is needed to enlarge the estimation range,
while BLUE-DPA andBLUE-DPA-Nutilize differential phase
of correlation metrics to avoid coarse estimation steps. In
particular, BLUE-DPA-N is a straightforward extension of the
estimator in [15]. BLUE-PA and BLUE-DPA perform a little
better than BLUE-PA-N and BLUE-DPA-N by considering
noise-noise product itemswhen deriving covariance.Wenote

that weighting coefficients in [12] are based on simulations
and related to the SNRs. In contrast, all weighting coefficients
in this paper have closed-form expressions and are indepen-
dent from SNRs.

The imperfect CFO estimation and compensation will
degrade the performance of SISO-OFDM and MIMO-
OFDM systems. There are some literatures to discuss the
impact of CFO on the channel estimation or system BER
performance [16, 17]. We do not discuss the question in this
paper due to page limits. The interested reader can refer to
these literatures.

The rest of this paper is organized as follows. The sys-
tem model is described in Section 2. ML CFO estimation
algorithms for periodic preambles are proposed in Section
3. Four different BLUEs are presented in Section 4. In Sec-
tion 5, computational complexity ofMLEs andBLUEs are dis-
cussed. Section 6 shows the simulation results of frequency
synchronization algorithms. At last, conclusions are drawn in
Section 7.

Notations. Superscripts (⋅)
∗, (⋅)𝑇, (⋅)𝐻, and (⋅)

+ denote con-
jugate, transpose, Hermitian transpose, and Moore-penrose
inversion, respectively. 𝑥 | 𝑃 denotes 𝑥 module 𝑃. Matrices
F
𝑁
, I

𝑁
, and 1

𝑁×𝑁
are 𝑁-by-𝑁 Fourier matrix, identity

matrix, and all-ones matrix, respectively. F
𝑁,𝐿

takes the first
𝐿 columns of F

𝑁
, and 1

𝑁
is a𝑁-by-1 all-ones column vector.

Moreover, ⌊⋅⌋ and ‖ ⋅ ‖
2 denote floor operation and square of

Euclidean norm, respectively, ⊙ and ⊗ denote Hadamard and
Kronecker product operators, respectively, and R{⋅}, I{⋅},
and arg{⋅} denote the real part, imaginary part, and principal
argument of a complex number, respectively.

2. System Model

Considering a MIMO-OFDM system with 𝑁
𝑡
transmit

antennas and𝑁
𝑟
receive antennas.The number of subcarriers

is 𝑁. The frequency domain pilot sequence of the 𝑖th Tx
branch is c

𝑖
= [𝑐

𝑖
(0), 𝑐

𝑖
(1), . . . , 𝑐

𝑖
(𝑁 − 1)]

𝑇, where 1 ≤ 𝑖 ≤ 𝑁
𝑡
.

At first, we do not apply any constraints, for example, periodic
property, on the pilot sequences. This means that we first
consider the general case. Usually, some virtual subcarriers
are inserted at high frequency components. Let 𝑁

𝑢
be the

number of subcarriers that can be utilized, that is, except
virtual subcarriers and DC component.

The channel impulse response (CIR) of the frequency
selective fading channel between the 𝑖th Tx and the 𝑗th Rx
antenna is modeled as a 𝐿 order finite impulse response (FIR)
filter, h

𝑖,𝑗
= [ℎ

𝑖,𝑗
(0), ℎ

𝑖,𝑗
(1), . . . , ℎ

𝑖,𝑗
(𝐿 − 1)]

𝑇, where 1 ≤ 𝑗 ≤

𝑁
𝑟
. Channels between different antenna pairs are assumed to

be statistically independent. Each tap coefficient is a complex
Gaussian random variable with zeromean. Cyclic prefix (CP)
is inserted before each OFDM symbol with a length of 𝑁

𝑔

and we assume that 𝐿 ≤ 𝑁
𝑔
. At the Rx end, after discarding

CP, the received signal vector at the 𝑗th Rx branch is r
𝑗

=

[𝑟
𝑗
(0), 𝑟

𝑗
(1), . . . , 𝑟

𝑗
(𝑁 − 1)]

𝑇. CFO is denoted by ], which is
normalized to the subcarrier spacing; then r

𝑗
is given by

r
𝑗
= Γ

𝑁
𝑡

∑
𝑖=1

F𝐻

𝑁
diag {c

𝑖
} F

𝑁,𝐿
h
𝑖,𝑗

+ k
𝑗
, (1)



International Journal of Distributed Sensor Networks 3

where Γ = diag{1, 𝑒𝑗2𝜋]/𝑁, . . . , 𝑒𝑗2𝜋](𝑁−1)/𝑁}. The entries of
Fourier matrix F

𝑁
are [F

𝑁
]
𝑛,𝑘

= 1/√𝑁𝑒−𝑗2𝜋𝑛𝑘/𝑁, where 0 ≤

𝑛, 𝑘 ≤ 𝑁 − 1. AWGN noise vector at the 𝑗th Rx branch
is k

𝑗
= [V

𝑗
(0), V

𝑗
(1), . . . , V

𝑗
(𝑁 − 1)]

𝑇. The noise samples
are independent circularly symmetric zero-mean complex
Gaussian random variables with variance 1/2𝜎2

V per dimen-
sion.

Due to the presence of CP, channel linear convolution is
converted into circular convolution. The noise-free received
signal vector is x

𝑗
= ∑

𝑁
𝑇

𝑖=1
S
𝑖
h
𝑖,𝑗
, where S

𝑖
is transmit signal

matrix at the 𝑖th antenna, S
𝑖
= F𝐻

𝑁
diag{c

𝑖
}F

𝑁,𝐿
. The received

signal power is defined as 𝜎2

𝑥
= 1/𝑁∑

𝑁−1

𝑛=0
|𝑥

𝑗
(𝑘)|

2.
We denote S = [S

1
, S

2
, . . . , S

𝑁
𝑡

], h = [h𝑇
1
, h𝑇

2
, . . . , h𝑇

𝑚
, . . . ,

h𝑇
𝑁
𝑟

]
𝑇, h

𝑚
= [h𝑇

1,𝑚
, h𝑇

2,𝑚
, . . . , h𝑇

𝑁
𝑡
,𝑚

]
𝑇, and k = [k𝑇

1
, k𝑇

2
, . . . ,

k𝑇
𝑁
𝑟

]
𝑇. After stacking all the received vectors from different

Rx branches r
𝑗
, 1 ≤ 𝑗 ≤ 𝑁

𝑟
, the new received vector, r =

[r𝑇
1
, r𝑇

2
, . . . , r𝑇

𝑁
𝑟

]
𝑇, is given by

r = (I
𝑁
𝑟

⊗ ΓS) h + k = Ah + k, (2)

whereA = I
𝑁
𝑟

⊗ΓS. Themean of k is zero and the covariance
matrix of k is 𝜎2

V I𝑁𝑁
𝑟

.

3. ML Carrier Frequency Offset
Estimation Algorithms

For known A and h, the received vector r is Gaussian with
mean Ah and covariance matrix 𝜎2

𝑤
I
𝑁𝑁
𝑟

. The likelihood
function of r is a𝑁𝑁

𝑟
dimension complexGaussian function:

Λ (r; h, ]) =
1

(𝜋𝜎2

V )
𝑁𝑁
𝑟

exp{−
‖r − Ah‖2

𝜎2

V
} . (3)

ML algorithm searches for the optimum value of h and
], which can maximize the likelihood function in (3). The
maximization is equivalent to the minimization of the cost
function below

𝐶 (r; h, ]) = ‖r − Ah‖2 =

𝑁
𝑟

∑
𝑗=1


r
𝑗
− ΓSh

𝑗



2

. (4)

Assuming ] is fixed,we take the first order partial derivative of
𝐶(r; h, ]) with respect to h and set it to zero. The least square
(LS) estimation of CIR becomes [18]

ĥ
𝑗
= (ΓS)+r

𝑗
, 1 ≤ 𝑗 ≤ 𝑁

𝑟
, (5)

where X+ is the Moore-Penrose generalized inverse of X.
Substituting (5) into (4) and discarding the irrelevant terms,
(4) becomes

𝐶 (r; ]) =

𝑁
𝑟

∑
𝑗=1

r𝐻
𝑗

(ΓS) (ΓS)+r
𝑗
=

𝑁
𝑟

∑
𝑗=1

r𝐻
𝑗
ΓBΓ𝐻r

𝑗
, (6)

where B = SS+ is called project matrix. Notice that the pro-
jection matrix B is Hermitian symmetrical and 𝐶(r; ]) can be
further derived as

𝐶 (r; ]) = 𝜌 (0) − 2R{

𝑁−1

∑
𝑙=0

𝜌 (𝑙) 𝑒
−𝑗2𝜋]𝑙/𝑁

} , (7)

where 𝜌(𝑙) is given by

𝜌 (𝑙) =

𝑁
𝑟

∑
𝑗=1

𝑁−1

∑
𝑘=𝑙

B
𝑘−𝑙,𝑘

𝑟
𝑗
(𝑘) 𝑟

∗

𝑗
(𝑘 − 𝑙) . (8)

Compared with SISO systems, there are diversity effect in
𝜌(𝑙). The ML CFO estimator for nonperiodic preambles is

]̂ = argmax
]

{R{

𝑁−1

∑
𝑙=0

𝜌 (𝑙) 𝑒
−𝑗2𝜋]𝑙/𝑁

}} . (9)

The last term of right hand of (7) has the same structure
as Discrete Fourier Transform (DFT). So this term can be
implemented by FFT effectively.

3.1. MLE-MA. As we know, for system with periodic pream-
bles, its packet detectors and CFO estimator have simpler
form and lower complexity [9, 10]. A periodic preamble has
multiple identical short slots and each slot has a length of 𝑃.
For simplicity, the length of the periodic sequence is first set to
𝑁, the same as the FFT size. The periodic sequence includes
𝑀 = 𝑁/𝑃 identical short slots. Actually, more repeated slots
may be used in practice, such as in 802.11a/n [8], the short
preamble contains ten identical short slots, and each slot has
a length of 16. To generate periodic preambles, nonzero pilots
are inserted with a fixed spacing 𝑀; namely, the entries of c

𝑖

are

c
𝑖
(𝑛) = {

𝑑
𝑖
(𝑛) , 𝑛 = 𝑛𝑀,

0, otherwise,
(10)

where pilot 𝑑
𝑖
(𝑛) is usually constant power modulation

symbols with |𝑑
𝑖
(𝑛)| = √1/(𝑁

𝐷
𝑁

𝑡
), and 𝑛 ∈ {𝜙 :

[1,𝑁
𝐷
/2] ∪ [𝑃 − 𝑁

𝐷
/2, 𝑃 − 1]}, where the number of pilots

𝑁
𝐷
is an even number and 𝑁

𝐷
≤ ⌊𝑁

𝑢
/𝑀⌋. In 802.11n, the

frequency domain pilot sequences used in each Tx antenna
are the same but with different cyclic delay. Now the pilot
sequences c

𝑖
is represented as c

𝑖
= c

1
⊙ u, where u =

[1, 𝑒𝑗2𝜋𝜏𝑖/𝑁, . . . , 𝑒𝑗2𝜋(𝑁−1)𝜏
𝑖
/𝑁]

𝑇

. The time delay of the 𝑖th Tx
branch is 𝜏

𝑖
. We have 𝜏

1
= 0. In the case of multiple (> 𝑃)

repeated slots, assuming that timing uncertainty 𝜇 existed,
but there are enough samples to assure the receiving vector
not containing other parts of the signal, thus the received
signal vector at the 𝑗th Rx branch is given by

r
𝑗
= Γ

𝑁
𝑡

∑
𝑖=1

F𝐻

𝑁
Γ (𝜏

𝑖
+ 𝜇) diag {c

1
} F

𝑁,𝐿
h
𝑖,𝑗

+ k
𝑗
, (11)

where Γ(𝜏
𝑖
+ 𝜇) = diag{1, 𝑒𝑗2𝜋(𝜏𝑖+𝜇)/𝑁, . . . , 𝑒𝑗2𝜋(𝜏𝑖+𝜇)(𝑁−1)/𝑁}.

Now, the transmit signal matrix at the 𝑖th antenna becomes
S
𝑖
= F𝐻

𝑁
Γ(𝜏

𝑖
+ 𝜇) diag{c

1
}F

𝑁,𝐿
.
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We observe that diag{c
1
} is rank deficiency and

F𝐻

𝑁
diag{c

1
} has 𝑁

𝐷
nonzero columns. We define a new

𝑁-by-𝑁
𝐷
column selection matrix E, with one at (𝑛, 𝑖

𝑛
)th

entries and zero at other entries, to extract the valid columns
of F𝐻

𝑁
diag{c

1
}, where 𝑖

𝑛
 denotes the index of 𝑛 in 𝜙.

Correspondingly, E𝑇 is a row selection matrix. Then, the
total transmit signal matrix S can be expressed as S =

F𝐻

𝑁
diag{c

1
}EE𝑇[Γ(𝜏

1
+ 𝜇)F

𝑁,𝐿
, . . . , Γ(𝜏

𝑁
𝑡

+ 𝜇)F
𝑁,𝐿

]. The rank
of matrix F𝐻

𝑁
diag{c

1
}E (denoted by U) and matrix E𝑇[Γ(𝜏

1
+

𝜇)F
𝑁,𝐿

, . . . , Γ(𝜏
𝑁
𝑡

+ 𝜇)F
𝑁,𝐿

] (denoted by V) is 𝑁
𝐷
. Both

matrices constitute a full-rank decomposition of S, that is S =

UV, based on which we can use the following expression to
calculate the Moore-Penrose generalized inverse S+ [19],

S+ = V+U+

= V𝐻

(VV𝐻

)
−1

(U𝐻U)
−1

U𝐻

, (12)

and the projection matrix B,

B = SS+ = U(U𝐻U)
−1

U𝐻

= UU+

, (13)

where we utilize two matrix properties, VV𝐻(VV𝐻)
−1

= I,
and the Moore-Penrose generalized inverse of 𝑁-by-𝑁

𝐷

matrix U with rank 𝑁
𝐷
is U+ = (U𝐻U)

−1U𝐻. It is interest-
ing to observe that B is independent of cyclic delay
{𝜏

𝑖
, 1 ≤ 𝑖 ≤ 𝑁

𝑡
} and timing uncertainty 𝜇 as well. If we

proceed to another full-rank decomposition of U as U =

(F𝐻

𝑁
)(diag{c

1
}E) and use the first equation in (12), the projec-

tion matrix B is further given by

B = F𝐻

𝑁
(diag {c

1
}E) (diag {c

1
}E)+F

𝑁

= F𝐻

𝑁
diag {c

1
} diag {c

1
}
+F

𝑁

= F𝐻

𝑁
diag {Θ} F

𝑁

=
1

𝑀
1
𝑀×𝑀

⊗ Q
𝑃
,

(14)

where Θ = [0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0]
𝑇 and Θ takes 1 at

nonzero pilot position in frequency domain of the preamble,
which is only related to the position and number of pilots
and independent of the pilot modulation symbols. Let q be
the time-domain transform of Θ, q = F𝐻

𝑁
Θ. q is periodic

with period of 𝑃. Q
𝑃
is a circulant matrix and its entries are

[Q
𝑃
]
𝑚,𝑛

= 𝑞(𝑚 − 𝑛 | 𝑃), where 0 ≤ 𝑚, 𝑛 ≤ 𝑃 − 1. After some
straightforward manipulations, 𝜌(𝑙) can be written as

𝜌 (𝑙) =
1

𝑀
𝑞
𝑙|𝑃

𝑁
𝑟

∑
𝑗=1

𝑁−1

∑
𝑘=𝑙

𝑟
𝑗
(𝑘) 𝑟

∗

𝑗
(𝑘 − 𝑙) . (15)

It is obvious that (15) is the weighted correlation of the
received signal. For 𝑁 = 64, 𝑃 = 16, and 𝑁

𝐷
≥ 8,

the weighting vector q is illustrated in Table 1. In 802.11a/n
systems, 𝑁

𝐷
= 12. Spatial diversity effect is seen in (15)

by accumulating correlation of the signals from multiple
receiving antennas. The weighted correlation structure has a
reduced complexity compared with (8). Moreover,B is corre-
lated with 𝑁

𝐷
and independent from the specific preamble.

Such a special structure makes the estimator simpler. Thus,
the firstMLE for periodic preambles takes the following form:

]̂MA = argmax
]

{R{

𝑁−1

∑
𝑙=1

𝜌 (𝑙) 𝑒
−𝑗2𝜋]𝑙/𝑁

}} . (16)

Note that the Direct-Current (DC) component, 𝜌(0), can
be removed from the estimation equation above because it
contributes nothing to estimate the frequency offset. This
estimator is a multiple-antenna CFO estimator, which is
called MLE-MA. Although different cyclic delay may be
applied at the Tx, this estimator has a definite and unique
expression in (16). Similar to (9), this estimator can be
implemented by FFT. After zero padding to 𝜌(𝑙), the actual
FFT length 𝐾

𝑃
𝑁 can improve the accuracy and resolution

[10], where 𝐾
𝑃
is a designed factor.

If the index of maximum FFT value is 𝜆, then the esti-
mated CFO is ]̂ = 𝜆/𝐾

𝑃
. The maximum value of FFT may

not locate at the maximum of spectrum. Numerical method,
such as Lagrangian function interpolation [20], can be used
to further improve the accuracy.

A simple three-point quadratic interpolation is employed
here. The three frequency values near index 𝜆 are 𝑦(𝜆 − 1) =

(𝜆 − 1)/𝐾
𝑃
, 𝑦(𝜆) = 𝜆/𝐾

𝑃
, and 𝑦(𝜆 + 1) = (𝜆 + 1)/𝐾

𝑃
. The

corresponding FFT values are denoted as 𝑓(𝜆 − 1), 𝑓(𝜆), and
𝑓(𝜆 + 1). The Lagrangian interpolation function is

𝐿
2
(𝑦) = {

1

2
(𝑦 − 𝑦 (𝜆)) (𝑦 − 𝑦 (𝜆 + 1)) 𝑓 (𝜆 − 1)

− (𝑦 − 𝑦 (𝜆 − 1)) (𝑦 − 𝑦 (𝜆 + 1)) 𝑓 (𝜆)

+
1

2
(𝑦 − 𝑦 (𝜆 − 1)) (𝑦 − 𝑦 (𝜆)) 𝑓 (𝑚 + 1)} .

(17)

Taking the derivation of 𝐿
2
(𝑦), 𝐿

2
(𝑦), to be 0, the refined

CFO value is obtained as

]̂MA =
(2𝜆 + 1) 𝑓 (𝜆 − 1) − 4𝜆𝑓 (𝜆) + (2𝜆 − 1) 𝑓 (𝜆 + 1)

2𝐾
𝑃
(𝑓 (𝜆 − 1) − 2𝑓 (𝜆) + 𝑓 (𝜆 + 1))

.

(18)

MLE-MA has an estimation range of |]MA| ≤ 𝑁/2, which is
up to the entire signal bandwidth of OFDM.

3.2. MLE-MAS. For preamble which has a pilot number of
𝑁

𝐷
= 𝑃, the project matrix B equals (1/𝑀)1

𝑀×𝑀
⊗ I

𝑃
, which

is shown in the last row of Table 1. 𝜌(𝑙) has nonzero values
only when 𝑙 is the multiple of 𝑃. Denote 𝜉(𝑙) as

𝜉 (𝑙) =
1

𝑀

𝑁
𝑟

∑
𝑗=1

𝑁−1

∑
𝑘=𝑙𝑃

𝑟
𝑗
(𝑘) 𝑟

∗

𝑗
(𝑘 − 𝑙𝑃) , (19)

where 𝑙 = 0, 1, . . . ,𝑀 − 1. Only 𝑀 correlation values are
needed, so the computation load is further reduced. A new
CFO estimator becomes

]̂MAS = argmax
]

{R{

𝑀−1

∑
𝑙=0

𝜉 (𝑙) 𝑒
−𝑗(2𝜋]𝑙/𝑀)

}} . (20)
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Table 1: Pilots number and q vector.

𝑁
𝐷

q vector
8 [0.5000, 0.2517, −0.1250, −0.1560, 0, −0.0207, −0.1250, −0.0749, 0, −0.0749, −0.1250, −0.0207, 0, −0.1560, −0.1250, 0.2517]𝑇

10 [0.6250, 0.2039, −0.2134, −0.0406, 0, −0.1362, −0.0366, −0.0271, −0.1250, −0.0271, −0.0366, −0.1362, 0, −0.0406, −0.2134, 0.2039]𝑇

12 [0.7500, 0.1155, −0.2134, 0.0478, −0.1250, −0.0478, −0.0366, −0.1155, 0, −0.1155, −0.0366, −0.0478, −0.1250, 0.0478, −0.2134, 0.1155]𝑇

14 [0.8750, 0, −0.1250, 0, −0.1250, 0, −0.1250, 0, −0.1250, 0, −0.1250, 0, −0.1250, 0, −0.1250, 0]𝑇

16 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇

Similarly, the DC component 𝜉(0) is removed because of zero
contribution to estimate the frequency offset. This estimator
above is named as MLE-MAS. Notice that when the number
of receive antenna 𝑁

𝑟
= 1, MLE-MAS coincides with MLE

#2 of [10] in SISO system. If the FFT maximum value index
is 𝜆MAS, estimated CFO is ]̂ = 𝜆MAS/(𝐾𝑃

𝑃). The same
interpolation method used for MLE-MA can be used here
to improve the accuracy of MLE-MAS. Finally, we note that
MLE-MAS has an estimation range of |]MAS| ≤ 𝑀/2.

4. Best Linear Unbiased Estimators (BLUEs)

Usually, periodic sequences passing throughmultipath chan-
nels still have a periodic structure except for the phase
rotation induced by CFO. Let 𝜉(𝑙) be the time delay autocor-
relation at integer periods. It can be expanded as

𝜉 (𝑙) = 𝑒
𝑗(2𝜋𝑙]/𝑀)

×
1

𝑀

𝑁
𝑟

∑
𝑗=1

𝑁−1

∑
𝑘=𝑙𝑃

{

𝑥
𝑗
(𝑘)



2

+ 𝑥
𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑙𝑃)

+ 𝑥
∗

𝑗
(𝑘) Ṽ

𝑗
(𝑘) + Ṽ

𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑙𝑃) }

= 𝑒
𝑗(2𝜋𝑙]/𝑀)

1

𝑀
𝜎
2

𝑥
{𝑁

𝑟
(𝑁 − 𝑙𝑃) (1 + 𝛾

𝑙
)} ,

(21)

where 𝑙 = 0, 1, . . . ,𝑀 − 1 and the equivalent noise term is
Ṽ
𝑗
(𝑘) = V

𝑗
(𝑘)𝑒𝑗2𝜋𝑘]/𝑁. The components excluding signal in

(21) are viewed as interference 𝛾
𝑙
, which is given by

𝛾
𝑙
=

1

𝑁
𝑟
(𝑁 − 𝑙𝑃) 𝜎2

𝑥

×

𝑁
𝑟

∑
𝑗=1

𝑁−1

∑
𝑘=𝑙𝑃

{𝑥
𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑙𝑃)

+ 𝑥
∗

𝑗
(𝑘) Ṽ

𝑗
(𝑘) + Ṽ

𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑙𝑃)} .

(22)

Due to the fact that 𝜉(𝑙) is the autocorrelation of repeated
sequences, the argument of 𝜉(𝑙) is mainly affected by 𝑙𝑃

times of CFO with mean 𝐸{arg(𝜉(𝑙))} = 2𝜋𝑙]/𝑀, so this
characteristic can be exploited to estimate CFO. A typical
estimator is BLUE, which is firstly proposed by Kay [18].

BLUE is linear, unbiased and theCFOestimation variance
is minimized. For CFO estimation, BLUE has the form of

]̂ =
𝑀

2𝜋

𝐻

∑
𝑙=1

𝜙 (𝑙) 𝑤 (𝑙) , (23)

where 𝜙(𝑙) is the 𝑙th CFO estimation derived from corre-
sponding estimation metric, 𝑤(𝑙) is the entry of weighting
coefficient vector w, and w = [𝑤(1), 𝑤(2), . . . , 𝑤(𝐻)]

𝑇. w is
calculated as

w =
C−1

𝜙
1

1𝑇C−1

𝜙
1
, (24)

where 𝜙 = [𝜙(1), 𝜙(2), . . . , 𝜙(𝐻)]
𝑇 and C

𝜙
is the covariance

matrix of 𝜙. 1 = [1, 1, . . . , 1]
𝑇 is a 𝐻-by-1 all-ones vector, and

𝐻 is a designed parameter to estimate CFO. The variance of
BLUE is

var (]) =
𝑀

2

4𝜋2

1

1𝑇C−1

𝜙
1
. (25)

4.1. BLUE-PA. The simplest method is taking the phase of
𝜉(𝑙) directly to estimate CFO. Because of the limitation of
| arg(𝜉(𝑙))| ≤ 𝜋, the estimation range of this algorithm
decreases with the increases of 𝑙.The largest estimation range
is |]| ≤ 𝑀/2 when 𝑙 = 1 and the total range depends on the
maximum of 𝑙, which is |]| ≤ 𝑀/(2(𝑀 − 1)). In order to
enlarge the range to |]| ≤ 𝑀/2, a coarse estimation is first
made as 𝑙 = 1. This coarse estimation value is denoted as
]̂
1
= (𝑀/2𝜋) arg(𝜉(1)). Multiplying a counter-rotation factor

𝑒−𝑗2𝜋𝑙]̂1/𝑀 to each 𝜉(𝑙), we obtain 𝜉(𝑙) = 𝜉(𝑙)𝑒−𝑗2𝜋𝑙]̂1/𝑀. After
this coarse compensation, the estimation metric is given by

𝜙
1
(𝑙) =

1

𝑙
arg (𝜉



(𝑙)) =
2𝜋]̃
𝑀

+
1

𝑙
arctan(

𝛾
𝐼,𝑙

1 + 𝛾
𝑅,𝑙

) , (26)

where ]̃ = ] − ]̂
1
and 𝛾

𝑅,𝑙
and 𝛾

𝐼,𝑙
are the real and imaginary

part of 𝛾
𝑙
. At moderate and high SNR values, 𝛾

𝑅,𝑙
≪ 1; then

𝜙
1
(𝑙) is approximated as

𝜙
1
(𝑙) ≈

2𝜋]̃
𝑀

+
1

𝑙
arctan (𝛾

𝐼,𝑙
) ≈

2𝜋]̃
𝑀

+
1

𝑙
𝛾
𝐼,𝑙
. (27)

The mean of 𝜙
1
(𝑙) is 2𝜋]̃/𝑀, so the estimator is unbiased.

The covariancematrixC
𝜙
1

isC
𝜙
1

(𝑚, 𝑙) = (1/𝑚𝑙)𝑐(𝑚, 𝑙), where



6 International Journal of Distributed Sensor Networks

𝑐(𝑚, 𝑙) = 𝐸{𝛾
𝐼,𝑚

𝛾
𝐼,𝑙
} is the covariance of 𝛾

𝐼,𝑚
and 𝛾

𝐼,𝑙
, which is

expanded as in

𝑐 (𝑚, 𝑙) =
1

𝑁2

𝑟
𝜎4

𝑥
𝑃2 (𝑀 − 𝑚) (𝑀 − 𝑙)

×

𝑁
𝑟

∑
𝑗=1

𝐸
{

{

{

I
{

{

{

{

{

{

𝑁−1

∑
𝑘=𝑚𝑃

𝑥
𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑚𝑃)

+ 𝑥
∗

𝑗
(𝑘) Ṽ

𝑗
(𝑘)

+Ṽ
𝑗
(𝑘) Ṽ∗

𝑗
(𝑘 − 𝑚𝑃)

}

}

}

×
{

{

{

𝑁−1

∑
𝑝=𝑙𝑃

𝑥
𝑗
(𝑝) Ṽ∗

𝑗
(𝑝 − 𝑙𝑃)

+ 𝑥
∗

𝑗
(𝑝) Ṽ

𝑖
(𝑝)

+ Ṽ
𝑗
(𝑝) Ṽ∗

𝑗
(𝑝 − 𝑙𝑃)

}

}

}

}

}

}

}

}

}

=
1

SNR𝑁
𝑟
𝑃 (𝑀 − 𝑚) (𝑀 − 𝑙)

×

{{{{{{

{{{{{{

{

𝑚 + (𝑀 − 2𝑚) 𝑢 (
𝑀

2
− 𝑚)

+
𝑀 − 𝑚

SNR
, if 𝑚 = 𝑙,

𝑀 − max (𝑚, 𝑙)

− (𝑀 − 𝑚 − 𝑙) 𝑢 (𝑀 − 𝑚 − 𝑙) , if 𝑚 ̸= 𝑙.

(28)

Matrix C
𝜙
1

is full rank and 𝐻 = 𝑀 − 1. The inversion
of C

𝜙
1

cannot be represented in a closed form. However, we
observe that the numerator and denominator in (24) are the
summation of each row and the summation of all elements
of entire matrix, respectively. We denote a

1
= C−1

𝜙
1

1 and 𝑏
1
=

1𝑇C−1

𝜙
1

1, respectively. After some lengthy computation, a
1
and

𝑏
1
can be precisely solved as

𝑎
1
(𝑙) =

2𝑁
𝑟
SNR2𝑃𝑙2 (𝑀 − 𝑙)

𝑀SNR + 1
, 𝑙 = 1, 2, . . . ,𝑀 − 1,

𝑏
1
=

𝑁
𝑟
SNR2𝑃𝑀2 (𝑀2 − 1)

6 (𝑀SNR + 1)
.

(29)

The entries of weighting coefficient vector w can be repre-
sented in a closed-form expression as

𝑤
1
(𝑙) =

12𝑙2 (𝑀 − 𝑙)

𝑀2 (𝑀2 − 1)
. (30)

Both a
1
and 𝑏

1
are correlated with SNR. However, they have

common components in the denominators, which makes the
weighting coefficients uncorrelated with SNR.This estimator

is named as BLUE-PA for utilizing the phase of autocorrela-
tion. Its variance is

var
1
(]) =

3 (𝑀SNR + 1)

2𝜋2𝑁
𝑟
SNR2𝑃 (𝑀2 − 1)

. (31)

var
1
(]) is a function of SNR. At high SNR values, it can be

simplified as

var (]) =
3𝑀

2𝜋2𝑁
𝑟
SNR𝑃 (𝑀2 − 1)

. (32)

The approximate variance var coincides with the theoretical
Cramer-Rao lower bound (CRLB) given in [14]. Considering
there is a coarse estimation before BLUE-PA, the actual CFO
estimation value takes ]actual = ]̂

1
+ ]̂.

4.2. BLUE-PA-N. In this part, we make a further approxima-
tion in (21). By discarding the noise-noise product Ṽ

𝑗
(𝑘)Ṽ∗

𝑗
(𝑘−

𝑙𝑃), 𝛾
𝐼,𝑙
can be approximated as 𝛾

𝐼,𝑙

𝛾
𝐼,𝑙

=
1

𝑁
𝑟
𝜎2

𝑥
𝑃 (𝑀 − 𝑚)

×

𝑁
𝑟

∑
𝑗=1

{

𝑁−1

∑
𝑘=𝑚

{R {𝑥
𝑗
(𝑘)} {I {Ṽ

𝑗
(𝑘)} − I {Ṽ∗

𝑗
(𝑘 − 𝑚𝑃)}}}

+ {I {𝑥
𝑖
(𝑘)} {R {Ṽ

𝑗
(𝑘 − 𝑚𝑃)}

−R {Ṽ∗
𝑗
(𝑘)}}}} .

(33)

Taking the same step as in BLUE-PA, a coarse estimation is
carried out for 𝑙 = 1. After coarse CFO compensation, the
estimation metric is

𝜙
2
(𝑙) =

2𝜋]̃
𝑀

+
1

𝑙
𝛾
𝐼,𝑙
, (34)

The mean of 𝜙
2
is 2𝜋]̃/𝑀, so the estimator is also unbiased.

The covariance between 𝛾
𝐼,𝑚

and 𝛾
𝐼,𝑙
is

𝑐 (𝑚, 𝑙) =
𝑀 − max (𝑚, 𝑙) − (𝑀 − 𝑚 − 𝑙) 𝑢 (𝑀 − 𝑚 − 𝑙)

SNR𝑁2

𝑟
𝑃2 (𝑀 − 𝑚) (𝑀 − 𝑙)

.

(35)

Notice that the𝑚th row/column ofC
𝜙
2

is the same as its (𝑀−

𝑚)th row/column, so C
𝜙
2

does not have full rank. For 𝑚, 𝑙 >

𝑀/2,C−1

𝜙
2

is singular, then a designed parameter𝐻 is selected
so that the first 𝐻 × 𝐻 element of C

𝜙
2

is full rank, where𝐾 ≤

𝑀/2. We have

𝑐 (𝑚, 𝑙) =
min (𝑚, 𝑙)

SNR𝑁2

𝑟
𝑃2 (𝑀 − 𝑚) (𝑀 − 𝑙)

. (36)



International Journal of Distributed Sensor Networks 7

The covariancematrixC
𝜙
2

isHermitian.The inversion lemma
of Hermitian matrix [21] is used to solve C−1

𝜙
2

. We can readily
check that the entries of C−1

𝜙
2

are given by

[C−1

𝜙
2

]
𝑚,𝑙

=

{{{{

{{{{

{

−𝑁
𝑟
𝑚𝑙𝑃 (𝑀 − 𝑚) (𝑀 − 𝑙) SNR, 𝑚 = 𝑙 + 1,

2𝑁
𝑟
𝑚2𝑃(𝑀 − 𝑚)

2SNR, 𝑚 = 𝑙 ̸=𝐻,

𝑁
𝑟
𝑚2𝑃(𝑀 − 𝑚)

2SNR, 𝑚 = 𝑙 = 𝐻,

0, otherwise.

(37)

Then the weighting coefficient is obtained to be

𝑤
2
(𝑙) =

{{{{

{{{{

{

6 (𝑀 − 𝑙) 𝑙

𝐻 (4𝐻2 − 6𝑀𝐻 + 3𝑀2 − 1)
, 1 ≤ 𝑙 < 𝐻,

3 (𝑀 − 𝐻) (𝑀 − 2𝐻 + 1)

(4𝐻2 − 6𝑀𝐻 + 3𝑀2 − 1)
, 𝑙 = 𝐻.

(38)

The second estimator is named as BLUE-PA-N for utilizing
the phase of autocorrelation without considering the noise-
noise product. Its variance is

var
2
(]) =

3𝑀
2

4𝜋2𝑁
𝑟
𝑃𝐻(4𝐻2 − 6𝑀𝐻 + 3𝑀2 − 1) SNR

. (39)

Taking the derivative of var
2
(]) and setting it to 0, the

minimization is checked at 𝐻 = 𝑀/2. When 𝐻 = 𝑀/2,
var

2
(]) is identical with (32). Similar to BLUE-PA, the actual

CFO estimation value of BLUE-PA-N should also be ]actual =
]̂
1
+ ]̂.

4.3. BLUE-DPA. In order to avoid the coarse estimation steps
in BLUE-PA andBLUE-PA-Nwhile keeping the same estima-
tion range, we take the differentiation between adjacent 𝜉(𝑙).
Define 𝑅(𝑙) as

𝑅 (𝑙) = 𝜉 (𝑙) 𝜉(𝑙 − 1)
∗

= 𝑒
𝑗(2𝜋]/𝑀)

1

𝑀2

𝜎
4

𝑥
𝑁

2

𝑟
(𝑁 − 𝑙𝑃) (𝑁 − (𝑙 − 1) 𝑃)

× (1 + 𝛾
𝑙
) (1 + 𝛾

𝑙−1
)
∗

,

(40)

where 𝑙 = 1, 2, . . . ,𝑀 − 1, and the differential phase is
represented as the third estimation metric

𝜙
3
(𝑙) = arg {𝑅 (𝑙)} ≈

2𝜋]
𝑀

+ 𝛾
𝐼,𝑙

− 𝛾
𝐼,𝑙−1

. (41)

The mean value of 𝜙
3
(𝑙) is 2𝜋]/𝑀, so this estimator is

unbiased, too. The covariance matrix C
𝜙
3

is given by

C
𝜙
3

(𝑚, 𝑙) = 𝐸 {[𝛾
𝐼,𝑚

− 𝛾
𝐼,𝑚−1

] [𝛾
𝐼,𝑙

− 𝛾
𝐼,𝑙−1

]}

= 𝑐 (𝑚, 𝑙) + 𝑐 (𝑚 − 1, 𝑙 − 1)

− 𝑐 (𝑚 − 1, 𝑙) − 𝑐 (𝑚, 𝑙 − 1) .

(42)

The covariance matrix C
𝜙
3

is a full rank matrix, and 𝐻 =

𝑀 − 1. Similar to BLUE-PA, the inversion of C
𝜙
3

is difficult

to be solved. But the numerator and denominator can
be represented as simple expressions through computation.
Denoting a

3
= C−1

𝜙
3

1 and 𝑏
3
= 1𝑇C−1

𝜙
3

1, we have

𝑎
3
(𝑙) =

2𝑁
𝑟
𝑃SNR2𝑙 (𝑀 − 𝑙) (𝑀 − 𝑙 + 1)

(𝑀 + 2) SNR + 1
,

𝑙 = 1, 2, . . . ,𝑀 − 1,

𝑏
3
=

𝑁
𝑟
𝑃SNR2𝑀(𝑀2 − 1) (𝑀 + 2)

6 ((𝑀 + 2) SNR + 1)
.

(43)

The third estimator is named as BLUE-DPA for utilizing dif-
ferential phase of autocorrelation. The weighting coefficients
are

𝑤
3
(𝑙) =

12𝑙 (𝑀 − 𝑙) (𝑀 − 𝑙 + 1)

𝑀 (𝑀2 − 1) (𝑀 + 2)
, (44)

which is also closed form and not related to SNR. BLUE-DPA
has a variance of

var
3
(]) =

3𝑀 ((𝑀 + 2) SNR + 1)

2𝜋2𝑃SNR2 (𝑀2 − 1) (𝑀 + 2)
. (45)

At large SNR values, var
3
(]) also approaches the CRLB

asymptotically.

4.4. BLUE-DPA-N. Discarding the noise-noise product
terms in 𝛾

𝑙
, the estimation metric of the fourth estimator is

represented as

𝜙
4
(𝑙) = arg {𝑅 (𝑙)} ≈

2𝜋]
𝑀

+ 𝛾
𝐼,𝑙

− 𝛾
𝐼,𝑙−1

. (46)

The mean of 𝜙
4
(𝑙) is 2𝜋]/𝑀 and estimator is still unbiased.

The covariance matrix C
𝜙
4

is given by

C
𝜙
4

(𝑚, 𝑙) = 𝑐 (𝑚, 𝑙) + 𝑐 (𝑚 − 1, 𝑙 − 1) − 𝑐 (𝑚 − 1, 𝑙)

− 𝑐 (𝑚, 𝑙 − 1) .
(47)

Similar to BLUE-PA-N,C
𝜙
4

is not full rank for𝑚, 𝑙 > 𝑀/2, so
a design parameter 𝐻 is also chosen here. Using the matrix
inversion lemma [21], the inversion of C

𝜙
4

is found as

[C−1

𝜙
4

]
𝑚,𝑛

=

{{

{{

{

𝑁
𝑟
𝑃 (𝑀 − 𝐻) SNR, if 𝑚 ̸= 𝑛,

𝑁
𝑟
𝑃 {𝑀 − 𝐻 + (𝐻 − 𝑚)

× (𝐻 − 𝑚 + 1)} SNR, 𝑚 = 𝑛.

(48)

The fourth estimator is named as BLUE-DPA-N for utilizing
differential phase of autocorrelation without considering the
noise-noise product. The weighting coefficient of BLUE-
DPA-N is

𝑤
4
(𝑙) =

3 (𝑀 − 𝑙) (𝑀 − 𝑙 + 1) − 𝐻 (𝑀 − 𝐻)

𝐻 (4𝐻2 − 6𝐻𝑀 + 3𝑀2 − 1)
. (49)

This estimator, namely BLUE-DPA-N, can be seen as the
multiple-antenna extension of its SISO form in [15]. It can
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be easily validated that BLUE-DPA-N has the same variance
as BLUE-PA-N, which is given in (39). This indicates that
at high SNR, four estimators have asymptotically consistent
variances, which asymptotically approaches theCRLB in (32).

Compared with MLEs, the four BLUEs have lower com-
plexity with certain performance loss, but the estimation
range is the same as MLE-MAS. BLUE-PA takes the phase
of autocorrelation between periodic sequences with different
delays directly, at the same time, noise-noise product compo-
nents are taken into account in covariance derivation. When
the noise-noise product effects are discarded, the estimator
becomes BLUE-PA-N. Coarse estimation and compensation
is introduced in the first two BLUEs to enlarge the estimation
range. An alternative to attain this range is to consider
differential phase. BLUE-DPA is based on differential phase
and the noise-noise products terms are considered. However,
BLUE-DPA-N discards the noise-noise product components.

It is worth noting that the length of the periodic sequence
used for estimation is not limited to the OFDM symbol
length. More repeated slots may be utilized to obtain better
MSE performance or accuracy as desired.

5. Complexity Comparison

In this section, we evaluate and compare the computational
complexities of the proposed frequency estimators with those
of the existing estimators.

In MLE-MA, correlation and diversity are utilized, and
the weighting coefficients for correlation calculation are
only correlated with pilots number, which can be calculated
offline.The twoMLEs are based on FFT implementation and
numerical interpolation.Themain computational complexity
of MLEs is caused by correlation calculation and FFT imple-
mentation, while numerical interpolation can be neglected
compared with them. For 𝜌(𝑙), 𝑙 = 1, 2, . . . , 𝑁 − 1, there
are 𝑁

𝑟
(𝑁 − 1)𝑁/2 complex products, 2𝑁 real products, and

𝑁
𝑟
(𝑁 − 1)(𝑁 − 2)/2 + (𝑁

𝑟
− 1)(𝑁 − 1) complex additions,

while 𝜉(𝑙), 𝑙 = 1, 2, . . . ,𝑀 − 1, need 𝑁
𝑟
(𝑀 − 1)𝑁/2 complex

products and 𝑁
𝑟
(𝑀 − 1)𝑁/2 − 𝑀 + 1 complex additions.

When computing FFT, 𝜂𝐾
𝑃
𝑁/2log

2
(𝐾

𝑃
𝑁) complex products

and 𝜂𝐾
𝑃
𝑁/2 log

2
(𝐾

𝑃
𝑁) complex additions are introduced,

where factor 𝜂 represents the computational saving gained
from skipping the operations on the zeros in the FFT [10].

Though the coarse frequency estimation is required for
BLUE-PA, we can take differentiating 𝜉(𝑙), 𝑙 = 2, 3, . . . ,𝑀 −

1, with 𝜉(1) and its power series followed by phase angle
calculations to replace the operations of coarse estimation
and compensation. Thus the steps are similar to those in the
BLUE-DPA. Keep inmind that BLUE-PA-N and BLUE-DPA-
N only need to calculate first 𝑀/2 𝜉(𝑙). The differentiations
take 2(𝑀 − 2), 2(𝑀/2 − 1), 𝑀 − 2, and 𝑀/2 − 1 complex
products for BLUE-PA, BLUE-DPA, BLUE-PA-N, andBLUE-
DPA-N, respectively. In hardware implementation, the phase
angle calculation can be conducted by CORDIC algorithm
[22]. BLUE-PA and BLUE-DPA require 𝑀 − 1 CORDIC
computations, while BLUE-PA-N and BLUE-DPA-N require
𝑀/2 CORDIC computations. Extra computation consumed
on theweighted adding of individual estimation, namely (23),
is easier to obtain.

Meanwhile, by applying simple average operations on the
phases 𝜙

2
(𝑙) in (34) and their differentiation 𝜙

4
(𝑙) in (46), we

can obtain two Averaged estimators, named as Averaged-PA-
N and Averaged-DPA-N, respectively:

]̂Averaged-PA-N = ]̂
1
+

𝑀

2𝜋𝐻

𝐻

∑
𝑙=1

𝜙
2
(𝑙) , (50a)

]̂Averaged-DPA-N =
𝑀

2𝜋𝐻

𝐻

∑
𝑙=1

𝜙
4
(𝑙) . (50b)

Besides the computation of 𝜉(𝑙), the Averaged-PA-N takes
extra 2(𝑀/2 − 1) complex products, 𝑀/2 real products, and
𝑀/2− 1 real additions. While Averaged-DPA-N takes𝑀/2−

1 complex products, one real products, and 𝑀/2 − 1 real
additions.

The CFO estimator based on the trigonometric approxi-
mation of likelihood function, namely, Morelli’s algorithm, is
given as [14]

]̂Morelli = ]̂
1
+

∑
𝑁
𝑟

𝑗=1
∑

𝑀−1

𝑙=1
𝑙

Υ
𝑗
(𝑙)


𝜓
𝑗
(𝑙)

2𝜋∑
𝑁
𝑟

𝑗=1
∑

𝑀−1

𝑙=1
𝑙2

Υ𝑖
(𝑙)



, (51)

where ]̂
1
is the coarse estimation the same as in BLUE-PA,

Υ
𝑗
(𝑙) = ∑

𝑁−1

𝑘=𝑙𝑃
𝑟
𝑗
(𝑘)𝑟∗

𝑗
(𝑘−𝑙𝑃), and𝜓

𝑗
(𝑙) = arg{Υ

𝑗
(𝑙)𝑒−𝑗2𝜋𝑙]̂1/𝑀}.

The complexities of the proposed MLEs, BLUEs, Aver-
aged methods and Morelli’s algorithm [14] are outlined
in Table 2. As shown in this Table, the two MLEs have
the highest computational load, while MLE-MA has higher
complexity thanMLE-MAS.The proposed BLUEs have lower
complexity than Morelli’s algorithm because they require
less CORDIC computations. BLUE-PA-N and BLUE-DPA-
N algorithm have slightly lower complexity than BLUE-PA
and BLUE-DPA. Averaged-PA-N has the same complexity as
BLUE-PA-N, while Averaged-DPA-N is the simplest one.

6. Simulation Results

In this paper, the legacy short training field (L-STF) preamble
in 802.11n system is taken as an example in our simulations.
It has ten identical short slots in a 20M bandwidth.There are
16 samples in each slot. Cyclic delay is employed for different
transmit antennas to avoid unintentional beamforming.

The multipath channel between each pair of Tx and Rx
branches is 𝐿 paths Rayleigh channel with quasistatic fading.
Tap coefficients are kept constant in a frame but may vary
from frames to frames. The channel power delay profile
decays exponentially. That is, 𝐸{|ℎ

𝑖,𝑗
(𝑙
𝑐
)|
2

} = 𝛽 exp(−𝑙
𝑐
/𝐿),

where 𝑙
𝑐
= 0, 1, . . . , 𝐿 − 1 and 𝛽 is a factor to keep the total

channel power normalized to 1. In this paper, the channel has
6 independent paths; that is, 𝐿 = 6.

The theoretical CRLB is calculated based on [23]

CRLB =
𝜎
2

V𝑁
2

8𝜋2 ∑
𝑁
𝑟

𝑗=1
h
𝑗
S𝐻ΛΠ

𝑆
ΛSh𝐻

𝑗

, (52)

where Λ = diag{0, 1, . . . , 𝑁 − 1},Π
𝑆
is the orthogonal projec-

tion matrix of S and Π
𝑆

= I
𝑁

− B. As CRLB depends on h,
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Table 2: Computational complexity comparison for different algorithms.

CFO estimator Real products Real additions Phase derivations Absolute values
MLE-MA 2𝑁

𝑟
𝑁(𝑁 − 1) + 2𝑁 + 2𝐶 2 (𝑁

𝑟
𝑁 − 1) (𝑁 − 1) + 3𝐶 0 0

MLE-MAS 𝑀
𝜉,1

+ 2𝐶 𝐴
𝜉,1

+ 3𝐶 0 0
BLUE-PA 𝑀

𝜉,1
+ 9𝑀 − 16 𝐴

𝜉,1
+ 5𝑀 − 9 𝑀 − 1 0

BLUE-PA-N 𝑀
𝜉,2

+ 9𝑀/2 − 8 𝐴
𝜉,2

+ 5𝑀/2 − 5 𝑀 − 1 0
BLUE-DPA 𝑀

𝜉,1
+ 5𝑀 − 8 𝐴

𝜉,1
+ 3𝑀 − 5 𝑀/2 0

BLUE-DPA-N 𝑀
𝜉,2

+ 5𝑀/2 − 4 𝐴
𝜉,2

+ 3𝑀/2 − 3 𝑀/2 0
Averaged-PA-N 𝑀

𝜉,2
+ 9𝑀/2 − 8 𝐴

𝜉,2
+ 5𝑀/2 − 5 𝑀/2 0

Averaged-DPA-N 𝑀
𝜉,2

+ 2𝑀 − 3 𝐴
𝜉,2

+ 3𝑀/2 − 3 𝑀/2 0
Morelli 𝑁

𝑟
(2𝑁(𝑀 − 1) + 8(𝑀 − 1)) 2𝑁

𝑟
(𝑁(𝑀 − 1) + 𝑀 − 2) 𝑁

𝑟
(𝑀 − 1) + 1 𝑁

𝑟
(𝑀 − 1)

Consider 𝐶 = 𝜂𝐾
𝑃
𝑁log2(𝐾𝑃

𝑁),𝑀
𝜉,1

= 2𝑁
𝑟
𝑁(𝑀− 1), and 𝐴

𝜉,1
= 2(𝑀− 1)(𝑁

𝑟
𝑁− 1);

𝑀
𝜉,2

= 𝑁
𝑟
𝑁(3𝑀/2 − 1/2), 𝐴

𝜉,2
= 𝑁

𝑟
𝑁(3𝑀/4 − 1/2) −𝑀.
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Figure 1: MSE performance for MLE-MA in MIMO-OFDM sys-
tems with different 𝑀, 𝑁

𝑡
, and 𝑁

𝑟
(𝑁

𝑡
, 𝑁

𝑟
= 1, 2, 4, 𝑁 = 64, 𝑀 = 4,

𝐾
𝑃
= 8, and the FFT length is 512).

we obtain CRLB by averaging (52) on 105 realizations of the
channel. Zeros are padded to channel realizations to assure
𝐿 = 𝑁

𝐷
. Usually, virtual subcarriers are inserted to high

frequency components of the training sequence and CRLB in
(52) is suitable for these training sequences, but CRLB in [14]
is for the special case without virtual subcarriers.

The mean square error (MSE) of MLE-MA is shown in
Figure 1. The numbers in the bracket are marked as (𝑁

𝑡
, 𝑁

𝑟
).

CFO is randomly generated within interval [−30, 30] with
uniform distribution. In this figure, 𝐾

𝑃
= 8, 𝑀 = 4, and

the actual FFT length is 512. It is observed that MLE-MA
approaches CRLB at SNRs of 22 dB, 12 dB, and 4 dB. Configu-
rations with more antennas can reach the CRLB quicker. We
find thatMIMO systems can obtain diversity gains compared
to SISO systems, which have been clearly shown in (15). This
estimator needs a large 𝐾

𝑃
to improve accuracy. For very

large 𝐾
𝑃
, the estimator becomes impractical. However, this

estimator can copewith very largeCFOup to thewhole signal
bandwidth ofOFDM.FromFigure 1, we observe that theMSE
curves fall sharply and reach the CRLBs at certain SNRs. The
reason is that there exists integer frequency ambiguity at some
channel realizations, which is of rare occurrence, to make the
MSEs departing from the CRLBs. Moreover the occurrence
times incline to zero as SNR increases due to the limited
realization of channel in the simulation. Frequency ambiguity
problem is the topic of integer frequency offset estimation and
it is beyond the topic of this paper.

The performance of MLE-MAS is illustrated in Figure 2.
In this figure, 𝑀 = 4, 𝐾

𝑃
= 0.5, and the actual FFT length

is 32. CFO is randomly generated within interval [−1.9, 1.9].
MLE-MA has an estimation range of |]| ≤ 𝑁/2, while MLE-
MAS has a range of |]| ≤ 𝑀/2. Parameter 𝜌

𝐵
(𝑙) is decimated

from 𝜌
𝐴
(𝑙)with a fixed length𝑃, then FFT resolution ofMLE-

MAS is 1/𝑃 of MLE-MA. Small 𝐾
𝑃
may behave excellently.

Due to the smaller CFO estimation range, this algorithm has
a smaller fluctuation and MSE. After linear interpolation, all
three antenna configurations can approach CRLB at 14 dB,
8 dB, and 6 dB, respectively.

Performance comparison of MLE-MAS and Morelli’s
method when 𝑁

𝑡
= 2 and 𝑁

𝑟
= 2 is shown in Figure 3. In

MLE-MAS, the𝐾 factor is set to 1 with a FFT length 64. It can
be seen that MLE-MAS approaches CRLB at 4 dB and 2 dB,
and Morelli’s method approaches CRLB at the same SNR of
4 dB for both 𝑀 = 4 and 𝑀 = 6, while MLE-MAS performs
better than Morelli’s algorithm below 4 dB.

The mean square error (MSE) of BLUE-PA is shown in
Figure 4. BLUE-PA approaches CRLB at 8 dB, 6 dB, and 4 dB
for different antennas configurations. Due to the presence of
the diversity effect, larger antenna configuration can get lower
MSE and approach CRLB more quickly.

MSE comparison between two MLEs, four BLUEs, two
Averaged methods, and Morelli’s algorithm [14] for a 2-by-
2 MIMO system is shown in Figure 5. Here, 𝐻 is set to
𝑀/2 = 2 for BLUE-PA-N, BLUE-DPA-N, and the two
Averaged methods. All the estimators except Averaged-DPA-
N can asymptotically approach CRLB at different SNRs. The
MSEs at SNRs ranging from −6 dB to 2 dB are magnified to
show details. It can be observed that the MLE-MA algorithm
achieves the best performance but the performance gap
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Figure 2: MSE performance for MLE-MAS in MIMO-OFDM
systems with different 𝑀, 𝑁
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Figure 3: MSE performance comparison between MLE-MAS and
Morelli’s estimator in MIMO-OFDM systems (𝑁

𝑡
= 2, 𝑁

𝑟
= 2, 𝑁 =

64, and 𝑀 = 4, 6).

between MLE-MA and MLE-MAS is small. Surprisingly,
at SNRs below 10 dB, BLUE-DPA and BLUE-DPA-N have
worse performance than BLUE-PA, BLUE-PA-N, and even
Averaged-PA-N. This is because the differentiation items
between correlations have amplified noise, leading to larger
variances on the estimation of frequency offset. More dif-
ferentiation items involved make BLUE-PA-N get poorer
performance than BLUE-DPA-N. The operations of coarse
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Figure 4:MSE performance of BLUE-PA inMIMO-OFDMsystems
with three different antenna configurations (𝑁

𝑡
, 𝑁

𝑟
= 1, 2, 4, 𝑁 =

64, and 𝑀 = 4).

−6 −4 −2 0

MLE-MA
MLE-MAS
BLUE-PA
BLUE-DPA
BLUE-PA-N

BLUE-DPA-N
Averaged-PA-N
Averaged-DPA-N
Morelli
CRLB

−5 0 5 10 15 20
SNR (dB) 

−10

M
SE

10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

Figure 5: MSE performance comparison between different CFO
estimators for 2-by-2 MIMO-OFDM systems (𝑁

𝑡
= 2, 𝑁

𝑟
= 2,

𝑁 = 64, 𝐾 = 2, and 𝑀 = 4).

frequency estimation and compensation make four estima-
tions perform similarly. They are BLUE-PA, BLUE-PA-N,
Averaged-PA-N, andMorelli’s method. Notice that BLUE-PA
has a lower computation complexity than Morelli’s method,
but they perform almost the same. Averaged-PA-N has lower
complexity and suitable performance for all SNRs. If the
complexity is an important factor for implementation, it can
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be considered. In the simulations, all the estimation results
are processed to remove the possible frequency ambiguity for
clearance.

MLE-MAS and BLUEs have the same estimation range
of |]| ≤ 𝑀/2, but, under some circumstances, CFO is very
large; then MLE-MA with small 𝐾

𝑃
combined with BLUEs

is a good choice to deal with these worse cases. Performance
of MLE-MA combined with BLUE-PA for 2-by-2 system is
given by Figure 6. CFO is randomly generated within interval
[−30, 30]. We can see that combined algorithm can still
approach CRLB at SNR of 12 dB for 𝑀 = 4, 6 and 𝐾

𝑃
=

2, 4, respectively. These estimators can be flexibly combined
to satisfy different performance requirements, such as MSE,
complexity, and SNR requirements.

7. Conclusions

In this paper, twoMLEs and four BLUEs have been proposed
as frequency offset estimators for MIMO-OFDM systems
with periodic preambles and cyclic delays. The two proposed
MLEs are MLE-MA and MLE-MAS.TheMLE-MA can cope
with a very large CFO up to the entire signal bandwidth but
has a very high computational complexity. In contrast, MLE-
MAS has shown to achieve a good MSE performance with
low complexity, at the cost of narrow estimation range. In
addition, four low complexity BLUEswith high accuracy have
been designed and analyzed in detail. Due to the inherent
spatial diversity, synchronization in MIMO-OFDM systems
can achieve better performance than that of SISO-OFDM
systems. The proposed CFO estimators can approach the
theoretical bound given enough diversity order and adequate
SNR. Simulation results have shown that the proposed
schemes are effective in making synchronization in MIMO-
OFDM systems more robust than in SISO-OFDM systems.
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