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Abstract—The advent of sixth-generation (6G) wireless com-
munications has posed significant challenges to channel modeling.
Channel measurements cannot cover all scenarios and frequency
bands for 6G, and conventional models lack accurate predictive
capabilities. To address these issues, this paper proposes a novel
6G space-time joint predictive channel model to predict channels
in the space-time domains, which can rebuild lost measurement
data and correct abnormal data. The proposed model designs
a space-time generative adversarial network (STGAN) frame-
work, conditioned on channel large-scale and small-scale char-
acteristics, to synthesize sufficient space-time channel datasets,
effectively overcoming data shortages. Accompanied by path
identification and characteristic classification, the coupled gated
recurrent unit (GRU) framework conducts precise predictions
for unknown channels in the space-time domains. Comprehensive
experiments demonstrate the proposed model’s superiority over
other methods, including the geometry-based stochastic channel
model (GBSM), GRU, long short-term memory (LSTM), and
radial basis function neural network (RBF-NN). The model’s
effectiveness can be attributed to its architecture to capture
complex space-time variations and accurately predict non-linear
channel characteristics based on continuous measurements. Vali-
dation on both indoor and outdoor channel measurements further
confirms the model’s generality and accuracy. The proposed
model provides a robust solution in the space-time joint channel
prediction for advanced wireless communications.

Index Terms—6G wireless communications, channel space-time
joint characteristics, generative adversarial network, machine
learning, predictive channel modeling.
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I. INTRODUCTION

The remarkable development and widespread applications
of the sixth generation (6G) wireless communications have put
forward very high requirements on the accuracy of network-
level performance [1], [2]. Evolving from the fifth generation
(5G) wireless communications, 6G plans to continue to en-
hance the mobile Internet and Internet of Everything (IoE),
and also deeply integrate them with artificial intelligence (AI)
and big data to realize the intelligent IoE. The 6G vision can be
summarized as global coverage, all spectra, full applications,
all senses, all digital, and strong security [3], [4]. Global
coverage means that 6G plans to expand the current terrestrial
wireless communication systems to the space-air-ground-sea
integrated communication systems. To meet the massive traffic
and connectivity requirements in all spectra, 6G frequency
bands will include the sub-6 GHz, millimeter wave (mmWave),
terahertz, and optical wireless bands. New technologies, such
as AI and big data, can be fully utilized to explore the
intelligent potential of 6G communications and realize full ap-
plications. The vision of all senses means all five human senses
can be transmitted through 6G communications to achieve the
fusion of virtuality and reality. Through the interconnection of
the real physical world and the virtual digital world, 6G plans
to realize the all digital vision. Strong security is to construct
secure communications, including physical layer and network
layer security, to achieve endogenous security.

As an important part of 6G communications, wireless
channels are the medium of information exchange, whose
characteristics are determined by the propagation environment.
Traditional channel research often follows four steps, i.e.,
channel measurement, channel parameter estimation, channel
characteristic analysis, and channel modeling. They are the
foundations of system design, theoretical analysis, perfor-
mance evaluation, and optimization of wireless communica-
tions [5]. Channel modeling is used to analyze the influence
of different wireless channels on the transmitted signals. It
provides effective and feasible simulations of different radio
wave propagation scenarios [3]. By introducing new frequency
bands, new techniques, and new scenarios, 6G wireless chan-
nels present new characteristics that need to be explored
through channel measurements and channel characterization.
However, for 6G, a number of new problems and challenges
occur using conventional channel modeling methods. The
complicated and diverse communication scenarios entail high-
performance channel sounders at extremely high cost and man-
power. It is impossible to conduct channel measurements for
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all frequency bands in all scenarios. Besides, processing a large
amount of channel measurement data requires high-resolution
parameter estimation methods, which incur extremely high
complexity. It is also not possible to fully explore the com-
plicated relationship between new characteristics, frequencies,
and scenarios using conventional mathematic channel models.
Finally, conventional channel models can only provide limited
channel characterization and are unable to predict channel
characteristics in the future time, unknown frequency bands,
and unknown scenarios. Due to the above problems, novel
channel modeling methods for 6G are motivated.

With the dramatic development of AI in the last few
decades, the deep integration of AI and communications
will be one of several key technologies for the construction
and development of future communications [6]–[8]. As an
essential branch of AI, machine learning (ML) has a good
ability to learn and extract potential features that conventional
modeling methods cannot obtain [9]. Besides, it can also
effectively and accurately estimate parameters and predict
channel characteristics for many scenarios. Due to the unique
characteristics of non-linear function expression and feature
extraction, the combination of ML and channel modeling has
accelerated the in-depth research on sophisticated technologies
[10]–[15]. In [16], an ML-based channel model was presented
to predict the angle of arrival (AoA) based on real vehicular
measurement datasets by the support vector machine (SVM).
An artificial neural network (ANN) based channel modeling
and simulation framework was used in [17] to predict the
received power, delay spread (DS), angle spread (AS), and
cross-polarization ratio at each location to playback multiple-
input multiple-output (MIMO) channels. In [18], the paper
introduced the ML algorithm into the path loss (PL) model
to capture the structure-related characteristics when modeling
channels in the near-ground segment. An ML-based channel
parameter prediction method was proposed in [19] by using the
feed-forward neural network (FNN) and radial basis function
neural network (RBF-NN). By learning the channel charac-
teristics of the mmWave massive MIMO channel, such as
the received power, DS, and AS, the model achieved good
performance in channel parameter prediction. The authors
in [20] introduced a long short-term memory (LSTM)-based
satellite communication channel prediction method to estimate
the received power, and obtained good performance in the
sequence-related data prediction. In [21], a novel receiver
architecture using the recurrent neural network (RNN) was
proposed by learning the channel variations to predict channel
fade coefficients in time-variant channels. A deep transfer
learning-based downlink channel prediction method was pre-
sented in [22] with the meta-learning algorithm, where the net-
work was trained in the manner of the fully-connected neural
network and was then fine-tuned for the new environment. A
CsiPreNet was proposed [23] by integrating the convolutional
neural network (CNN) and LSTM to predict an underwater
acoustic channel in the frequency domain.

On the one hand, while existing ML-based channel model-
ing approaches have achieved success, they often fail to inte-
grate channel characteristics in their prediction framework. It
lacks a comprehensive analysis of network structures and fea-

tures about channel characteristics, particularly channel large-
scale and small-scale fading. Furthermore, previous channel
parameters prediction based on discrete datasets [16], [17],
[19], [24], [25] are not able to be applied to continuous channel
modeling and characterization directly with unknown informa-
tion, leading to limited applicability in specific domains.

On the other hand, traditional space-domain and time-
domain channels are modeled separately [13], requiring a
large number of channel measurement data at different lo-
cations and times to capture corresponding characteristics.
However, continuous movement changes of users in spatial
locations and environments also cause channel variations in
the time domain, so channel space-time characteristics are
often coupled simultaneously and jointly. The difficulty of
constructing the space-time joint predictive channel model
lies in capturing the continuous channel variations at each
location in the time series. Due to the time-consuming and
expensive channel measurement campaigns, it is hard to collect
enough high-precision channel data with sufficient space-time
characteristics, so there is a great reliance on the amount of
training data when using ML to do the space-time channel
prediction. Compared with other ML methods, generative
adversarial network (GAN) [26] can generate clearer and more
realistic samples with lower complexity, and can effectively
solve the insufficient dataset issue in 6G. There are several
studies on channel modeling using GAN. In [27], a novel GAN
framework was proposed to solve the problem of autonomous
wireless channel modeling without complex theoretical analy-
sis or data processing. A novel GAN-based channel model is
proposed in [28] to model single-input single-output (SISO)
channel time-frequency response, which considers the time-
frequency response of the channel as an image. However, the
authors only considered the feasibility of channel modeling by
GAN with simple experiments. The authors in [29] and [30]
proposed a ChannelGAN and some novel GAN-based channel
simulation architectures to accurately synthesize channel data
with good performance. A trained GAN was used in [31] to
produce the random angle offsets in the proposed ML-based 3-
D channel model to generate random parameters for channel
modeling. In [32], a GAN-based channel modeling method
was proposed for a digital twin (DT) channel, which can gen-
erate identical statistical distribution with measured channels.
While these ML-based channel modeling efforts have shown
promise, they exhibit certain limitations on conducting the
space-time joint channel prediction from the known channel
characteristics based on insufficient channel data.

To the best of the authors’ knowledge, there is currently a
lack of research on acquiring sufficient channel datasets and
developing the space-time joint channel prediction methods for
6G communications. To fill the research gaps, a novel GAN
and gated recurrent unit (GRU) based joint predictive channel
model is proposed in this paper. The main contributions and
novelties of this paper are summarized as follows.
• A novel space-time joint predictive channel modeling

methodology is exploited to effectively capture contin-
uous channel variations at each location in a time series.
By utilizing a group of channel evolutional patterns, the
GAN-GRU based predictive channel model can rebuild
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lost data and correct abnormal data to improve prediction
accuracy, thereby demonstrating the importance of the
space-time joint channel prediction. Compared to existing
methods, the GAN-GRU framework is among the first to
perform the space-time joint channel prediction and has
better accuracy and efficiency in generating parameters.

• A space-time GAN (STGAN) framework is designed
in the proposed predictive channel model to solve the
problem of insufficient dataset acquisition. Conditioned
on channel large-scale and small-scale characteristics,
the STGAN-based framework is good at synthesizing
channel datasets with the space-time characteristics and
expands the channel dataset based on real measurement
data. When considering the similarity and diversity of
synthetic data, this approach shows good performance of
data augmentation in comparisons, which is particularly
useful for improving the training performance of the
space-time joint channel prediction.

• A coupled GRU framework is designed in the proposed
predictive channel model to jointly predict unknown
channels in the space-time domains. By identifying the
path with the strongest power in the line-of-sight (LoS)
and non-LoS (NLoS) scenarios to classify channel large-
scale fading and small-scale fading, the proposed model
can separately extract and learn the space-time joint
characteristics. Besides, it can use previous channel data
obtained by continuous measurements to predict the next
channel in the space-time domains.

• Prediction experiments are conducted by using our mea-
surement data performed in an indoor corridor. The
proposed model is evaluated and compared to the tradi-
tional geometry-based stochastic channel model (GBSM)
and several widely used ML-based predictive channel
modeling methods, including normal GRU, LSTM, and
RBF-NN. The proposed model achieves better prediction
performance than these methods, in terms of root mean
square error (RMSE) and mean absolute percentage error
(MAPE). The prediction performance criteria between the
channel measurement data and prediction data are less
than 6 dB and 6%, respectively. Moreover, the generality
of the proposed model is validated on an outdoor channel
measurement dataset.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the problem description of the space-time
joint channel prediction. The GAN-GRU based joint space-
time predictive channel model is presented in Section III.
Section IV explains the channel measurement and algorithm
implementation. In Section V, experimental results and anal-
ysis are provided and compared with those of other methods.
Finally, conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTION

Wireless channels are represented by the channel impulse
response (CIR) matrix Hs = [hqp,fc(t, τ)]MR×MT

, where
the elements hqp,fc(t, τ) of the matrix represent the CIR
between the pth transmitter (Tx) and qth receiver (Rx) antenna
elements, fc is the carrier frequency, MR is the number of Rx,

and MT is the number of Tx. The 6G pervasive channel model
(6GPCM) [33] is a kind of GBSM that uses a unified CIR to
integrate typical channel characteristics at different frequency
bands and scenarios for 6G. Using the 6GPCM, the traditional
mathematic CIR can be expressed as

hqp,fc(t, τ) =

√
KR(t)

KR(t) + 1
hLqp,fc(t, τ)

+

√
1

KR(t) + 1
hNqp,fc(t, τ) (1)

where KR(t) is the Rician K-factor at time t, hLqp,fc(t, τ) is
the LoS component, and hNqp,fc(t, τ) is the NLoS component.

hLqp,fc(t, τ) =

[
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where {·}T represents transposition operation, and Fp,fc,V ,
Fq,fc,V , Fp,fc,H , and Fq,fc,H are the antenna patterns of ATp or
ARq for vertical and horizontal polarizations at fc, respectively.
φTA, φTE , φRA, and φRE are azimuth angle of departure, elevation
angle of departure, azimuth angle of arrival, and elevation
angle of arrival, respectively. Note that in this paper, Nqp(t)
is the number of clusters, Mn(t) is the number of sub-rays in
the cluster, kmn(t) is the cross-polarization power ratio, Fr is
the rotation matrix, µ is the co-polar imbalance. θV VL , θHHL ,
θV Vmn

, θV Hmn
, θHVmn

, and θHHmn
are the initial phases with uniform

distribution over (0, 2π]. Pqp,mn,fc(t) and τqp,mn
(t) are the

power and delay from pth antenna to qth antenna of the mth
ray in the nth cluster, respectively.

By introducing new frequency bands, new techniques, and
new scenarios, 6G wireless channels present new character-
istics that need to be explored through channel prediction in
different domains. Thus, we construct an ML-based predictive
channel modeling architecture, as demonstrated in Fig. 1. This
architecture covers the space-time-frequency predictive chan-
nel modeling systems in one framework to include different
characteristics in these domains. According to (1), the pre-
dictive channel modeling mechanisms in these three domains
are similar: constructing a predictive model that can learn the
channel evolution patterns in known positions, previous times,
and known frequency bands to perform the prediction in the
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Fig. 1. The ML-based predictive channel modeling architecture in the space-time-frequency domains.
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Fig. 2. The space-time characteristics of the channel.

space, time, and frequency domains, respectively. The perva-
sive predictive channel model is constructed based on multi-
task learning ML algorithms, using common base layers to
extract the common features of channels and then using some
specialized layers (with distinct heads) to predict channels in
different domains. Given the continuous nature of channels
influenced by dynamic physical environmental properties in
the space-time domains and the existence of frequency gaps
between each frequency band, the space-time joint predictive
channel modeling method becomes indispensable for achiev-
ing more accurate and comprehensive channel modeling.

Specifically, channel variations at several continuous spatial
positions need to be accompanied by the temporal continuity
of the channel. Channel modeling in the space-time domains
needs to jointly capture an inherent dynamic trend of the
space-time characteristics in the case of continuous channel
variations, and this channel variation is called one group of
evolution patterns of the channel data. As shown in Fig. 2,
when the Tx is fixed, a group of continuous measurement
data obtained by the movement of the Rx trolley from one
position to another in a straight-line moving can only be

used as one training data pattern to extract the channel space-
time characteristics. Therefore, in order to construct a more
accurate space-time joint channel model for this scenario, it is
necessary to find as many continuous data patterns as possible
to accurately capture the channel space-time variations and
correlations, so a great amount of channel measurement data
are required. In this work, based on the preliminary basic
work in [34], a GAN-GRU based space-time joint predictive
channel model is proposed to solve the challenges in channel
measurement and modeling in the space-time domains for 6G
communications. It can mine the inherent channel characteris-
tics for efficient feature extraction and jointly predict unknown
channel characteristics using known data in the space-time
domains. The prediction problem can be expressed as:

{hn,fc(tn, τ)}in=1

GAN−GRU⇒ {hm,fc(tm, τ)}jm=i+1 (4)

where n means nth known positions in tn, m means mth pre-
dicted positions in tm. The details are explained in Section III.

III. A GAN-GRU BASED SPACE-TIME JOINT PREDICTIVE
CHANNEL MODEL

In this section, we will introduce the principle and ar-
chitecture design of the GAN-GRU based predictive chan-
nel model. The architecture design of the GAN-GRU based
joint predictive channel model is shown in Fig. 3. In the
predictive channel model, the input h1,fc(t1, τ), h2,fc(t2, τ),
· · · , hi,fc(ti, τ) are the channel measurement data at known
positions and times from the 1st to the ith. The next module
is the channel data augmentation module, using the STGAN
to generate sufficient synthetic datasets with the space-time
characteristics, for further channel prediction in the space-
time domains. Then, to improve the prediction performance
in the sequence-related channel data, a path identification
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Fig. 3. The framework of the GAN-GRU based joint predictive channel model.
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Fig. 4. The network structure of the GAN-GRU based joint predictive channel model.

module is used to classify channel data into LoS hLoSi,fc
(ti, τ)

or NLoS hNLoSi,fc
(ti, τ) in the measured and synthetic chan-

nel data for better feature extraction. The GRU is used to
capture the features of the input channel sequence from
1st to ith in LoS or NLoS scenarios to do the space-time
channel prediction at unknown positions with time order.
The outputs of the GRU in different paths are summed up
to the predicted channels, which are the final predicted re-
sults hi+1,fc(ti+1, τ), hi+2,fc(ti+2, τ), ..., hj,fc(tj , τ) in the
space-time domains. The network structure of the GAN-GRU
based joint predictive channel model is shown in Fig. 4 and
is explained in more detail as follows.

A. Data Augmentation

The biggest challenge in ML-based predictive channel mod-
eling is the lack of training data. Ray tracing (RT) can solve
this issue by simulating channels in a site-specific manner
[35]. However, it is hard by RT to obtain channel statistical
characteristics due to the constant CIR, because the solutions
to Maxwell’s equations in the same ray optics scenario are
fixed [36]. In addition, constructing a deterministic channel

model using RT requires high computational complexity and
resources. GAN, on the other hand, can be used for data
augmentation [37] and has been proven to be a more accurate
architecture for synthesizing channel data than variational
auto-encoder and flow network [30]. Using GAN for channel
data augmentation can provide more accurate channel mod-
els with the space-time characteristics and save computation
resources and time by training offline. Therefore, GAN is a
promising approach to obtaining sufficient channel data for
wireless channel modeling.

The conditional GAN (CGAN) is an improvement made
based on GAN by conditioning the model on additional
information [48]. By adding additional conditional information
to the generative model and discriminative model of the
normal GAN, CGAN can better obtain synthetic data with
oriented features. The proposed STGAN exploits the convo-
lutional layers as the main structure with additional space-
time information, which better captures the intricate channel
characteristics than normal CGAN. The STGAN generates
synthetic data similar to real data through adversarial learning
of the two sub-models: the generative model G and the
discriminative model D. The channel data augmentation can
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be summarized in the following stepwise procedure:
Step 1 Collect and pre-process channel measurement data.

CIR describes the effects of delay and fading ex-
perienced by the signal during multipath propaga-
tion, which is an essential characteristic for channel
modeling [5]. CIR inherently contains both real and
imaginary components, which provide a more com-
prehensive representation of the channel behavior. In
the data augmentation module, the CIR collected from
channel measurements can be denoted as hmea =
hqp,fc(t, τ) ⊆ RS×N×2, where S means the number
of CIR samples, N refers to the delay points in the
delay domain, and 2 denotes the real and imaginary
components of measured CIR. This integration of
complex-valued CIR data enhances the accuracy and
fidelity of the data augmentation process.

Step 2 Determine the channel large-scale and small-scale
characteristics. Channel large-scale and small-scale
characteristics are calculated from the measured CIR,
which are used as conditional data y to guide the
generation of synthetic channel data

y = [PL(d), τDS(d),KR(t)] (5)

where PL(d) and τDS(d) refer to the PL and DS at
different positions, respectively.

Step 3 Build the generative and discriminative models for the
STGAN. The generative model takes a random Gaus-
sian noise vector z and the conditional data y as input,
and outputs synthetic data that mimic the real data to
generate vectors hsyn = G(z|y). The discriminative
model takes either channel measurement data hmea or
synthetic data hsyn and the corresponding conditional
data y as input, and outputs a binary classification
result D(hmea|y) (i.e., whether the data is real or
synthetic).

Step 4 Train the STGAN models using the collected chan-
nel measurement data. During training, the generative
model G generates synthetic data with the same chan-
nel characteristics as the real data and the discrimina-
tive model D learns to distinguish them in a min-max
game. The objective is to minimize the following loss
function:

L(D,G) = Ehmea∼Phmea
[log(D(hmea|y))]+

Ez∼Pz [1− log(D(hsyn))] (6)

where E[·] represents the expectation, Pz is the data
distribution of the vector z, and Phmea is the channel
measurement data distribution. D(hsyn) is the proba-
bility that D determines that the CIR generated by G
is real based on condition y.

Step 5 Evaluate the models. After training, evaluate the per-
formance of the generative and discriminative models
by testing their ability to generate synthetic CIR that
resembles the measured CIR in terms of channel space-
time characteristics. The discriminative ability of D
converges to the optimum value D∗G as

D∗G =
Phmea

Phsyn + Phmea

(7)

where Phsyn is the data distribution of the synthetic
CIR. As Phsyn approaches Phmea , D∗G approaches 0.5.
In this case, D is unable to distinguish between the real
channel data and the synthetic channel data.

Step 6 Once the models converge after fully learning the
space-time characteristics of the channel measure-
ment data, the generative model can be cut from the
STGAN to independently generate synthetic channel
data. These synthetic data can be used to supplement
the real data and improve the accuracy of joint channel
prediction in the space-time domains.

B. Path Identification

The main difference between channels with typical space-
time characteristics at different spatial positions is manifested
in large-scale fading and small-scale fading. The LoS path of
the channel can clearly show large-scale fading, while there
is small-scale fading caused by multipath effects in the NLoS
path. In practical applications, accurate identification of the
LoS path and NLoS path can eliminate the negative impact of
errors on the channel and can greatly improve the efficiency of
data processing and extract the channel characteristics of the
corresponding multipath information [39]. Therefore, in order
to effectively improve the channel prediction performance in
the space-time domain, the channel is identified and classified
into LoS path and NLoS path based on the CIR statistical
characteristics and the received power. Then, the processed
data are sent independently to the GRU model for feature
extraction and prediction.

According to (1), (2), and (3), the wireless channels deliver
significantly different characteristics in the LoS and NLoS
paths. The path identification module uses the delay power
spectral density (PSD) obtained from the CIR to identify the
LoS/NLoS paths, as shown in the following expression:

Sqp,fc(t, τ) = |hqp,fc(t, τ)|2 (8)

A threshold exists so that the delay PSD SLqp,fc(t, τ) of the
LoS path and the delay PSD SNqp,fc(t, τ) of the NLoS path can
be identified and classified. The delay PSD-based LoS/NLoS
path identification algorithm is shown in Algorithm 1.

C. Space-time Joint Channel Prediction

GRU and LSTM are RNNs with time-step, which are
suitable for processing and predicting data with sequence-
related characteristics [40]. They are designed to solve the
long-term dependence problem of the RNN by introducing a
gate mechanism to control the transmission of information.
Considering the convergence in CPU time, parameter updates,
and generalization, GRU is better than LSTM due to its more
efficient structure [41]. One of the important characteristics
of GRU is that the sequence-related data prediction in the
network is processed by time-step, such as using previous
states to predict current or future states, which effectively
solves the problems of vanishing or exploding gradients. To
jointly predict the space-time channel characteristics, the chan-
nel prediction is represented as a sequence-related prediction
problem with space-time steps. Thus, several coupled GRUs
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Algorithm 1: The Delay PSD-Based Path Identifica-
tion Algorithm.

Parameters: The length of Sqp,fc(τ) in the delay
domain, Len. The width of delay segmentation for
Sqp,fc(τ) in the delay domain, W . The width of overlap
between adjacent intervals for Sqp,fc(τ) in the delay
domain, ovlp. The threshold for peak value of SLqp,fc(τ),
T1. The threshold for average value of SLqp,fc(τ), T2;

Input: The delay PSD of Sqp,fc(τ);
Output: The result array, Result;
for i in range (0, Len−W + 1,W − ovlp) do

if i + W > Len then
break;

else
S(i) = Sqp,fc(i : i+W );
Ŝ(i) = max{S(i)};
S̄(i) = mean{S(i)};
if i + W > Len then

Result[i] =“LoS”;
else

Result[i] =“NLoS”;
end

end
end

Calculate the peak and mean values of the first and
last delay intervals using the overlap between adjacent
intervals, and output the final identification result;
Perform post-processing on the Result array based on
the peak and mean values to correct some intervals that
were incorrectly identified as NLoS paths;

are used to construct the GRU framework for the space-time
joint channel prediction.

When antenna position routes are deployed in a straight
line, the prediction method uses the k previous CIRs obtained
by continuous measurements to predict the next channel CIR
in the space-time domains, as demonstrated in Fig. 5. When
the sequence-related channel data obtained at the continuous
Rx positions are used as the input, the GRU model conducts
unknown position prediction by learning from information at
the previous positions. The output of the GRU model, ht,
includes the time-step updated information obtained from the
CIR sequences as

hi,fc(t, τ) = arg max
hi,fc (ti,τ)

p(hi,fc(ti, τ) | hi−k+1,fc(ti−k+1, τ),

hi−k+2,fc(ti−k+2, τ), · · · , hi−1,fc(ti−1, τ))
(9)

hi+1,fc(ti+1, τ) = ht = fGRU (hi−k+1,fc(ti−k+1, τ),

hi−k+2,fc(ti−k+2, τ), · · · , hi,fc(ti, τ)). (10)

The GAN-GRU based joint predictive channel model not
only has the ability to conduct data augmentation by GAN to
generate corresponding channel datasets with the space-time
characteristics but also extracts sequence data features by GRU
to do joint prediction in the space-time domains.
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Fig. 5. The space-time joint channel prediction by GRU.

IV. CHANNEL MEASUREMENTS AND ALGORITHM
IMPLEMENTATION

In this section, we will first introduce the channel measure-
ment dataset for prediction experiments and then describe the
data and network pre-processing used in experiments. We will
also discuss the algorithm implementation of the GAN-GRU
based joint predictive channel model. Finally, the criteria are
introduced to evaluate the channel prediction performance.

A. Channel Measurement Dataset
The indoor corridor is a typical scenario containing space-

time channel characteristics [42], thus the channel measure-
ment data used for validation was conducted at 2.4 GHz,
5 GHz, and 6 GHz frequency bands in an indoor corridor
scenario [43]. The bandwidth at each center frequency is
320 MHz. Configurations about the channel sounder are listed
here: the delay resolution is 3.125 ns, the length of pseudo-
noise sequences is 4800, and the maximum output power is
20 dBm. This multi-frequency channel measurement campaign
was performed by one Tx and one Rx, where the Tx and Rx
antennas were placed on the trolley to change positions during
measurement. Besides, the Tx antenna height is 1.95 m and
the Rx antenna height is 1.45 m.

According to the distribution of antennas, the channel mea-
surement under this corridor can be divided into two scenarios:
LoS and NLoS. The position of Tx and Rx antennas can be
seen in Fig. 6, where the blue dots represent the positions
of Tx and the red dots represent the positions of Rx. When
conducting channel measurement in the LoS scenario, Tx was
located at position Tx1. In this scenario, Rx moved from
position Rx1 to position Rx37, and the interval between every
two positions from position Rx1 to position Rx17 is 0.8 m,
1.6 m from position Rx18 to position Rx37. When conducting
channel measurement in the NLoS scenario, Tx was located
in position Tx2, where the positions of Rx only include the 34
points from position Rx4 to Rx37, and the other configurations
are the same as in the LoS scenario.

B. Data Pre-Processing
When obtaining CIR by indoor corridor measurements, the

response of the measurement system changes very slowly. It
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Fig. 6. The indoor corridor channel measurement campaign: (a) LoS
scenario, (b) NLoS scenario, and (c) Layout and antenna positions
of the corridor.

can be broadly defined as a time-invariant system. Besides,
the channel coherence time is much greater than the duration
of each snapshot during the measurement. Thus, the CIR
of each snapshot can also be regarded as time-invariant.
Given that the transmitter and receiver were stationary or
had minor movement without high speed during each data
point collection, the Doppler effect is not considered in this
work. To enhance the accuracy of the measurement data,
outliers are removed to ensure that the remaining snapshots
are highly correlated using the snapshot correlation method
in [44]. Additionally, a multipath power decision threshold is
used to eliminate errors [45], which is determined by selecting
the higher value between the noise floor plus 6 dB and the
maximum power minus 25 dB.

When using neural networks for training and learning chan-
nel data, the input dataset needs to be normalized. Normaliza-
tion is a data pre-processing method to resist outliers to make
them relatively stable and suitable for noisy data scenarios.
In order to characterize the channel small-scale parameters
and capture the channel small-scale characteristics in the
modeling process, this paper uses the power normalization
method proposed in the 3GPP TR 38.901 standardized channel
model [46]. Supposing the sum of all path powers is equal
to 1, the power of the delay PSD is normalized by dividing the
total power in the current delay domain, and the normalization
method is expressed as

PN (t, τ) =
P (t, τ)∑L
l=1 Pl(t, τ)

(11)

where PN (t, τ) is the nomalized power, P (t, τ) is the received
power of delay PSD, Pl(t, τ) represents the power of the
lst path, and L represents the total number of paths. The
normalized real-value data are fed into the proposed GAN-
GRU network for data augmentation and the space-time pre-
diction. Normalization does not change the information but

TABLE I
THE PARAMETERS OF THE GENERATIVE MODEL.

Layers Model parameters
Conv1 kernel size: 5×5, stride: 2, padding: 2

BN1 feature number: 32

Conv2 kernel size: 5×5, stride: 2, padding: 2

BN2 feature number: 16

Conv3 kernel size: 5×5, stride: 2, padding: 2

BN3 feature number: 8

Conv4 + tanh kernel size: 5×5, stride: 2, padding: 2

only transfers its representation into the range [0, 1] to speed
up the convergence of the training network. Finally, the output
is denormalized, and the power is taken logarithmically to
transform the linear power (w) into log-domain power (dBm).

C. Implementation

In this part, we implement the proposed channel model
mentioned in Section III. Since the STGAN generative model
cannot obtain the real channel data distribution, it is not neces-
sary to be constructed with too sophisticated architectures. The
reason is that although an overly complex model may generate
synthetic data with channel characteristics, it complicates the
learning process and increases the time consumption and
computational resources. According to training experience,
using a specific training method for a specific data type is an
important reference index for optimizing the model. Therefore,
the convolutional (Conv) layer is used as the main structure
for its good recognition performance on high-dimensional
matrices and complex features. By using the pre-training of
the different numbers of Conv layers in this model, four Conv
layers have a better trade-off between prediction accuracy and
time consumption than three or five Conv layers. Besides, the
function of the batch normalization (BN) layer added after
the Conv layer is to normalize the outputs of each node of
the layers to enhance the generalization and robustness of the
model. After that, the parametric rectified linear unit (PReLU)
activation function is used for non-linear reprocessing to im-
prove the accuracy and efficiency of training. Finally, the tanh
layer is used for non-linear transformation. The parameters of
the generative model are shown in Table I.

The discriminative model needs to know the distribution of
feature points of the real channel data, so the construction of
the discriminative model should be more sophisticated than the
generative model. In the discriminative model of the STGAN,
five Conv layers and one fully connected (FC) layer are used
for network construction. Like the Conv layers in G, the Conv
layers in D are used to extract the multi-dimensional features
of the sequence data for prediction. In addition to the BN
layer and PReLU, the Dropout layers are added to the D
model, which can improve the overfitting resistance of the
neural network and enhance its generality. In the preliminary
experiment of the pre-trained network, the dropout ratio of
the dropout layer, ranging from 0 to 1, is analyzed for the
impact on the accuracy of this predictive channel model, and
the dropout ratio of 0.4 has the best prediction result. Finally,
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TABLE II
THE PARAMETERS OF THE DISCRIMINATIVE MODEL.

Layers Model parameters
Conv1 kernel size: 3×3, stride: 2, padding: 0

BN1 feature number: 8

Conv2 kernel size: 3×3, stride: 2, padding: 0

BN2 feature number: 16

Conv3 kernel size: 3×3, stride: 2, padding: 0

BN3 feature number: 32

Conv4 kernel size: 3×3, stride: 2, padding: 0

BN4 feature number: 64

Conv5 kernel size: 3×3, stride: 2, padding: 0

BN5 feature number: 128

FC + Sigmoid input channel: 128, output channel: 1

an extra FC layer and Sigmoid layer are added to get better
learning efficiency for discrimination. The parameters of the
discriminative model are shown in Table II.

The training process of the proposed predictive channel
model is demonstrated in Algorithm 2. The GRU network has
two hidden layers, each with 256 units, where the PReLU ac-
tivation function is used for the hidden layers. Besides, several
hyper-parameters are also tuned to increase the performance of
prediction. The weights of the proposed model are updated by
Adam optimizer [47] with a β1 value of 0.5 and a β2 value of
0.999 to avoid overfitting. The batch size is set to 128, and we
train the model for 2500 epochs with an initial learning rate
of 0.0001 and a learning rate decay of 0.9. When considering
the prediction performance of the GRU, the parameter k is
an important hyper-parameter related to channel memory and
will be studied in the experiment in Section V.

V. RESULTS AND ANALYSIS

In this section, the space-time joint channel prediction
experiments are conducted at 2.4 GHz, 5 GHz, and 6 GHz
in LoS and NLoS scenarios in the indoor corridor to verify
the prediction performance of the proposed channel model.
First, comparative experiments with existing data augmenta-
tion methods are conducted to show the effectiveness and
gain of the synthetic channel data by the proposed model.
After that, the value of parameter k related to the channel
memory in the space-time joint channel prediction is analyzed
by experiments. Then, channel statistical properties of the
channel data generated by the proposed model and 6GPCM
are compared to validate the proposed model. In addition,
the comparison between the proposed model and the existing
ML-based methods is conducted on two kinds of datasets for
performance evaluation. Finally, the proposed model is further
validated in the outdoor channel measurement dataset to show
its generality.

A. Channel Data Augmentation Performance

It is time-consuming and labor-intensive to collect channel
measurement data, resulting in insufficient training data, which
ultimately affects the accuracy of the channel space-time joint

Algorithm 2: The training Algorithm of the GAN-
GRU Based Predictive Channel Model.
Parameters: The learning rate of D, αD. The learning
rate of G, αG. The batch size, m. The number of
iterations of D per G, n. The previous states learned
by GRU, k;

Initialization: The parameter of D, θD. The param-
eter of G, θG;

for number of training iterations do
for t = 0, 1, · · · , n do

Sample batch from the real data,
{h1, h2, · · · , hm} ∼ Phmea(hmea);

Sample batch from the noise prior,
{z1, z2, · · · , zm} ∼ Pz(z);

Update the discriminative model: gθD =
5θD [ 1

m

∑m
i=1 logD(hi|y) + 1

m

∑m
i=1 log(1 −

D(zi|y))];
θD = θD − αD ·Adam(gθD , θD);

end
gθG = 5θG [ 1

m

∑m
i=1 log(1−D(G(zi|y))];

θG = θG − αG ·Adam(gθG , θG);
end

Cut the generative model for the converged STGAN and
attach it to the GRU;
Sample batch generated from the generative model,
hsyn = {G(zi|y)}mi=1;
Total sample batch, ĥ =

{
ĥi

}m
i=1

= {hmea, hsyn};
Predicted data from the GRU:
hi+1
t = fGRU (ĥi−k+1, ĥi−k+2, · · · , ĥi).

prediction. To ensure that there are a sufficient amount of
data during training and that the dataset has the same channel
space-time characteristics as the measurement data, we use the
STGAN to do data augmentation. The similarity and diversity
[30] are exploited to evaluate the effectiveness and gain of
the augmented channel data from the perspective of feature
similarity and diversity. For each type of channel, the similarity
between the distribution of the synthetic channel dataset and
the channel measurement dataset is evaluated as

S =
1

Nsyn

u=1∑
Nsyn

max
1�v�Nmea

∥∥hHu h′v∥∥2
‖hu‖2‖h′v‖

2 (12)

where ‖ · ‖ represents 2-norm operation, Nsyn represents the
number of synthetic CIRs, and Nmea represents the number of
measured CIRs. hu and h′v refer to the vectorized uth synthetic
channel data hsyn and vth channel measurement data hmea,
respectively.

The diversity of the synthetic channel is evaluated by

D =
√
V ar(l) (13)

where V ar(·) calculates the variance of the input vector. The
element lk of l = [l1, l2, ..., lNmea ] shows the multiplexity of
the synthetic channel, and is defined as

lk = count(arg max
1�v�Nmea

∥∥hHu h′v∥∥2
‖hu‖2‖h′v‖

2 = k) (14)
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TABLE III
THE COMPARATIVE RESULTS BETWEEN DIFFERENT DATA

AUGMENTATION METHODS.

STGAN GAN DCGAN WGAN

Similarity S 0.4888 0.1857 0.2740 0.4372

Diversity D 1.4259 4.8211 3.3135 2.1478

where count(·) denotes the total number of the synthetic data
which is most similar to the kth channel measurement data.

To evaluate the effectiveness of the proposed STGAN in
synthesizing channel data, comparative experiments are con-
ducted against existing data augmentation methods, including
normal GAN [26], deep convolutional GAN (DCGAN) [48],
and Wasserstein GAN (WGAN) [49]. The experiments in-
volved synthesizing channel data using each method and com-
paring the results in terms of data similarity and diversity by
criteria (12) and (13). Specifically, the ability of these methods
to produce CIR is evaluated to show that they accurately
capture the complex space-time characteristics of wireless
channels, including variations in received power, delay, and
spatial distributions.

According to Table III, the results of the comparative
experiments demonstrated that the proposed STGAN has
better performance in terms of CIR similarity and diversity
than normal GAN and DCGAN. The primary reason for this
superior performance is the incorporation of space-time chan-
nel characteristics as conditional inputs to synthesize CIRs
that closely align with the measured CIRs. By conditioning
the generative model on specific channel characteristics and
extracting features based on CNN structure, the STGAN can
better capture the inherent complexity of wireless channels.
Moreover, while WGAN is more concerned with the opti-
mization of the Wasserstein distance metric and can improve
training stability in CIR similarity, it may not achieve the same
level of data diversity as STGAN when generating complex
data in different spatial positions and time series. The three-
view visualization comparison of the measured channel and
synthetic channel at 2.4 GHz is shown in Fig. 7, where
STGAN generates the synthetic data based on the normalized
channel measurement data. The total datasets including mea-
surement data and synthetic contain 213,000 CIRs at each Rx
position, where each frequency band in different LoS or LoS
scenarios includes 1,000 CIRs. The datasets are sufficiently
shuffled to ensure that the test and training sequences do not
have any overlap and split into 80% for training and 20% for
testing. The proposed model is trained on the training set and
the optimal network is used for evaluation on the test set.

B. Channel Prediction Performance with Different Channel
Memory Parameters

To analyze the impact of channel memory parameters k on
the space-time joint predictive channel modeling, the proposed
models with different values of k are used to reconstruct the
indoor corridor channels and predict channels at unknown po-
sitions and times. By comparing the channel prediction perfor-
mance, the optimal channel memory parameter is determined

(a)

(b)

Fig. 7. The three-view visualization comparison of the real channel
and synthetic channel at 2.4 GHz: (a) real channel from channel
measurement, and (b) synthetic channel trained for 2500 epochs.

for further study. In this indoor corridor with typical space-
time characteristics, the total number of antenna positions is
no more than 37. Therefore, when conducting CIR prediction
at unknown positions, the number of previous CIRs k must be
determined in a specific range.

As the complex CIR contains both magnitude and phase
information, representing channel space-time joint characteris-
tics using the real-valued average delay PSD is more intuitive
compared to the complex-valued CIR. Therefore, RMSE is
preferred as a metric for evaluating prediction performance
using the real-valued average delay PSD. It provides a more
meaningful measure of prediction accuracy in this context.

RMSE =

√√√√ 1

n

n∑
i=1

[Spred(i)− Smea(i)]2 (15)

where n is the delay dimension, Spred is the predicted delay
PSD, and Smea is the actual measured delay PSD.

The RMSEs of the proposed predictive channel models
with different k are shown in Fig. 8. It can be seen from
the figure that when k is less than 8, the RMSEs are larger
as k decreases because the effective feature extracted from
the channel space-time characteristics is not sufficient to feed
into the GRU for channel prediction. When k is more than 8,
some channel information with low correlation is aggregated,
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Fig. 9. The average delay PSD of measured channels and predicted
channels in LoS and NLoS scenarios at 6 GHz.

leading to overfitting in the training sets and thus degrading
the performance in the test set. When the channel memory
parameter k is set to 8, the corresponding predictive channel
model has the best prediction performance with the least
RMSE.

Fig. 9 shows the average delay PSDs of channels at 6 GHz,
where the predictive channel model uses the optimal value of
the channel memory parameter. It can be seen that the pro-
posed model has achieved good joint prediction results in the
indoor corridor LoS and NLoS scenarios, where the received
power of the predicted channel matches well with the received
power of the measured channels. Most dominant paths are
successfully predicted with negligible error. The multipath
effect of the wireless channels in the indoor corridor is well
illustrated in the predicted channels by GAN-GRU because of
the efficient and accurate structure of coupled GRUs to capture
the sophisticated space-time joint characteristics. Moreover,
the prediction accuracy in LoS scenarios is generally higher
than that in NLoS scenarios because the average received
signal power of the LoS channels is higher than that in the
NLoS channels. The greater the ratio of received power to
noise, the greater the proportion of useful features extracted
during the ML training process, and therefore, the closer the
results of the predicted channel model are to the actual channel
model. The same observation can be made for 2.4 GHz
and 5 GHz. Therefore, the above observation demonstrates

that the proposed model with the optimal value of k can
capture the large-scale fading difference with channel space-
time characteristics.

C. Channel Statistics Properties Analysis

In this part, the relationships between the statistical proper-
ties generated by the measured channels and predicted chan-
nels are analyzed. A pervasive GBSM 6GPCM [33] integrating
important channel characteristics at different frequency bands
and scenarios is utilized to be compared to validate the
proposed predictive channel model. The GAN-LSTM based
predictive channel model proposed in [34] is also used for
comparison. The delay PSD and RMS DS are used to analyze
the system performance of the predictive channel model in the
space-time domains, where delay PSD is a good representation
of the multipath effect in the space domain and RMS DS is
an indicator to reflect the time domain.

1) Delay PSD: Delay PSD is used to show the multi-
path effect of the indoor corridor channel with the space-
time characteristics. Delay PSDs of measured, predicted, and
6GPCM simulated channels in different scenarios at 5 GHz
are illustrated in Fig. 10. It can be seen that the delay PSDs
of the predicted channels have a path with the strongest power,
and the power of this path decreases as the distance between
Tx and Rx increases. The delay of the reflection path that
curves from the bottom to the top decreases as the distance
between Tx and Rx increases due to the glass reflection at
the bottom of this corridor. Moreover, during channel mea-
surement campaigns, some antenna positions did not receive
signals due to the sudden appearance of unavoidable obstacles
or problems with the measurement equipment. As can be seen
from Figs. 10 (a) and (e), at 5 GHz, the Rx11 and Rx16
positions in the LoS scenario and the Rx10 in the NLoS
scenario have no values due to the error of measurements.
The situation is the same at 2.4 GHz and 6 GHz. Through
joint predictive channel modeling in the space-time domains,
the proposed model can provide synthetic data to rebuild the
lost channel measurement data, which have corresponding
received power at these Rx positions with similar channel
characteristics. Besides, compared with predicted channels by
GAN-LSTM, delay PSDs predicted by GAN-GRU have better
performance on the space-time domain prediction. This is
because STGAN has a stronger ability to synthesize the same
space-time channel data than normal GAN, which provides
more sufficient and similar channel data for joint prediction.
Besides, the coupled GRU framework has a shorter processing
time and higher accuracy and is suitable for joint predictive
channel modeling problems with obvious space-time sequence
characteristics. It is also proven that 6GPCM simulated delay
PSDs shown in Figs. 10 (d) and (h) have bigger differences
from measurement data than the prediction data. The 6GPCM,
as a pervasive GBSM, can effectively characterize channel
statistical properties at all frequency bands and scenarios.
However, its reliance on stochastic functions and parameter
fitting introduces complexity to the channel modeling process.
The adjustment and fitting of parameters to match measure-
ment data can be challenging and may lead to overfitting
or biases in the model. Moreover, the 6GPCM lacks strong
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Fig. 10. The delay PSDs of measured, predicted, and 6GPCM simulated channels at 5 GHz: (a) LoS measurement data, (b) LoS prediction
data by GAN-GRU, (c) LoS prediction data by GAN-LSTM, (d) LoS simulation data by 6GPCM,(e) NLoS measurement data, (f) NLoS
prediction data by GAN-GRU, (g) NLoS prediction data by GAN-LSTM, and (h) NLoS simulation data by 6GPCM.

predictive capabilities for unknown scenarios or future channel
variations based on limited channel data, especially when
compared to ML-based modeling methods. This limitation
arises from its inability to adequately capture the complex
non-linear behavior of wireless channels.

Due to the influence of some environmental factors, human
factors, and channel sounder system errors during measure-
ment campaigns, CIR is affected by noise in certain delay peri-
ods, where CIR is far from the actual channel distribution char-
acteristics. The proposed model can eliminate the abnormal
data of the delay PSDs in the delay domain, thereby compen-
sating for data that is more similar to the channel distribution
in the actual scenario. As shown in measured channels, some
strange yellow stripes are deeper than the surrounding colors,
indicating that there is abnormal noise power. Besides, the path
with the strongest power is presented as a zigzag line in the
measured figures, which also demonstrates that there is some
error during the channel measurement campaigns. However,
the predicted figures illustrate that the abnormal color blocks
are much fewer and the path is more accurate, which means
that the abnormal data in the measurement has been corrected.
The abnormal data-correction ability of GAN-GRU is better
than that of GAN-LSTM due to the structures of STGAN
and coupled GRUs for sequence-related data synthesizing and
prediction. Moreover, GBSM-based simulated channels have
larger deviations than the channels predicted by the proposed
model. Therefore, according to the evaluation results, the
proposed predictive channel model can accurately extract the
channel space-time characteristics and jointly predict accurate
channel data at unknown positions and times to rebuild the
lost measurement data and correct the error, which improves
the usability and accuracy of the channel data.

2) RMS DS: RMS DS is used to represent the time domain
dispersion properties of wireless channels. The larger the RMS

DS is, the more serious the dispersion in the time domain will
be. As shown in Fig. 11, the cumulative distribution functions
(CDFs) of DS at three frequency bands in LoS and NLoS sce-
narios are used to demonstrate the DS characteristics. Due to
the insufficient measurement data, the curves of measured DSs
at different frequency bands are bumpy. So they are needed to
fit the results by the lognormal distribution method to show
the actual DS distribution. It can be seen from these figures
that the predicted DS curves using two predictive channel
models match well the measured DS curves by lognormal
fitting. Therefore, it is proved that the channels predicted by
the proposed models can not only synthesize sufficient channel
data to fit the actual propagation without extra lognormal
fitting but also efficiently and accurately predict the unknown
information in the space-time domains. Moreover, the DSs
predicted by GAN-GRU are better than that predicted by
GAN-LSTM. The predicted DSs in the LoS scenarios by
these two predictive models are slightly worse than those in
NLoS scenarios. Due to a strong reflection path in the LoS
scenario, the delay of this reflection path is much longer than
the delay of the LoS path, while its power is comparable to
that of the LoS path, which makes the mean value of DS in
LoS scenario greater than that in NLoS scenario. When doing
feature extraction by ML, the power of the strong reflection
path is comparable to the LoS path and has a negative impact
on the DS prediction performance in LoS scenarios.

D. Prediction Performance Comparison

In order to further evaluate the prediction performance,
the proposed GAN-GRU based model is compared with the
existing ML-based methods GRU [41], LSTM [20], and RBF-
NN [19]. In this part, two different datasets are used. One
is the continuous space-time channel datasets used in space-
time joint prediction experiments, and the other is the discrete
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Fig. 11. The DSs of measured channels and predicted channels in different frequencies and scenarios: (a) 2.4 GHz, LoS, (b) 2.4 GHz, NLoS,
(c) 5 GHz, LoS, (d) 5 GHz, NLoS, (e) 6 GHz, LoS, and (f) 6 GHz, NLoS.

channel parameter datasets with the total received power at
each position in the corridor scenario.

1) Prediction Comparison on Continuous Space-time Chan-
nel Datasets: In the comparison, the network structures and
dataset implementation of LSTM and GRU remain the same
as those in the former framework, but the STGAN is removed,
which means that the normal GRU model and LSTM model
learn the features based on the limited original channel mea-
surement data without the GAN’s data augmentation.

Table IV gives the predicted delay PSDs in terms of RMSE
and MAPE in different frequency bands and scenarios, where
the results are the optimal values after using the Monte Carlo
method. The error between 6GPCM simulated delay PSDs
and channel measurement data is also shown in this Table.
According to the comparison, the prediction accuracy of GAN-
GRU is the best among the four networks, where the most ac-
curate prediction results are highlighted in bold. GAN-LSTM
is inferior to GAN-GRU, the prediction accuracy of GRU is
better than that of LSTM and the 6GPCM simulation results
are the worst. This is because the normal GRU and LSTM can
only extract limited features in the insufficient channel mea-
surement datasets, and the prediction results cannot reflect the
whole channel characteristics by using regression algorithms
without full training, especially in joint predictive channel
modeling problems in the space-time domains. The advantage
of STGAN is that it can perform data augmentation and gener-
ate a large amount of channel data for network training, which
can effectively solve the problem of less measurement and
simulation data in conventional channel modeling. Although
the 6GPCM is an outstanding GBSM, it still relies on stochas-
tic functions to generate channel parameters and subsequently
adjusts and fits model parameters based on measurement data.
This approach increases the model’s complexity. Moreover, the

GBSM, tailored to specific measurement environments, may
exhibit biases in the fitting process, leading to inaccuracies
in the model’s characterization. Therefore, the GAN-GRU
based joint predictive channel model can not only improve
the efficiency and accuracy of the space-time joint channel
prediction but also provide sufficient channel parameters to
facilitate channel modeling.

Moreover, to provide a comprehensive assessment of the
proposed GAN-GRU framework, additional experiments com-
paring its computational performance with alternative models
are conducted on continuous datasets. As shown in Table V,
the computational time required by each model was carefully
measured and analyzed on the computer with INTEL i9
10980xe, RTX3090, and 64 GB RAM. The findings reveal
that the GAN-GRU framework exhibits a notable advantage in
processing efficiency compared to GAN-LSTM. Specifically,
the coupled architecture of GAN-GRU demonstrates a shorter
processing time while maintaining higher prediction accuracy.
Except for optimizing for real-time processing time, it’s es-
sential to note that the primary focus of the proposed model
is on offline data augmentation applications, emphasizing
the accurate space-time joint channel prediction of unknown
spatial positions and future time. While the usage of STGAN
for data augmentation contributes to a certain increase in
overall computational time compared with normal GRU and
LSTM, it significantly increases the data augmentation ability
and enhances the accuracy of the predictions. This trade-off
ensures the reliability of the predictive results, which is crucial
for successfully implementing the proposed space-time joint
predictive channel model in practical scenarios.

2) Prediction Comparison on Discrete Channel Parameter
Datasets: In this part, the proposed GAN-GRU framework
is compared with RBF-NN, where RBF-NN is proven to
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TABLE IV
THE PREDICTION PERFORMANCE COMPARISON ON THE CONTINUOUS SPACE-TIME CHANNEL DATASETS.

2.4 GHz, LoS 2.4 GHz, NLoS

GAN-GRU GAN-LSTM GRU LSTM 6GPCM GAN-GRU GAN-LSTM GRU LSTM 6GPCM

RMSE (dB) 4.7908 6.1363 9.7905 9.7442 10.4924 5.5826 6.0852 10.1082 10.8970 11.5807

MAPE (%) 4.1363 5.4093 6.9101 8.4023 8.9941 5.0971 5.9932 7.2895 8.8891 9.1440

5 GHz, LoS 5 GHz, NLoS

GAN-GRU GAN-LSTM GRU LSTM 6GPCM GAN-GRU GAN-LSTM GRU LSTM 6GPCM

RMSE (dB) 5.3992 6.9234 10.8716 11.3559 11.8428 5.7475 7.3466 11.2146 11.9702 12.8636

MAPE (%) 4.8458 5.4133 7.9936 8.4770 8.8114 5.0339 5.9522 8.0793 9.1003 9.7441

6 GHz, LoS 6 GHz, NLoS

GAN-GRU GAN-LSTM GRU LSTM 6GPCM GAN-GRU GAN-LSTM GRU LSTM 6GPCM

RMSE (dB) 5.0375 6.5363 10.7905 11.7442 11.8647 5.6310 7.1237 10.1164 11.2437 12.1878

MAPE (%) 4.2090 5.1093 7.9101 8.4023 8.7734 4.6940 5.3952 7.5823 8.0936 9.3266

TABLE V
THE COMPUTATIONAL TIME REQUIRED BY EACH MODEL.

GAN-GRU GAN-LSTM GRU LSTM

Time (min) 61 79 27 32
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Fig. 12. The discrete channel parameter prediction results about
received power: (a) LoS, and (b) NLoS.

have better channel prediction performance than FNN in [19].
The discrete channel parameter dataset contains channel data
with physical labels, where the channel data are discrete
index parameters calculated from original continuous channel
data and the data label refers to Rx positions. Based on the
discrete dataset, the inputs of RBF-NN are the frequency bands
and the Rx positions, and the prediction output is the total
received power of the corresponding Rx position, which can be
regarded as a single space domain predictive channel modeling
separated from the space-time joint modeling. Firstly, the delay
PSDs are obtained based on the original channel measurement
data, and then the total received power at each Rx position is
calculated by the integral of the delay PSDs. These discrete
parameter datasets are divided into LoS and NLoS scenarios.
LoS datasets contain 484 groups of the training set and 121
groups of the test set. NLoS datasets contain 516 groups of
the training set and 129 groups of the test set.

The testing results, as shown in Fig. 12, demonstrate the
performance of both the GAN-GRU framework and the RBF-
NN. The abscissa represents the index of the testing dataset
or the number of testing samples. From Table VI, it can be
observed that both the GAN-GRU framework and the RBF-NN

TABLE VI
THE PREDICTION PERFORMANCE COMPARISON ON

DISCRETE CHANNEL PARAMETER DATASETS.

LoS NLoS

GAN-GRU RBF-NN GAN-GRU RBF-NN

RMSE (dB) 2.0852 5.2482 2.4363 6.2558

MAPE (%) 1.9932 4.8626 2.1093 5.5198
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Fig. 13. The layout and antenna positions of the UMi scenario.

achieve good performance in predicting the discrete channel
parameters and the GAN-GRU framework outperforms the
RBF-NN in terms of prediction accuracy. Despite the slightly
lower accuracy of the RBF-NN, its lower complexity enables
faster training speed compared to the more sophisticated GAN-
GRU framework. However, it is worth noting that the higher
complexity of the GAN-GRU framework does not impact the
efficiency and performance of the prediction process, as the
space-time joint prediction is conducted offline.

From these two comparative experiments, it is proven that
the accuracy achieved with the discrete channel parameter
datasets is higher, indicating better fitting with the real chan-
nels. This is due to the simplicity of the structure in the discrete
datasets, which does not require highly complex networks
for training. As a result, the advantages of the proposed
models may not be as apparent when predicting simple
channel parameter data. However, the GAN-GRU framework
demonstrates excellent performance in joint prediction using
continuous space-time channel datasets, which are inherently
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Fig. 14. The delay PSDs of measured channels and predicted channels at outdoor UMi scenario: (a) LoS measurement data, (b) LoS prediction
data, (c) NLoS measurement data, and (d) NLoS prediction data.

more complex than discrete datasets. Consequently, compared
to the RBF-NN, which is primarily suitable for discrete chan-
nel parameter prediction, the GAN-GRU framework exhibits
better generalization and robustness.

E. Outdoor Channel Prediction Verification

To verify the proposed model is still valid for the outdoor
channel prediction experiments, this section uses channel mea-
surement data collected in an urban microcell (UMi) scenario
as the validation dataset to show the generality of the proposed
model. The buildings are located on the roads with an average
height of 35 m, the roadside green belts and trees are dis-
tributed along the roads, and the interval between each building
is approximately 30–40 m. Measurement campaigns include 4
cases including LoS and NLoS scenarios, as shown in Fig 13,
and data of Route L1 and N1 are used as the reference to do
the space-time joint channel prediction, where these routes are
straight-line with typical space-time characteristics.

The results, as shown in Fig. 14, demonstrate the efficacy
of the proposed model in accurately predicting the joint pre-
diction of the paths with the strongest power, even in complex
outdoor environments. The model successfully captures the
drifting of paths along the delay axis, revealing the channel
dynamic variations in the space-time domains. It effectively
predicts the fluctuations and variations in the channel charac-
teristics caused by factors such as multipath fading, shadow-
ing, and scattering in outdoor scenarios. Notably, the proposed
model exhibits remarkable adaptability in handling challenging
scenarios, such as scenarios with significant path loss due to
obstructions or NLoS conditions. Furthermore, the proposed
model’s ability to fix damaged channel data and compensate
for abnormal data during channel measurements is also evident
in these experiments. These observations confirm that the
proposed model has a robust learning capacity, enabling it
to handle unpredictable channel conditions and capture the
intricate space-time variations in the outdoor MIMO channel.
Overall, the results from this UMi scenario suggest that the
proposed model is a promising solution for accurate space-
time joint channel prediction in various environments.

VI. CONCLUSIONS

In this paper, a novel GAN-GRU based space-time joint
predictive channel model has been proposed to effectively
capture continuous channel variations at each location in a

time series. The model’s ability to predict channels in space-
time domains and handle lost and abnormal data has high-
lighted its significance in space-time joint predictive channel
modeling. We have shown that the STGAN framework in the
proposed model can expand channel datasets and improve
training performance by synthesizing channel datasets with
the same space-time characteristics based on real channel
measurement data. Moreover, we have demonstrated that the
GRU framework can predict unknown channels in the space-
time domains based on previous channels by continuous
measurements after path identification. We have used chan-
nel measurement data conducted in the indoor corridor and
outdoor UMi with typical space-time channel characteristics
for performance validation to verify the proposed model.
Comparative experiments with existing data augmentation
methods have shown the good data augmentation performance
of the proposed model. Then, optimal model settings have
been obtained by analyzing the value of the channel mem-
ory parameter k. Through comprehensive experiments using
indoor channel measurement datasets, we have demonstrated
that the proposed model outperforms the 6GPCM and other
ML-based methods, including GRU, LSTM, and RBF-NN, in
terms of prediction performance. The model has been further
verified using outdoor UMi channel measurement datasets,
showing good performance. These experiments have illustrated
the model’s ability to synthesize channel data, rebuild lost data,
correct abnormal data, and predict channels in the space-time
domains. In summary, the proposed model has several advan-
tages, including better prediction performance, robustness, and
the ability to learn the space-time joint characteristics. This
makes it a promising method for future research in channel
prediction, which benefits wireless communication systems. In
network planning and optimization, our model aids in optimiz-
ing coverage, distributing base stations, and achieving energy-
efficient wireless communications. In wireless transmission, it
facilitates improved system design, adjusted code modulation
schemes, and efficient management of signal-to-noise ratios.
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