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a b s t r a c t 

The design of n -variable t -resilient functions with strictly almost optimal (SAO) nonlin- 

earity (> 2 n −1 − 2 
n 
2 , n even) appears to be a rather difficult task. The known construction 

methods commonly use a rather large number (exactly 
∑ n/ 2 

i = t+1 

(
n/ 2 

i 

)
) of affine subfunctions 

in n 
2 

variables which can induce some algebraic weaknesses, making these functions sus- 

ceptible to certain types of guess and determine cryptanalysis and dynamic cube attacks. 

In this paper, the concept of non-overlap spectra functions is introduced, which essentially 

generalizes the idea of disjoint spectra functions on different variable spaces. Two gen- 

eral methods to obtain a large set of non-overlap spectra functions are given and a new 

framework for designing infinite classes of resilient functions with SAO nonlinearity is de- 

veloped based on these. Unlike previous construction methods, our approach employs only 

a few n /2-variable affine subfunctions in the design, resulting in a more favourable alge- 

braic structure. It is shown that these new resilient SAO functions properly include all the 

existing classes of resilient SAO functions as a subclass. Moreover, it is shown that the new 

class provides a better resistance against (fast) algebraic attacks than the known functions 

with SAO nonlinearity, and in addition these functions are more robust to guess and de- 

termine cryptanalysis and dynamic cube attacks. 
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1. Introduction 

During the past three decades, the construction of highly nonlinear resilient Boolean functions has been an interesting

research topic [5,14,15,20,24,29,37,39,41,43] . These resilient functions play an important role in the design of certain stream

cipher encryption schemes such as nonlinear combiners, for which the output sequences of several linear feedback shift

registers (LFSRs) are combined (filtered) via a nonlinear Boolean function to generate the keystream sequence. The security

of nonlinear combiners depends almost entirely on the choice of the filtering Boolean function. It is widely accepted that a

Boolean function used in nonlinear combiners must fulfill certain cryptographic criteria such as balancedness, high order of

resiliency, high nonlinearity and high algebraic degree. These criteria reflect the ability of the cipher to withstand various

types of attacks. For instance, the nonlinearity measures the minimum distance between a given Boolean function and the

set of affine functions. It indicates the ability of the cipher to withstand various modes of best affine approximation (BAA)

and correlation attacks, see [10,29] . 

Unfortunately, all the criteria mentioned above cannot be optimized simultaneously and there are certain trade-offs

among the criteria. For an n -variable Boolean function whose resiliency order is t , Siegenthaler [29] showed that d ≤
n − t − 1 , where d is the algebraic degree of the function. Apart from the above mentioned criteria, the algebraic properties

of Boolean functions are decisive for protecting the cipher against (fast) algebraic attacks [1,8,9] . The concept of algebraic

immunity (AI) was introduced in [21] , indicating the ability of Boolean functions (in relation to the corresponding encryp-

tion scheme) to withstand algebraic attacks proposed in 2003 [9] . An optimal resistance of a Boolean function f against

algebraic attacks is achieved if AI of f ( x ) equals to � n /2 � . Moreover, the fast algebraic attacks (FAA) on stream ciphers were

introduced in [8] , thus further extending the mentioned cryptographic criteria. An optimal resistance of Boolean functions

(used in certain stream cipher algorithms) against FAA implies that for a given n -variable Boolean function f , there does not

exist a pair of functions g and h related through f g = h so that deg (g) + deg (h ) is less than n . Furthermore, for balanced

functions it was shown that there always exist g and h such that deg (g) + deg (h ) = n − 1 , hence in this case the degree

value n − 1 is called optimal, see [19] . 

The most significant contributions related to the design of highly nonlinear resilient functions, during the past two

decades, can be found in [3,5,7,15,20,24,28,39,41,42] . In these works, a well-known method to obtain nonlinear resilient

functions relies on the use of Maiorana–McFarland (M–M) techniques or extensions thereof. The basic idea of this approach

is to construct nonlinear resilient functions on larger variable spaces by concatenating suitable affine functions on smaller

variable spaces. This technique was first introduced by Camion et al. in 1992 [3] , and it was further used in [7,27,28] . At

CRYPTO2002, Carlet proposed an extension of the M-M method for obtaining nonlinear resilient functions by concatenat-

ing quadratic functions [5] . In 2006, Pasalic presented a method to obtain degree optimized resilient functions by using a

slightly modified M–M technique [24] . Later, Maitra et al. [20] presented methods to obtain resilient functions of order t

with nonlinearity 2 n −1 − 2 n/ 2 −1 − 2 n/ 2 −3 − 2 n/ 2 −4 , for all n ≥ 8 t + 6 . 

Recently, Zhang et al. [39,40] proposed new methods to obtain resilient functions and resilient S-boxes (multiple-output

Boolean functions) with strictly almost optimal nonlinearity > 2 n −1 − 2 n/ 2 , for any n even, by concatenating several sets

of disjoint spectra functions defined on small variable spaces (the size being ≤ n /2). However, most of the construction

techniques above generally share the same basic idea, that is, the subfunctions of these resilient functions (defined as a

restriction of a function when a subset of variables is kept fixed) are affine functions in relatively large number of input

variables. More precisely, the number of subfunctions of the t -resilient functions in [40,41] which are affine in n /2 variables

is given by 
∑ n/ 2 

i = t+1 

(
n/ 2 

i 

)
. To improve relatively bad algebraic properties, a modified construction that uses only a moderate

number of affine subfunctions in n /2-variable (the number being 2 n/ 2 −1 ) has been proposed in [40] . The functions in the

modified class then provide relatively good resistance against (fast) algebraic attacks (based on simulations for ( n ≤ 14)),

but unfortunately the nonlinearity of these functions in [40] is substantially decreased (the functions do not have SAO

nonlinearity any longer). 

Intuitively, the use of “too many” large affine subfunctions in n /2-variable (namely either 
∑ n/ 2 

i = t+1 

(
n/ 2 

i 

)
or 2 n/ 2 −1 as in [40] )

may induce some algebraic weaknesses in the structure and make a cipher less resistant to various cryptanalytic methods.

Indeed, by fixing l variables of an n -variable nonlinear Boolean function, its (n − l) -variable subfuntions are either linear or

nonlinear which in the former case gives rise to partial linear relations with respect to the fixed set of l variables. In fact,

there are many attacks on stream ciphers which essentially use these partial linear relations, and the attacks become more

efficient for relatively small l . 

We recall a few important approaches that efficiently use partial linear relations of nonlinear Boolean functions in the

various aspects of cryptanalysis. In 2009, Khoo et al. proposed a time-memory-data (TMD) trade-off attack on filtering gen-

erators and nonlinear combiners in case the nonlinear filtering function belongs to the Maiorana–McFarland class [16] . These

partial linear relations of the nonlinear Boolean functions used in the Grain family of stream ciphers were used to mount

related-key chosen IV attacks and internal state recovery attacks on the Grain family of stream ciphers [17,23] . For the case

when the filtering function is a vectorial Boolean function in the M–M class, a guess and determine attack was introduced

in [25] . The dynamic cube attacks introduced in [11,12] also commonly employ some partial linear relations that relate the

secret key and IV variables. Finally, at FSE 2013, a new criterion for avoiding the existence of partial linear relations in

substitution boxes was proposed in [2] . 
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From the above survey, it appears that cryptographically significant Boolean functions should not give rise to partial

linear relations if a relatively small number of inputs is kept fixed. In this direction, our approach efficiently revises the

previous construction methods (that can be viewed as a modified M–M class) towards a more favourable algebraic structure

of the designed resilient functions with respect to the cardinality of partial linear functions. This is accomplished without

degrading the nonlinearity which remains SAO unlike the construction method in [40] . To achieve this goal the concept

of non-overlap spectra functions is introduced (and employed in the design) and the existence of a large set of functions

with this property is proved. The so-called non-overlap spectra functions, which essentially generalizes the idea of disjoint

spectra functions, are characterized by the property that for any pair of these functions their nonzero values in the Walsh

spectra do not overlap, even though the functions are not defined on the same variable space (which is the case for standard

disjoint spectra functions). 

The proposed design of resilient functions with SAO nonlinearity is inevitably rather technical and involved, which is also

the case with other design methods whose goal is to achieve extremely high nonlinearity values. In difference to previous

approaches [39–41] that use a large set of n /2-variable affine subfunctions, our method only uses a few n /2-variable affine

subfunctions. It is demonstrated (through both theoretical analysis and computer simulations) that these new resilient func-

tions have better algebraic properties, thus improving the resistance to (fast) algebraic attacks compared to the classes in

[39–41] . Furthermore, it is shown that our class properly include the classes of Zhang et al. [40,41] as a subclass. The use

of a small number of n /2-variable affine subfunctions also implies a better robustness to cryptanalytic methods that em-

ploy partial linear relations than the classes in [40,41] . Most notably, we give a semi-deterministic method which generates

algebraically optimal functions (thus providing optimal resistance to (fast) algebraic attacks) with slightly decreased non-

linearity for moderate size of input variables, whereas for large n the algebraic properties are quite acceptable for practical

applications though not optimal. 

The rest of the paper is organized as follows. In Section 2 , some basic notations and definitions related to cryptographic

criteria of Boolean functions are introduced. A brief overview of related previous work is given in Section 3 . In Section 4 ,

the notion of non-overlap spectra functions is introduced and two methods for finding large sets of non-overlap spectra

functions are proposed. The main construction methods of resilient functions with SAO nonlinearity, based on the use of

non-overlap spectra functions, are presented in Section 5 . In addition, a semi-deterministic method for constructing resilient

functions with optimal algebraic properties (for moderate size of the input space) and high nonlinearity is also addressed.

Finally, some concluding remarks are given in Section 6 . 

2. Preliminaries 

The binary Galois field is denoted by GF (2) and “�” stands for the addition operator over GF (2). An n -dimensional vector

space spanned over GF (2) is denoted by GF (2) n . A Boolean function is a mapping f : GF (2) n −→ GF (2) and the set of all

Boolean functions f (x 1 , . . . , x n ) over GF (2) n is denoted by B n . The truth table of a Boolean function f (x 1 , . . . , x n ) is a binary

string of length 2 n corresponding to the output values of f when the input values run lexicographically through GF (2) n , 

( f (0 , 0 , . . . , 0) , f (1 , 0 , . . . , 0) , f (0 , 1 , . . . , 0) , . . . , f (1 , 1 , . . . , 1)) . (1)

Especially, if the number of ones is equal to the number of zeros in the truth table of f , then a Boolean function f (x 1 , . . . , x n )

is said to be balanced. 

Definition 1. The algebraic normal form ( ANF ) of an n -variable Boolean function is the multivariate polynomial expression

given by, 

f (x 1 , . . . , x n ) = 

∑ 

c∈ GF (2) n 

λc 

( 

n ∏ 

i =1 

x c i 
i 

) 

, (2)

where c = (c 1 , . . . , c n ) ∈ GF (2) n , λc , x i ∈ GF (2). 

The algebraic degree of f , denoted by deg ( f ) , corresponds to the maximal value of the Hamming weight of c in (2) sat-

isfying the condition λc 	 = 0. A Boolean function f ∈ B n is said to be affine if deg ( f ) ≤ 1 . In particular, for an affine Boolean

function, if its constant term is zero, then such a function is said to be linear. 

Definition 2. For X = (x 1 , . . . , x n ) ∈ GF (2) n and ω = (ω 1 , . . . , ω n ) ∈ GF (2) n let ω · X = ω 1 · x 1 � · · · � ω n · x n be the inner (dot)

product of X and ω . For any f ∈ B n , the Walsh transform of f ( x ) at point ω is defined as 

W f (ω) = 

∑ 

X∈ GF (2) n 

(−1) f (X ) �ω·X . (3)

Definition 3. [37] A function f ∈ B n is said to be a correlation immune (CI) function of order t if and only if W f (ω) = 0 , for

all ω ∈ GF (2) n such that 0 < wt ( ω) ≤ t , where wt ( ω) is the Hamming weight of ω. Moreover, if f is also balanced, that is

 f (0) = 0 , then f is called a t -resilient function. 
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Definition 4. [ 22 ] The nonlinearity of f ∈ B n is defined as 

N f = 2 

n −1 − 1 

2 

max 
ω∈ GF (2) n 

| W f (ω) | , (4) 

where | ·| denotes absolute value. 

Definition 5. A function f ∈ B n , where n is even, is called bent if W f (ω) = ±2 
n 
2 , for every ω ∈ GF (2) n . 

Definition 6. A set of Boolean functions { f 1 , . . . , f m 

} ⊂ B n is called a set of disjoint spectra functions if for all ω ∈ GF (2) n , 

W f i 
(ω) W f j 

(ω) = 0 , 1 ≤ i < j ≤ m. (5) 

To distinguish from the absolute value notation, the cardinality of any set C is denoted by || C ||. The so-called disjoint

spectra functions have been extensively used in the design of highly nonlinear resilient functions, see [13,26,41] . 

Lemma 1. Let m be a positive integer and X = (X 1 , X 2 ) ∈ GF (2) n , X 1 ∈ GF (2) m , X 2 ∈ GF (2) n −m . Then, the set of functions 

D 

∗ = { g c (X ) = c · X 1 � h c (X 2 ) | c ∈ GF (2) m , h c ∈ B n −m 

} , 
is a set of disjoint spectra functions. In particular, for all α = (β, θ ) ∈ GF (2) n , where β ∈ GF (2) m , θ ∈ GF (2) n −m , we have

W g c (α) ∈ { 0 , 2 m × W h c (θ ) } . 
The set of disjoint spectra functions above has been used as a basic construction primitive for obtaining almost optimal

resilient Boolean functions in [41] . Finally, an n -variable, t -resilient Boolean function with algebraic degree d and nonlinearity

N f is denoted by ( n, t, d, N f ). 

3. An overview of recent works 

In this section, we briefly recall the basic construction methods in [40,41] for designing resilient Boolean functions whose

nonlinearity is strictly almost optimal. 

The main construction methods proposed in [40,41] are given below for self-completeness, the reader can refer to

[40,41] for further details. 

Construction A [41] : Let n ≥ 12 be an even number, t be a positive number, and let (a 1 , . . . , a s ) ∈ GF (2) s satisfies 

n/ 2 ∑ 

j= t+1 

(
n/ 2 

j 

)
+ 

s ∑ 

i =1 

(
a i 

n/ 2 −2 i ∑ 

j= t+1 

(
n/ 2 − 2 i 

j 

))
≥ 2 

n/ 2 , (6) 

where s = � (n − 2 t − 2) / 4 � . Let X 1 = (x 1 , . . . , x n/ 2 ) ∈ GF (2) n/ 2 , X 2 = (x n/ 2+1 , . . . , x n ) ∈ GF (2) n/ 2 , X ′ m 

= (x 1 , . . . , x m 

) ∈ GF (2) m ,

and X ′′ 
2 i 

= (x m +1 , . . . , x n/ 2 ) ∈ GF (2) 2 i with m + 2 i = n/ 2 . Denote by 

U 0 = { c · X 1 | c ∈ GF (2) n/ 2 , wt(c) > t} , (7) 

and for 1 ≤ i ≤ s let 

U i = { c · X 

′ 
m 

� h c (X 

′′ 
2 i ) | h c ∈ H i , c ∈ GF (2) m , wt(c) > t} , (8) 

where H i is a nonempty set of 2 i -variable bent functions whose algebraic degree is max (2, i ). Denote by φ any injective

mapping from GF (2) n /2 to 
⋃ s 

i =0 U i . Then, one may define a Boolean function f ∈ B n as follows, 

f (X 1 , X 2 ) = 

∑ 

σ=(σ1 , ... ,σn/ 2 ) ∈ GF (2) n/ 2 

n ∏ 

i = n/ 2+1 

(x i � σi � 1) · φ(σ ) , (9) 

where injectivity of φ follows from inequality (6) , see [41] . 

A more recent construction approach [40] , named as Generalized Maiorana–McFarland (GMM) method, which apart from

suitable n /2-variable affine functions also utilizes small affine functions in a rather involved and sophisticated manner, also

generates the functions with SAO nonlinearity. 

Construction B [40] : Let 1 ≤ i ≤ n − 1 , B i ⊆GF (2) i and B ′ 
i 
= B i × GF (2) n −i such that 

⋃ n −1 
i =1 B ′ 

i 
= GF (2) n and B ′ 

i 1 
∩ B ′ 

i 2 
= ∅ ,

1 ≤ i 1 < i 2 ≤ n − 1 . Let X = (x 1 , . . . , x n ) ∈ GF (2) n , X ′ 
i 

= (x 1 , . . . , x i ) ∈ GF (2) i , and X ′′ 
n −i 

= (x i +1 , . . . , x n ) ∈ GF (2) n −i . A GMM type

Boolean function f ∈ B n is constructed as follows: 

f 
(
X 

′ 
i , X 

′′ 
n −i 

)
= ϕ i 

(
X 

′ 
i 

)
· X 

′′ 
n −i � g i 

(
X 

′ 
i 

)
, X 

′ 
i ∈ B i , 1 ≤ i ≤ n − 1 , (10) 

where ϕi is a mapping from GF (2) i to GF (2) n −i and g i ∈ B i . 

Theorem 1. [40] With the same notation as in Construction B, let n be even and B i = ∅ , for 1 ≤ i ≤ n/ 2 − 1 . Let 0 ≤ t ≤ n/ 2 − 2

and (a n/ 2 , . . . , a n −t−1 ) ∈ GF (2) n/ 2 −t (where a n/ 2 = 1 ) be a binary vector such that 
∑ n −t−1 

i = n/ 2 a i 2 
i is maximal satisfying at the same

time the condition 

n −t−1 ∑ 

i = n/ 2 

(a i 2 

n −i 
n −i ∑ 

j= t+1 

(
n − i 

j 

)
) ≥ 2 

n . (11) 
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Let r = max { i | a i 	 = 0 , n/ 2 ≤ i ≤ n − t − 1 } . For n/ 2 ≤ i ≤ r − 1 , set || B i || = 0 , if a i = 0 , otherwise set || B i || = 

∑ n −i 
j= t+1 

(
n −i 

j 

)
, if a i =

1 . For n /2 ≤ i ≤ r and a i = 1 , let ψ i be an injective mapping from B i to D i , where 

D i = { c | wt(c) ≥ t + 1 , c ∈ GF (2) n −i } . (12)

Then, the function f ∈ B n obtained by Construction B is a t-resilient function with SAO nonlinearity 

N f ≥ 2 

n −1 − 2 

n/ 2 −1 −
r ∑ 

i = n/ 2+1 

a i 2 

n −i −1 . (13)

An important observation is that these Boolean functions f ∈ B n , obtained by the above constructions, employ a large

set of linear functions in n /2 variables. For instance, Construction A uses a subset of linear functions in n /2 variables U 0 =
{ c · X 1 | c ∈ GF (2) n/ 2 , X 1 ∈ GF (2) n/ 2 , wt(c) > t} ⊂ B n/ 2 . To overcome the potential weaknesses of these functions as mentioned

in the introduction, we will propose a new method (based on the use of non-overlap spectra functions introduced below)

for constructing highly nonlinear resilient functions with good algebraic properties using less n /2-variable affine functions. 

4. Constructions of the set of non-overlap spectra functions 

In this section, the concept of non-overlap spectra functions is introduced along with an efficient way of generating

a large set of such functions. For convenience, throughout the article, we denote by X 
( j) 
(i ) 

= (x i , x i +1 , . . . , x j ) ∈ GF (2) j−i +1 a

subset of variables x 1 , . . . , x n , where 1 ≤ i < j ≤ n . In particular, when i = 1 we simply write X ( j) = (x 1 , . . . , x j ) . Other letters

are used similarly to denote the constants, for instance ω 

(n 1 ) = (ω 1 , ω 2 , . . . , ω n 1 ) ∈ GF (2) n 1 . Furthermore, h c will always

denote a bent function from some subset of bent functions H 2 k defined on a suitable variable subspace of cardinality 2 k . 

4.1. A large set of non-overlap spectra functions 

Definition 7. Let f ∈ B n 1 , g ∈ B n 2 , (n 1 > n 2 ) , ω 

(n 1 ) ∈ GF (2) n 1 and ω 

(n 2 ) ∈ GF (2) n 2 . Let us define a set �f as 

� f = { ω 

(n 2 ) | ω 

(n 1 ) = (ω 

(n 2 ) , ω n 2 +1 , ω n 2 +2 , . . . , ω n 1 ) ∈ sup (W f ) , ω 

(n 2 ) ∈ GF (2) n 2 } , 
where sup (W f ) = { ω 

(n 1 ) | W f (ω 

(n 1 ) ) 	 = 0 , ω 

(n 1 ) ∈ GF (2) n 1 } . Then, ( f, g ) is called a pair of non-overlap spectra functions if for

all ω 

(n 1 ) ∈ sup (W f ) , ω 

(n 2 ) ∈ � f , we have W f (ω 

(n 1 ) ) W g (ω 

(n 2 ) ) = 0 . 

Notice that in difference to the standard notion of disjoint spectra functions, the condition W f (ω 

(n 1 ) ) W g (ω 

(n 2 ) ) = 0 refers

to functions that are not defined on the same variable space. 

Example 1. Let f (x 1 , . . . , x 7 ) = x 1 � x 2 � x 3 � x 4 x 5 � x 6 x 7 and g(x 1 , . . . , x 5 ) = x 1 � x 4 � x 5 . It is easily verified that W f ( ω 

(7) ) ∈
{0, ±2 5 } and W g ( ω 

(5) ) ∈ {0, ±2 5 }. Furthermore, we know 

sup (W f ) = { ω 

(7) | ω 

(7) = (1 , 1 , 1 , β) ∈ GF (2) 7 , β ∈ GF (2) 4 } . 
Let 

� f = { ω 

(5) | ω 

(7) = (ω 

(5) , ω 6 , ω 7 ) ∈ sup (W f ) , ω 

(5) = (1 , 1 , 1 , β1 , β2 ) ∈ GF (2) 5 } . 
Then, for all ω 

(7) ∈ sup (W f ) , ω 

(5) ∈ � f , we have W g (ω 

(5) ) = 0 which implies W f (ω 

(7) ) · W g (ω 

(5) ) = 0 . Therefore, ( f, g ) is a

pair of non-overlap spectra functions, where ω 

(7) ∈ sup (W f ) , ω 

(5) ∈ � f ⊂ GF (2) 5 . 

The concept of a pair of non-overlap spectra functions can be easily extended to a wider framework which we call a

large set of non-overlap spectra functions. 

Definition 8. Let I 0 = { ϕ 1 , . . . , ϕ m 1 
} ⊂ B n 1 be a set of mutually disjoint spectra functions, and I 1 = { g 1 , . . . , g m 2 

} ⊂ B n 2 be

another set of (mutually) disjoint spectra functions, where n 1 > n 2 . Let also ω 

(n 1 ) ∈ GF (2) n 1 and ω 

(n 2 ) ∈ GF (2) n 2 . Moreover,

for 1 ≤ i ≤ m 1 , let 

sup (W ϕ i ) = { ω 

(n 1 ) | W ϕ i (ω 

(n 1 ) ) 	 = 0 } 
and 

�ϕ i = { ω 

(n 2 ) | ω 

(n 1 ) = (ω 

(n 2 ) , α) ∈ sup (W ϕ i ) , α ∈ GF (2) n 1 −n 2 } . 
I 0 ∪ I 1 is called a set of non-overlap spectra functions if for all ω 

(n 1 ) ∈ sup (W ϕ i ) , ω 

(n 2 ) ∈ �ϕ i , 

W ϕ i (ω 

(n 1 ) ) · W g j (ω 

(n 2 ) ) = 0 , for all 1 ≤ i ≤ m 1 , 1 ≤ j ≤ m 2 . (14)

To obtain a large set of non-overlap spectra functions, suitable in the design of t -resilient functions, we divide the space

GF (2) m + k into two subsets S 0 = { c | c ∈ GF (2) m + k , wt(c) > t} and S 1 = { c | c ∈ GF (2) m + k , wt(c) ≤ t} . Furthermore, a set of

bent functions on a suitable subspace GF (2) 2 k ⊂ GF (2) n is also needed. 
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Proposition 1. Let n, m, k be three positive integers, t be an integer in the range [0 , m + k − 1] , and m + 2 k = n/ 2 (n even). Let

X 2 = X (n/ 2+ k ) 
(m + k +1) 

= (x m + k +1 , . . . , x n/ 2+ k ) ∈ GF (2) 2 k , deg (h c ) = max { 2 , k } and define 

I 0 = { ϕ c (X 

(m + k ) , X 2 ) = c (m + k ) · X 

(m + k ) 
� h c (X 2 ) | wt(c (m + k ) ) > t} ⊂ B 

n 
2 + k . (15) 

Moreover, let c (n/ 2) = (c (m + k ) , α) ∈ GF (2) n/ 2 , for α ∈ GF (2) k , and define 

I 1 = { g c (n/ 2) (X 

(n/ 2) ) = c (n/ 2) · X 

(n/ 2) | wt(c (m + k ) ) ≤ t , wt (c (n/ 2) ) > t} ⊂ B 

n 
2 
. (16) 

Then, I 0 ∪ I 1 is a set of non-overlap spectra functions. 

Proof. From Lemma 1 , we know that both I 0 and I 1 are sets of disjoint spectra functions. Let ω 

(n/ 2+ k ) = (θ, η) ∈ GF (2) n/ 2+ k ,
where θ ∈ GF (2) m + k , and η ∈ GF (2) 2 k . Then, for all ω 

(n/ 2+ k ) ∈ GF (2) n/ 2+ k , we have 

W ϕ c (ω 

(n/ 2+ k ) ) = 

∑ 

(X (m + k ) ,X 2 ) ∈ GF (2) n/ 2+ k 

(−1) c 
(m + k ) ·X (m + k ) �h c (X 2 ) �ω (n/ 2+ k ) ·(X (m + k ) ,X 2 ) 

= 

∑ 

X 2 ∈ GF (2) 2 k 

(−1) h c (X 2 ) �η·X 2 

( ∑ 

X (m + k ) ∈ GF (2) m + k 

(−1) (c (m + k ) �θ ) ·X (m + k ) 

) 

. 

Moreover, 

W ϕ c (ω 

(n/ 2+ k ) ) = 

{
0 , (c (m + k ) 	 = θ ) 

±2 

m + k × 2 

k = ±2 

n/ 2 , (c (m + k ) = θ ) . 
(17) 

On the other hand, for all ω 

( n /2) ∈ GF (2) n /2 , if W g 
c (n/ 2) 

(ω 

(n/ 2) ) 	 = 0 then W g 
c (n/ 2) 

(ω 

(n/ 2) ) = 2 n/ 2 . Let now ω 

(n/ 2+ k ) =
(ω 

(n/ 2) , α) ∈ GF (2) n/ 2+ k , ω 

(n/ 2) = (θ, β) ∈ GF (2) n/ 2 , where α, β ∈ GF (2) k . From (15) and (17) , if W ϕ θ (ω 

(n/ 2+ k ) ) 	 = 0 , then

we have wt ( θ ) > t . It directly means that 

W g 
c (n/ 2) 

(ω 

(n/ 2) ) = 

∑ 

X (n/ 2) ∈ GF (2) n/ 2 

(−1) c 
(n/ 2) ·X (n/ 2) �ω (n/ 2) ·X (n/ 2) 

= 

∑ 

X (n/ 2) ∈ GF (2) n/ 2 

(−1) (c (m + k ) ,α) ·X (n/ 2) �(θ,β) ·X (n/ 2) 

= 

∑ 

X (m + k ) ∈ GF (2) m + k 

(−1) (c (m + k ) �θ ) ·X (m + k ) ∑ 

(x m + k +1 , ... ,x n/ 2 ) ∈ GF (2) k 

(−1) (α�β) ·(x m + k +1 , ... ,x n/ 2 ) . 

Because wt(c (m + k ) ) ≤ t and wt ( θ ) > t , thus c (m + k ) 	 = θ, we always have W g 
c (n/ 2) 

(ω 

(n/ 2) ) = 0 . That is, W ϕ θ (ω 

(n/ 2+ k ) ) ×
W g 

c (n/ 2) 
(ω 

(n/ 2) ) = 0 for ω 

(n/ 2) ∈ �ϕ θ = { ω 

(n/ 2) | ω 

(n/ 2+ k ) = (ω 

(n/ 2) , α) ∈ sup (W ϕ θ ) , α ∈ GF (2) n 1 −n 2 } . Therefore, I 0 ∪ I 1 is a set

of non-overlap spectra functions. 

The next lemma states that the total number of elements (used to define the support of a function) from the set of affine

functions in n /2 variables (i.e., U 0 ) is equal to the total number of elements from the set of non-overlap spectra functions

(i.e., I 0 ∪ I 1 ). Thus, instead of using purely linear functions we use a small portion of these functions in combination with

nonlinear functions from B n 
2 

+ k . 

Lemma 2. With the same notations as in Proposition 1 , and keeping m + 2 k = n/ 2 , let 

U 0 = { c (n/ 2) · X 

(n/ 2) | wt(c (n/ 2) ) > t} ⊂ B 

n 
2 
, 

I 0 = { c (m + k ) · X 

(m + k ) 
� h c (X 2 ) | h c ∈ H 2 k , wt(c (m + k ) ) > t} ⊂ B 

n 
2 + k , and 

I 1 = { c (n/ 2) · X 

(n/ 2) | wt(c (m + k ) ) ≤ t, wt(c (n/ 2) ) > t} ⊂ B 

n 
2 
, 

where c (n/ 2) = (c (m + k ) , α) ∈ GF (2) n/ 2 , α ∈ GF (2) k . Then, the following equation is satisfied 

μ × 2 

n/ 2 = δ0 × 2 

n/ 2+ k + δ1 × 2 

n/ 2 , 

where μ = || U 0 || , δ0 = || I 0 || , and δ1 = || I 1 || . 
Proof. It is clear that μ = 

∑ n/ 2 
i = t+1 

(
n/ 2 

i 

)
and δ0 = 

∑ m + k 
i = t+1 

(
m + k 

i 

)
. To compute δ1 , we let 

δ∗
0 = ||{ c (n/ 2) | c (n/ 2) = (c (m + k ) , α) ∈ GF (2) n/ 2 , wt(c (n/ 2) ) > t}|| , 
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so that δ∗
0 

= 2 k δ0 , since α runs over all possible values in GF (2) k . Moreover, we split { c ( n /2) | wt ( c ( n /2) ) > t } into two disjoint

sets so that S 0 and S 1 , where 

S 0 = { c (n/ 2) | c (n/ 2) = (c (m + k ) , α) , α ∈ GF (2) k , wt(c (m + k ) ) > t} , 
S 1 = { c (n/ 2) | c (n/ 2) = (c (m + k ) , α) , α ∈ GF (2) k , wt(c (m + k ) ) ≤ t , wt (c (n/ 2) ) > t} . 

Then, we have μ = 2 k δ0 + δ1 and consequently μ × 2 n/ 2 = δ0 × 2 n/ 2+ k + δ1 × 2 n/ 2 . 

Corollary 1. Using the same notations as in Proposition 1 and Lemma 2 the following relationship is valid: 

δ1 = μ − 2 

k δ0 = 

n/ 2 ∑ 

i = t+1 

(
n/ 2 

i 

)
− 2 

k ×
m + k ∑ 

i = t+1 

(
m + k 

i 

)
. (18)

Example 2. Let n = 16 , m = 2 , k = 3 , t = 1 . Let X 2 = (x 6 , . . . , x 11 ) ∈ GF (2) 6 and 

I 0 = { ϕ c (X 

(5) , X 2 ) = c (5) · X 

(5) 
� h c (X 2 ) | h c ∈ H 6 , wt(c) > 1 } ⊂ B 11 , 

where H 6 is a nonempty set of 6-variable bent functions with algebraic degree 3. Moreover, let c (8) = (c (5) , α) ∈ GF (2) 8 ,

where α ∈ GF (2) 3 , and define 

I 1 = { g c (8) (X 

(8) ) = c (8) · X 

(8) | wt(c (5) ) ≤ 1 , wt(c (8) ) > 1 } ⊂ B 8 . 

Then, I 0 ∪ I 1 is a set of non-overlap spectra functions, where 

‖ I 0 ‖ = δ0 = 26 , ‖ I 1 ‖ = δ1 = 39 . 

Moreover, let U 0 = { c (8) · X (8) | wt(c (8) ) > 1 } , thus ‖ U 0 ‖ = μ = 247 . From Lemma 2 , we have μ × 2 8 = 247 × 2 8 , and δ0 ×
2 11 + δ1 × 2 8 = 26 × 2 11 + 39 × 2 8 = 247 × 2 8 . This means that μ × 2 8 = δ0 × 2 11 + δ1 × 2 8 . In particular, U 0 contains 247 lin-

ear 8-variable Boolean functions, whereas I 0 ∪ I 1 only contains 39 linear functions in 8 variables and 26 cubic Boolean func-

tions in 11 variables. 

4.2. Further construction of a large set of non-overlap spectra functions with less affine subfunctions 

In this section, a construction of the set of non-overlap spectra functions with less affine subfunctions is investigated. In

particular, this large set of non-overlap spectra functions includes some nonlinear subfunctions that are defined on different

variable spaces which could be helpful for resisting certain kind of attacks such as those discussed in Section 5.5 . 

Lemma 3. Let n, m i , k i be some positive integers, (1 ≤ i ≤ 2 , m 1 + k 1 < m 2 + k 2 ) , t be an integer in the range [0 , (m 1 + k 1 − 1)] ,

and m i + 2 k i = n/ 2 (n even). Let m 1 + k 1 = d 1 and with respect to it define 

I (1) 
0 

= { ϕ c (d 1 ) = c (d 1 ) · X 

(d 1 ) � h c (d 1 ) (X 

(n/ 2+ k 1 ) 
(d 1 +1) 

) | h c (d 1 ) ∈ H 2 k 1 , wt(c (d 1 ) ) > t} ⊂ B 

n 
2 + k 1 . (19)

Similarly, for m 2 + k 2 = d 2 , denote by c (d 2 ) = (c (d 1 ) , α) ∈ GF (2) d 2 and define 

I (2) 
0 

= { ϕ c (d 2 ) = c (d 2 ) · X 

(d 2 ) � h c (d 2 ) (X 

(n/ 2+ k 2 ) 
(d 2 +1) 

) | h c (d 2 ) ∈ H 2 k 2 , wt(c (d 1 ) ) ≤ t, wt(c (d 2 ) ) > t} ⊂ B 

n 
2 + k 2 . 

Moreover, let c (n/ 2) = (c (m 2 + k 2 ) , α(k 2 ) ) ∈ GF (2) n/ 2 , and define 

I 1 = { g c (n/ 2) (X 

(n/ 2) ) = c (n/ 2) · X 

(n/ 2) | wt(c (m 2 + k 2 ) ) ≤ t , wt (c (n/ 2) ) > t} ⊂ B 

n 
2 
. 

Then I (1) 
0 

∪ I (2) 
0 

∪ I 1 is a set of non-overlap spectra functions. 

Proof. From Lemma 1 , we know that I (1) 
0 

, I (2) 
0 

and I 1 are all sets of disjoint spectra functions. Let ω 

(n/ 2+ k i ) = (θ, η) ∈
GF (2) n/ 2+ k i , where θ ∈ GF (2) m i + k i , and η ∈ GF (2) 2 k i , (i = 1 , 2) . Then, denoting by X i 

1 
= X (m i + k i ) and X i 

2 
= X 

(n/ 2+ k i ) 
(m i + k i +1) 

for all

ω 

(n/ 2+ k i ) , we have 

W ϕ 
c 
(m i + k i ) 

(ω 

(n/ 2+ k i ) ) = 

∑ 

(X i 
1 
,X i 

2 
) ∈ GF (2) n/ 2+ k i 

(−1) 
c (m i + k i ) ·X i 1 �h 

c 
(m i + k i ) (X i 2 ) �ω (n/ 2+ k i ) ·(X i 1 ,X 

i 
2 ) 

= 

∑ 

X i 
1 
∈ GF (2) m i + k i 

(−1) (c (m i + k i ) �θ ) ·X i 1 
∑ 

X i 
2 
∈ GF (2) 2 k i 

(−1) 
h 

c 
(m i + k i ) (X i 2 ) �η·X i 2 . 

Moreover, 

W ϕ 
c 
(m i + k i ) 

(ω 

(n/ 2+ k i ) ) = 

{
0 , (c (m i + k i ) 	 = θ ) 

±2 

m i + k i × 2 

k i = ±2 

n/ 2 , (c (m i + k i ) = θ ) . 
(20)

On the other hand, for the functions in I 1 , for all ω 

( n /2) ∈ GF (2) n /2 , if W g (n/ 2) 
(ω 

(n/ 2) ) 	 = 0 then W g 
c n/ 2 

(ω 

(n/ 2) ) = 2 n/ 2 . 

c 
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Let now ω 

(n/ 2+ k i ) = (ω 

(n/ 2) , α) ∈ GF (2) n/ 2+ k i , ω 

(n/ 2) = (θ, β) ∈ GF (2) n/ 2 , α ∈ GF (2) k i , and β ∈ GF (2) k i . From (15) and

(17) , if W ϕ θ (ω 

(n/ 2+ k i ) ) 	 = 0 , then we have wt ( θ ) > t . It directly means that 

W g 
c (n/ 2) 

(ω 

(n/ 2) ) = 

∑ 

X (n/ 2) ∈ GF (2) n/ 2 

(−1) c 
(n/ 2) ·X (n/ 2) �ω (n/ 2) ·X (n/ 2) 

= 

∑ 

X (n/ 2) ∈ GF (2) n/ 2 

(−1) (c (m i + k i ) ,α) ·X (n/ 2) �(θ,β) ·X (n/ 2) 

= 

∑ 

X (m i + k i ) ∈ GF (2) m i + k i 

(−1) (c (m i + k i ) �θ ) ·X (m i + k i ) 
∑ 

X (n/ 2) 
(m i + k i +1) 

∈ GF (2) k 

(−1) 
(α�β) ·X (n/ 2) 

(m i + k i +1) . 

Because wt(c (m i + k i ) ) ≤ t and wt ( θ ) > t , thus c (m i + k i ) 	 = θ, we always have W g 
c (n/ 2) 

(ω 

(n/ 2) ) = 0 , i.e., W ϕ θ (ω 

(n/ 2+ k i ) ) ×
W g 

c (n/ 2) 
(ω 

(n/ 2) ) = 0 . Therefore, I (1) 
0 

∪ I (2) 
0 

∪ I 1 is a set of non-overlap spectra functions. 

Lemma 4. With the same notations as in Lemma 3 , let 

U 0 = { c (n/ 2) · X 

(n/ 2) | c (n/ 2) ∈ GF (2) n/ 2 , wt(c (n/ 2) ) > t} ⊂ B 

n 
2 
. 

Then, the following equation is satisfied 

μ × 2 

n/ 2 = δ(1) 
0 

× 2 

n/ 2+ k 1 + δ(2) 
0 

× 2 

n/ 2+ k 2 + δ1 × 2 

n/ 2 , (21) 

where μ = ‖ U 0 ‖ , δ(i ) 
0 

= ‖ I (i ) 
0 

‖ , i = (1 , 2) , and δ1 = ‖ I 1 ‖ . 
Proof. Using a similar method as in Lemma 2 the result easily follows. 

Example 3. Let n = 16 , m 1 = 2 , k 1 = 3 , m 2 = 4 , k 2 = 2 , t = 1 . Denoting X 1 
2 

= (x 6 , . . . , x 11 ) ∈ GF (2) 6 and X 2 
2 

= (x 7 , . . . , x 10 ) ∈
GF (2) 4 we define 

I (1) 
0 

= { ϕ c (5) (X 

(5) , X 

1 
2 ) = c (5) · X 

(5) 
� h c (5) (X 

1 
2 ) | h c (5) ∈ H 6 , wt(c (5) ) > 1 } ⊂ B 11 , 

where H 6 is a nonempty set of 6-variable bent functions with algebraic degree 3. 

Moreover, let c (6) = (c (5) , α1 ) ∈ GF (2) 6 , α1 ∈ GF (2) , and define 

I (2) 
0 

= { ϕ c (6) (X 

(6) , X 

2 
2 ) = c (6) · X 

(6) 
� h c (6) (X 

2 
2 ) | h c (6) ∈ H 4 , wt(c (5) ) ≤ 1 , wt(c (6) ) > 1 } ⊂ B 10 . 

Let c (8) = (c (6) , α(2) ) ∈ GF (2) 8 , α(2) ∈ GF (2) 2 , and define 

I 1 = { g c (8) (X 

(8) ) = c (8) · X 

(8) | wt(c (6) ) ≤ 1 , wt(c (8) ) > 1 } ⊂ B 8 . 

Then, I (1) 
0 

∪ I (2) 
0 

∪ I 1 is a set of non-overlap spectra functions, where 

‖ I (1) 
0 

‖ = δ(1) 
0 

= 26 , ‖ I (2) 
0 

‖ = δ(2) 
0 

= 5 , ‖ I 1 ‖ = δ1 = 19 . 

Moreover, consider U 0 = { c (8) · X (8) | c (8) ∈ GF (2) 8 , wt(c (8) ) > 1 } for which ‖ U 0 ‖ = μ = 247 . From Lemma 4 , we have

μ × 2 8 = 247 × 2 8 , and δ(1) 
0 

× 2 11 + δ(2) 
0 

× 2 10 + δ1 × 2 8 = 26 × 2 11 + 5 × 2 10 + 19 × 2 8 = 247 × 2 8 . This means that μ × 2 8 =
δ(1) 

0 
× 2 11 + δ(2) 

0 
× 2 10 + δ1 × 2 8 . Note that the set I 0 ∪ I 1 in Example 2 contains 39 linear 8-variable Boolean functions,

whereas I (1) 
0 

∪ I (2) 
0 

∪ I 1 only contains 19 linear functions in 8 variables. In particular, I (1) 
0 

∪ I (2) 
0 

∪ I 1 includes two types of

nonlinear functions, i.e., 26 nonlinear 11-variable functions and 5 nonlinear 10-variable functions. 

Remark 1. Using a similar design of the set of non-overlap spectra functions I (1) 
0 

∪ I (2) 
0 

∪ I 1 , we may further obtain a general

set of non-overlap spectra functions 
⋃ � 

i =0 I 
(i ) 
0 

∪ I 1 if there are some integers m i , k i , (i = 1 , . . . , � ) satisfying the conditions

below. 

(1) m i + 2 k i = n/ 2 , (i = 1 , . . . , � ) . 

(2) m 1 + k 1 < m 2 + k 2 < · · · < m � + k � . 

5. Design methods based on non-overlap spectra functions 

In this section, we propose new construction methods for obtaining resilient functions with strictly almost optimal non-

linearity based on the set of non-overlap spectra functions. 

The first construction method uses a similar strategy as Construction A, where the main distinction between the two

classes is in terms of quite a different structure of the subfunctions. More precisely, in this new construction, the set of

functions U 0 used in Construction A is replaced by the set I 0 ∪ I 1 of non-overlap spectra functions whereas the other sub-

functions remain the same. Due to the limited space, we only provide the following example which illustrates the differences

between the structure of their subfunctions. 
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Table 1 

The subfunctions of h 1 obtained by fixing 

the variables ( x 9 , x 10 , x 11 ). 

( x 9 , x 10 , x 11 ) Subfunctions 

(0,0,0) x 6 x 7 x 8 �x 6 x 8 
(1,0,0) x 6 x 7 x 8 �x 6 x 8 �x 6 
(0,1,0) x 6 x 7 x 8 �x 6 x 8 �x 7 
(0,0,1) x 6 x 7 x 8 �x 6 x 8 �x 8 
(1,1,0) x 6 x 7 x 8 �x 6 x 8 �x 6 �x 7 
(1,0,1) x 6 x 7 x 8 �x 6 x 8 �x 6 �x 8 
(0,1,1) x 6 x 7 x 8 �x 6 x 8 �x 7 �x 8 
(1,1,1) x 6 x 7 x 8 �x 6 x 8 �x 6 �x 7 �x 8 
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Example 4. Let us construct an (n = 16 , t = 1 , d = 10 , N f = 2 15 − 2 7 − 2 5 ) function f , which is not equivalent (in terms of its

constituent subfunctions) to any function obtained by means of Construction A. 

With the same notation as in Example 2 , let n = 16 , m = 2 , k = 3 , t = 1 . Let s = � (n − 2 t − 2) / 4 � = 3 , X 2 = (x 6 , . . . , x 11 ) ∈
GF (2) 6 , and define 

I 0 = { ϕ c (X 

(5) , X 2 ) = c (5) · X 

(5) 
� h c (X 2 ) | h c ∈ H 6 , wt(c (5) ) > 1 } ⊂ B 11 . 

Let c (8) = (c (5) , α(3) ) ∈ GF (2) 8 , α(3) ∈ GF (2) 3 , and define 

I 1 = { g c (8) (X 

(8) ) = c (8) · X 

(8) | wt(c (5) ) ≤ 1 , wt(c (8) ) > 1 } ⊂ B 8 . 

Finally, we define a set of quadratic functions which are partially bent as 

U 2 = { c (4) · X 

(4) 
� h c (x 5 , . . . , x 8 ) | h c ∈ H 4 , wt(c (4) ) > 1 } . 

One can easily verify that ‖ I 0 ‖ = δ0 = 26 , ‖ I 1 ‖ = δ1 = 39 , ‖ U 2 ‖ = 11 . These functions suffice to specify the truth table of

f since 26 × 2 3 + 39 + 11 = 258 > 2 16 / 2 , where we treat the functions from I 0 as concatenation of 2 3 functions in n/ 2 = 8

variables which explains the factor 2 3 . The design procedure is quite similar to Construction A and for self-completeness we

briefly discuss the structure of f . Since the variables x 1 , . . . , x 11 are used to define functions in I 0 , the remaining (addressing)

variables x 12 , . . . , x 16 are used to specify 26 functions in x 1 , . . . , x 11 from I 0 . Formally, we can take D 0 = { d 1 , . . . , d 26 } to be

any subset of GF (2) 5 and some one-to-one mapping φ: D 0 → I 0 , meaning that to each of 26 fixed values of x 12 , . . . , x 16

we assign a single function from I 0 . However, there are 6 entries that remain to be specified, i.e., we need to specify 6

functions in 11 variables to fully specify the truth table of f . This is equivalent to specifying 48 functions in 8 variables and

since ‖ I 1 ‖ + ‖ U 2 ‖ = 50 , we can assign some arbitrary subset of cardinality 48. Therefore, there exists an injective mapping

ψ from D 1 to I ∗ ⊂ I 1 ∪ U 2 , where D 1 = { ζ1 , . . . , ζ48 } is any subset of D 0 × GF (2) 3 , and D 0 = GF (2) 5 \{ D 0 } , ‖ I ∗‖ = 48 . Similarly

to Construction A, we obtain an (n = 16 , t = 1 , d = 10 , N f = 2 15 − 2 7 − 2 5 ) resilient function f ∈ B 16 whose ANF is given as, 

f (X ) = 

∑ 

σ∈ D 0 

16 ∏ 

i =12 

(x i � σi � 1) · φ(σ )(x 1 , . . . , x 11 ) �
∑ 

τ∈ D 1 

16 ∏ 

i =9 

(x i � τi � 1) · ψ(τ )(x 1 , . . . , x 8 ) . 

In particular, let the bent function h 1 in I 0 be given as h 1 = x 6 x 9 � x 7 x 10 � x 8 x 11 � x 6 x 7 x 8 � x 6 x 8 and let the bent function in

U 2 be h 2 = x 5 x 6 � x 7 x 8 . Then, we can easily verify that this resilient function differs substantially from any function obtained

by Construction A. More precisely, if variables ( x 9 , x 10 , x 11 ) are fixed, then h 1 gives rise to different non-affine subfunctions

, as described in Table 1 . It implies that we necessarily have that U 0 	 = I 0 ∪ I 1 once we fix the variables ( x 9 , x 10 , x 11 ), where

 0 = { c (8) · X (8) | wt(c (8) ) > 1 } . Therefore, this resilient function cannot be obtained by Construction A and in addition it has

a more favorable algebraic structure. 

Remark 2. Using a similar idea as in [24,41] , the functions above can be turned into degree optimized resilient functions

(providing a more favorable algebraic structure) with SAO nonlinearity by adding suitable monomials to some subfunctions

in I 0 . In addition, our method can be extended to employ I (1) 
0 

∪ I (2) 
0 

∪ I 1 in Lemma 3 instead of I 0 ∪ I 1 , thus further extending

this class of SAO resilient functions. 

5.1. Towards better algebraic properties – using less n /2-variable affine functions 

In [40] , it was noticed that the GMM design method described by means of Construction B suffers from rather poor

resistance against (fast) algebraic attacks. The main reason is the use of “too many” affine functions in n /2 variables for the

purpose of attaining the best nonlinearity currently known. Consequently, Construction B was slightly modified in [40] not

to include “too many” affine functions in n /2 variables and it could be demonstrated that the modified class was more

resistant to (fast) algebraic attacks at the price of slightly decreased nonlinearity. To increase the resistance to (fast) algebraic

attacks we replace a subset of n /2-variable affine subfunctions in Theorem 1 by a set of non-overlap spectra functions in

less variables, thus again achieving a more desirable nonlinear structure of the corresponding subfunctions. For convenience
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of the reader, the details of this approach are illustrated in the example below. The enumerated list of design steps is also

used in Theorem 2 , though in a more general context. 

Example 5. We illustrate the design of an (n = 14 , t = 1 , d = 12 , N f = 2 13 − 2 6 − 2 4 − 2 3 − 2 2 ) degree optimized resilient

function f , which is completely different from the class in [40,41] . 

(1) Let m = 1 , k = 3 , X (4) ∈ GF (2) m + k = GF (2) 4 , X 2 = (x 5 , . . . , x 10 ) ∈ GF (2) 2 k = GF (2) 6 and define 

I 0 = { ϕ c (X 

(4) , X 2 ) = c (4) · X 

(4) 
� h c (X 2 ) | h c ∈ H 6 , wt(c (4) ) > 1 } ⊂ B 10 . 

Clearly, ‖ I 0 ‖ = δ0 = 11 and these functions cover 11 × 2 10 entries of the truth table of f of length 2 14 . We now select

available 1-resilient linear functions from B 7 of the following form. Namely, for c (7) = (c (4) , α(3) ) ∈ GF (2) 7 we define 

I 1 = { c (7) · X 

(7) | wt(c (4) ) ≤ 1 , wt(c (7) ) > 1 } ⊂ B 7 , 

which is of cardinality 32. 

(2) The two sets I 0 and I 1 cover 11 × 2 10 + 32 × 2 7 = 15 × 2 10 positions of the truth table. Thus, the remaining 2 10 po-

sitions need to be specified through a selection of suitable linear functions in smaller number of variables. The use of

1-resilient linear functions from smaller variable spaces is governed formally by Eq. (24) in Theorem 2 . The remaining 2 10 

positions in the truth table of f can be (optimally) specified using the following sets of functions: 

D 

∗
9 = { c (5) · X 

(5) | wt(c (5) ) > 1 } ⊂ B 5 , ‖ D 

∗
9 ‖ = 26 . 

D 

∗
10 = { c (4) · X 

(4) | wt(c (4) ) > 1 } ⊂ B 4 , ‖ D 

∗
10 ‖ = 11 . 

D 

∗
11 = { c (3) · X 

(3) | wt(c (3) ) > 1 } ⊂ B 3 , ‖ D 

∗
11 ‖ = 2 . 

It is readily verified that 26 × 2 5 + 11 × 2 4 + 2 × 2 3 = 2 10 . 

(3) Let B i ⊆GF (2) i and B ′ 
i 
= B i × GF (2) 14 −i , for i ∈ {4, 7, 9, 10, 11}, such that 

⋃ n −1 
i =1 B ′ 

i 
= GF (2) n and B ′ 

i 1 
∩ B ′ 

i 2 
= ∅ , i 1 , i 2 ∈ {4,

7, 9, 10, 11}, with i 1 	 = i 2 . Thus, 

‖ B i ‖ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

11 , i = 4 , 

32 , i = 7 , 

26 , i = 9 , 

11 , i = 10 , 

2 , i = 11 . 

(22) 

(4) Let ψ i be injective mappings from B i to T i , where 

T i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

I 0 , i = 4 , 

I 1 , i = 7 . 

D 

∗
9 , i = 9 , 

D 

∗
10 , i = 10 , 

D 

∗∗
11 , i = 11 . 

(23) 

These mappings simply specify which functions from T i are used when a suitable subset of input variables is fixed. By

Theorem 2 , the Boolean functions 

f (X 

(14 −i ) , X 

(14) 
(14 −i +1) 

) = ψ i (X 

(14) 
(14 −i +1) 

) � g i (X 

(14) 
(14 −i +1) 

) = ψ 

∗
i (X 

(14 −i ) ) � g i (X 

(14) 
(14 −i +1) 

) , 

are (n = 14 , t = 1 , d = 12 , N f = 2 13 − 2 6 − 2 4 − 2 3 − 2 2 = 8100) that are all degree optimized resilient functions, where

ψ i (X (14) 
(14 −i +1) 

) = ψ 

∗
i 
(X (14 −i ) ) ∈ T i , X 

(14) 
(14 −i +1) 

∈ B i , X 
(14) 
(14 −i +1) 

= (x 14 −i +1 , . . . , x 14 ) ∈ GF (2) i , g i ∈ B i , i ∈ {4, 7, 9, 10, 11}. In particular,

if the bent function in I 0 is h 0 = (x 6 � x 5 x 7 ) x 8 � (x 7 � x 5 x 6 � x 5 x 7 ) x 9 � (x 5 � x 5 x 6 � x 6 x 7 ) x 10 , then (as previously discussed)

we easily find that such a resilient function is substantially different com pared to the class in [40,41] since the subfunctions

of I 0 are different from the subfunctions of U 0 , where U 0 = { c (7) · X (7) | wt(c (7) ) > 1 } . 
Remark 3. Notice that the use of t -resilient linear functions in n /2 variables and those found on smaller variable spaces are

in accordance with the non-overlap spectra property. The use of 6-variable linear functions is avoided due to their negative

impact on the nonlinearity of f . 

Theorem 2. With the same notation as in Construction B and Proposition 1 , let n be even and B i 	 = ∅ , (1 ≤ i ≤ n/ 2 − k − 1) . The

design consists of the following steps: 

(1) Let X (m + k ) ∈ GF (2) m + k , X 2 = (x m + k +1 , . . . , x n/ 2+ k ) ) ∈ GF (2) 2 k , where m + 2 k = n/ 2 , and define 

I 0 = { ϕ c (X 

(m + k ) , X 2 ) = c (m + k ) · X 

(m + k ) 
� h c (X 2 ) | h c ∈ H 2 k , wt(c (m + k ) ) > t} ⊂ B 

n 
2 + k . 

Moreover, let c (n/ 2) = (c (m + k ) , α(k ) ) ∈ GF (2) n/ 2 , α ∈ GF (2) k , and define 

I 1 = { g c (n/ 2) (X 

(n/ 2) ) = c (n/ 2) · X 

(n/ 2) | wt(c (m + k ) ) ≤ t , wt (c (n/ 2) ) > t} ⊂ B 

n . 

2 
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(2) Let 0 ≤ t ≤ n/ 2 − 2 and (a n/ 2 , . . . , a n −t−1 ) ∈ GF (2) n/ 2 −t (where a n/ 2 = 1 ) be the binary vector such that 
∑ n −t−1 

i = n/ 2 a i 2 
i is

maximal, and 

δ0 × 2 

n/ 2+ k + δ1 × 2 

n/ 2 + 

n −t−1 ∑ 

i = n/ 2+1 

( 

a i 2 

n −i 
n −i ∑ 

j= t+1 

(
n − i 

j 

)) 

≥ 2 

n , (24)

where δi = ‖ I i ‖ , i = 0 , 1 . 

(3) Let r = max { i | a i 	 = 0 , n/ 2 − k ≤ i ≤ n − t − 1 } . For n/ 2 − k ≤ i < r − 1 , set 

‖ B i ‖ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 (a i = 0 , n/ 2 < i < r − 1) , ∑ n −i 
j= t+1 

(
n −i 

j 

)
(a i = 1 , n/ 2 < i < r − 1) . 

δ0 (a i = 1 , i = n/ 2 − k ) , 
δ1 (a i = 1 , i = n/ 2) . 

(25)

(4) For n/ 2 − k ≤ i ≤ r and a i = 1 , let ψ i be an injective mapping from B i to T i , 

T i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 (a i = 0 , n/ 2 < i < r − 1) , 
D 

∗
i 

(a i = 1 , n/ 2 < i < r − 1) , 
I 0 (a i = 1 , i = n/ 2 − k ) , 
I 1 (a i = 1 , i = n/ 2) , 

(26)

where 

D 

∗
i = { c (n −i ) · X 

(n −i ) | wt(c) > t} . (27)

Then the Boolean function 

f (X 

(n −i ) , X 

(n ) 
(n −i +1) 

) = ψ i (X 

(n ) 
(n −i +1) 

) � g i (X 

(n ) 
(n −i +1) 

) = ψ 

∗
i (X 

(n −i ) ) � g i (X 

(n ) 
(n −i +1) 

) , 

where ψ i (X (n ) 
(n −i +1) 

) = ψ 

∗
i 
(X (n −i ) ) ∈ T i , X 

(n ) 
(n −i +1) 

∈ B i , g i ∈ B i , X (n −i ) = (x 1 , . . . x n −i ) ∈ GF (2) n −i , X (n ) 
(n −i +1) 

= (x n −i +1 , . . . x n ) ∈
GF (2) i , for n/ 2 − k ≤ i ≤ r, is a SAO t-resilient function with nonlinearity 

N f ≥ 2 

n −1 − 2 

n/ 2 −1 −
r ∑ 

i = n/ 2+1 

a i 2 

n −i −1 . (28)

Proof. For any n/ 2 − k ≤ i ≤ r, if (24) is satisfied, then || B i || ≤ || T i ||. It means that there is a set of injective mappings

ψ i from B i to T i , with n/ 2 − k ≤ i ≤ r and a i = 1 . W.l.o.g, we assume g i = 0 . For any w = (w 1 , . . . , w n ) = (w 

(n −i ) , w 

(n ) 
(n −i +1) 

) ∈
GF (2) n , w 

(n ) 
(n −i +1) 

= (w n −i +1 , . . . w n ) ∈ GF (2) i , we have 

W f (w ) = 

∑ 

X (n ) ∈ ⋃ r 
i = n/ 2 −k B 

′ 
i 

(−1) f (X (n ) ) �w ·X (n ) 

= 

∑ 

X (n ) ∈ B ′ 
n/ 2 −k 

(−1) f (X (n ) ) �w ·X (n ) 

�

∑ 

X (n ) ∈ B ′ 
n/ 2 

(−1) f (X (n ) ) �w ·X (n ) 

� · · · �

∑ 

X (n ) ∈ B ′ r 
(−1) f (X (n ) ) �w ·X (n ) 

= 

∑ 

X (n ) 
(n/ 2+ k +1) 

∈ B n/ 2 −k 

(−1) w 

(n ) 
(n/ 2+ k +1) 

·X (n ) 
(n/ 2+ k +1) 

∑ 

X (n/ 2+ k ) ∈ GF (2) n/ 2+ k 

(−1) ψ 

∗
n/ 2 −k 

(X (n/ 2+ k ) ) �w 

(n/ 2+ k ) ·X (n/ 2+ k ) 

�

∑ 

X (n ) 
(n/ 2+1) 

∈ B n/ 2 

(−1) w 

(n ) 
(n/ 2+1) 

·X (n ) 
(n/ 2+1) 

∑ 

X (n/ 2) ∈ GF (2) n/ 2 

(−1) ψ 

∗
n/ 2 (X (n/ 2) ) �w 

(n/ 2) ·X (n/ 2) 

� · · ·

�

∑ 

X (n ) 
(n −r+1) 

∈ B r 

(−1) w 

(n ) 
(n −r+1) 

·X (n ) 
(n −r+1) 

∑ 

X (n −r) ∈ GF (2) n −r 

(−1) ψ 

∗
r (X (n −r) ) �w 

(n −r) ·X (n −r) 

= W f n/ 2 −k 
(w ) + 

r ∑ 

i = n/ 2 

a i · W f i 
(w ) , 

where 

W f n/ 2 −k 
(w ) = 

∑ 

X (n ) 
(n/ 2+ k +1) 

∈ B n/ 2 −k 

(−1) w 

(n ) 
(n/ 2+ k +1) 

·X (n ) 
(n/ 2+ k +1) 

∑ 

X (n/ 2+ k ) ∈ GF (2) n/ 2+ k 

(−1) ψ 

∗
n/ 2 −k 

(X (n/ 2+ k ) ) �w 

(n/ 2+ k ) ·X (n/ 2+ k ) 
, 

and for n/ 2 − k ≤ i < r − 1 , we have 

W f i 
(w ) = 

∑ 

X (n ) 
(n −i +1) 

∈ B i 

(−1) w 

(n ) 
(n −i +1) 

·X (n ) 
(n −i +1) 

∑ 

X (n −i ) ∈ GF (2) n −i 

(−1) ψ 

∗
i 
(X (n −i ) ) �w 

(n −i ) ·X (n −i ) 
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Table 2 

Comparisons (simulation) regarding the resistance against (fast) algebraic attacks. 

n Resiliency deg ( f ) N f AI deg g + deg h Constructions 

12 1 8 20 0 0 4 ≥ 6 [40,41] 

12 1 8 20 0 0 5 ≥ 7 New 

14 1 12 8100 4 ≥ 6 [40] 

14 1 12 8100 6 ≥ 8 New 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 

{
(−1) w 

(n ) 
(n −i +1) 

·ψ 

∗−1 
i 

(w 

(n −i ) ) · 2 

n −i if ∃ ψ 

∗−1 
i 

(w 

(n −i ) ) , 
0 otherwise . 

= 

{
±2 

n −i if ∃ ψ 

∗−1 
i 

(w 

(n −i ) ) , 
0 otherwise . 

From Proposition 1 , we have W f n/ 2 −k 
(w ) + W f n/ 2 

(w ) ∈ { 0 , ±2 n/ 2 } . Therefore, we have 

W f (w ) ≤ 2 

n/ 2 + 

r ∑ 

i = n/ 2+1 

a i 2 

n −i , 

and consequently N f ≥ 2 n −1 − 2 n/ 2 −1 − ∑ r 
i = n/ 2+1 a i 2 

n −i −1 . Note that any constituent function in I 0 ∪ I 1 ∪ 

⋃ r 
l= n/ 2+1 D 

∗
i 

is always

a t -resilient function, thus f is t -resilient as well. �

Corollary 2. The functions f ∈ B n obtained by Theorem 2 share the same nonlinearity as the functions obtained by Theorem 1 . 

Proof. Let U 0 = { c (n/ 2) · X (n/ 2) | wt(c (n/ 2) ) > 1 } . From Lemma 2 , we know that the number of elements contained in U 0 (cf.

Theorem 1 ) is equal to the number of elements in I 0 ∪ I 1 in Theorem 2 . Moreover, the number of elements contained in D 

∗
i 

is equal to the number of elements contained in U i = { c (n −i ) · X (n −i ) | c (n −i ) ∈ D i } , for n/ 2 < i < r − 1 . Therefore, the resilient

functions in both Theorems 1 and 2 share the same parameter (a n/ 2 , . . . , a n −t−1 ) ∈ GF (2) n/ 2 −t . 

Remark 4. One can easily verify that the functions obtained by Theorem 2 include the functions obtained by Theorem 1 as

a subclass and the methods coincide only if h c in I 0 is a Maiorana–McFarland type bent function. In addition, instead of

using I 0 ∪ I 1 we can alternatively use the set I (1) 
0 

∪ I (2) 
0 

∪ I 1 in Theorem 2 , given in Lemma 3 . 

5.2. Comparisons regarding the resistance against (fast) algebraic attacks 

In Appendix A, the resistance of our functions against (fast) algebraic attacks is discussed. In general, it is shown that the

new functions have a better resistance against (fast) algebraic attacks than the class of functions in [40,41] , see Appendix A

for further details. 

In Table 2 , we compare the resistance against (fast) algebraic attacks between our class and the functions in [40,41] for

12-variable and 14-variable functions. Once again, we emphasize that our class of functions uses a large set of non-overlap

spectra functions I 0 ∪ I 1 rather than a large set of n 
2 -variable affine subfunctions U 0 = { c (n/ 2) · X (n/ 2) | wt(c (n/ 2) ) > 1 } as in

[40,41] . Notice also that except for the subfunctions derived from the set I 0 ∪ I 1 , our functions share the same subfunctions

and injective methods as the functions in [40,41] . Due to space constraints, the truth tables of these functions in Table 2 are

omitted. Table 2 shows that the new functions provide a better resistance against algebraic attacks than the functions in

[40,41] , whereas the nonlinearity and the other parameters of interest remain the same. 

For instance, an 14-variable function f from [40] only have AI = 4 whereas our function attains AI = 6 . Moreover, when

the fast algebraic cryptanalysis is considered, there exist Boolean functions g and h such that f g = h with deg (g) + deg (h ) =
e + d ≥ 6 , for a function f constructed using the method of [40] . However, our method generates a function f ′ in 14 variables

which has AI = 6 and there exist Boolean functions g ′ and h ′ such that f ′ g ′ = h ′ with deg (g ′ ) + deg (h ′ ) = e + d ≥ 8 , imply-

ing that our functions have better resistance against (fast) algebraic attacks even though no modification towards better

algebraic properties has been done. Also, the resistance to various cryptanalytic methods that take advantage of linearity

of subfunctions is increased by avoiding the usage of n 
2 -variable affine functions due to the availability of a large set of

non-overlap spectra functions, see Section 5.5 . 

5.3. Balanced (or 1-resilient) functions with good algebraic properties 

In this section, we demonstrate the possibility of constructing highly nonlinear balanced (or 1-resilient) Boolean functions

with good algebraic properties by using nonlinear subfunctions whose number of variables is ≤ n 
2 . We firstly provide some

existence examples of functions with overall good properties, which are found using computer search for optimal choice

of nonlinear subfunctions (≤ n 
2 -variable), affine subfunctions (≤ n 

2 -variable), and their number for different dimensions. 

Moreover, we later discuss a semi-deterministic method for designing balanced (or 1-resilient) Boolean functions satisfying

all relevant cryptographic criteria. 
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Table 3 

A balanced 8-variable function with overall good properties. 

(x 1 , . . . , x 6 ) ( x 7 , x 8 ) 

x 1 � x 3 x 4 � x 3 x 5 � x 5 x 6 �x 2 x 3 x 4 � x 3 x 4 x 5 ︸ ︷︷ ︸ (0, 0) 

x 2 � x 4 � x 6 � x 3 x 4 � x 5 x 6 �x 1 x 4 x 5 � x 1 x 3 x 5 x 6 ︸ ︷︷ ︸ (1, 0) 

x 1 � x 2 � x 3 x 4 � x 5 x 6 � x 4 x 6 �x 4 x 5 x 6 � x 3 x 4 x 5 x 6 ︸ ︷︷ ︸ (0, 1) 

(x 1 , . . . , x 4 ) ( x 5 , x 6 , x 7 , x 8 ) 

x 3 �x 4 (0, 1, 1, 1) 

x 1 �x 2 �x 3 �x 4 (1, 1, 1, 1) 

( x 1 , x 2 , x 3 ) ( x 4 , x 5 , x 6 , x 7 , x 8 ) 

x 1 �x 2 (0, 0, 0, 1, 1) 

x 1 �x 3 (1, 0, 0, 1, 1) 

x 2 �x 3 (0, 1, 0, 1, 1) 

x 1 �x 3 (1, 1, 0, 1, 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Some new 8-variable and 10-variable 1-resilient functions with overall good properties 

In Table 3 , we give an example of a balanced 8-variable function (using Theorem 2 thus without the marked terms

∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸ ), which consists of three 6-variable nonlinear subfunctions that strictly belong to the set of non-overlap spectra

functions, two 4-variable linear subfunctions, and four 3-variable linear subfunctions, i.e., the space decomposition satis-

fies 3 × 2 6 + 2 × 2 4 + 4 × 2 3 = 2 8 . This function has AI = 4 , deg ( f ) = 6 , its nonlinearity is N f = 112 . Moreover, for any given

nonzero Boolean functions h and g such that f (x ) g(x ) = h (x ) we have deg (g) + deg (h ) ≥ 6 , which implies that f has almost

optimal resistance to fast algebraic cryptanalysis. 

To further improve the resistance of this function against (fast) algebraic attacks, we add the marked terms ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸ , see

Table 3 , and denote this new function by f ∗. It can be verified that f ∗ has AI = 4 , deg ( f ∗) = 6 , its nonlinearity is N f ∗ = 108

and deg (g) + deg (h ) = e + d ≥ n − 1 = 7 for any given nonconstant Boolean functions g and h such that f (x ) g(x ) = h (x ) .

Moreover, this function f ∗ can be linearly transformed into a 1-resilient function f ∗∗ (since there are eight linearly indepen-

dent vectors ω such that W f (ω) = 0 ) that preserves all the properties above. The truth table of f ∗∗ is given below: 

0 011 10 01 110 0 0 011 0110 1001 10 01 0 011 0 011 10 01 110 0 0 011 10 01 0110 0110 1100 0101 0 0 0 0 1010 1111 0101 1100

1010 1100 1010 1111 0101 0 0 0 0 010 0 10 0 0 1110 1101 0110 0011 0110 0011 0110 0011 0110 0011 0110 1100 0110 1100 1001

1001 1001 1001 0110 0110 1001 0110 0110 1111 10 01 0 0 0 0 0101 1010 0101 1010 0011 110 0 0 011 1100. 

Nevertheless, further improvements are possible as indicated in Table 4 , where another example of a 1-resilient 8-

variable function is given. This function has AI = 4 , deg ( f ) = 6 , its nonlinearity is N f = 116 , and deg (g) + deg (h ) = e + d ≥
n − 1 = 7 for any given nonzero Boolean functions h and g such that f (x ) g(x ) = h (x ) . The truth table of this 1-resilient func-

tion f ∗ is given below: 1001 1111 0010 10 0 0 10 01 0110 0110 0101 1100 1011 1010 0111 0110 1110 0110 10 0 0 0101 1011 0 0 01

10 0 0 010 0 010 0 1111 0 0 0 0 1011 0 0 0 0 1101 0100 1011 1100 1010 1011 10 0 0 1011 1100 0110 0100 0000 0010 1111 1100 0110

0 011 0 0 01 0111 1100 0101 0110 0110 1011 1110 1101 1101 1011 0101 0101 0010 0010 0011 0011 0 0 0 0 0101 0111 1010. 

We also provide an example of a 1-resilient 10-variable function with excellent algebraic properties (whose truth table

is given in the hexadecimal format): 0cc3 c0f6 2354 dced 0565 307c 1d4d f792 fbab 67c4 257c 3213 4640 d49a b604 953d

5dfd a5c6 9ad4 cbbb 887f 2751 bc21 2876 4819 dcfe db14 920c 992a 2c8a e37f a6f8 1524 e757 eb0f a0d8 96ae 8308 f34b

5a5f 3148 99e8 1f12 0f84 f69b f31f 3eae c77a b851 d671 57c9 ae89 98cf 1c1a 670b 003a 217d 7ad9 70c9 7a08 f0a7 daa9

a276 6138. 

This 1-resilient function has AI = 5 , deg ( f ) = 8 , its nonlinearity is N f = 484 , and deg (g) + deg (h ) = e + d ≥ n − 1 = 9 for

any given nonconstant h and g such that f (x ) g(x ) = h (x ) . 

Remark 5. In difference to the class of 8-variable and 10-variable functions in [40] , these new functions use many nonlinear

subfunctions in n /2 variables rather than affine n /2-variable subfunctions, see Table 5 . It is worthy of noticing that, based on

our simulations, the placement order of these subfunctions does not impact the algebraic properties of designed functions.

The resistance to (FAA) for the method in [32,33] is most likely quite bad given by deg (g) + deg (h ) = n/ 2 + 1 , as remarked

in [4] for a similar class of functions derived from bent functions in the partial spread class. 

B. A semi-deterministic method for designing balanced (or 1-resilient) Boolean functions with good algebraic properties 

The construction of balanced highly nonlinear Boolean functions with good algebraic properties has been addressed in

many works [6,18,30,31,34,35,44] ). To achieve relatively good resistance against (fast) algebraic attacks, Zhang et al. [40] .

proposed a modified construction of the original approach which uses 2 
n 
2 

−1 affine subfunctions in n /2 variables from

U 0 . More precisely, the space decomposition satisfies 2 
n 
2 

−1 × 2 
n 
2 + 2 

n 
2 

−1 × 2 
n 
2 

−1 + 2 
n 
2 × 2 

n 
2 

−2 = 2 n which implies that “only”

2 
n 
2 

−1 many affine functions in n /2 variables are used in the design. However, using the algorithm for testing the algebraic

properties proposed in [36] , we can demonstrate that this class of functions does not have an optimal resistance against

(FAA). For instance, if n = 20 and f is constructed by means of the method in [40] , using this algorithm we find that there

exist nonzero Boolean functions g and h satisfying deg (g) + deg (h ) = e + d = 15 (where f g = h ). This discrepancy (between
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Table 4 

A new 1-resilient 8-variable function with overall good cryptographic properties. 

( x 1 , x 2 , x 3 , x 4 ) ( x 5 , x 6 , x 7 , x 8 ) 

1 �x 1 �x 2 �x 4 �x 1 x 3 � (0, 0 , 0 ,0) 

x 2 x 3 �x 1 x 4 �x 1 x 2 x 4 �x 3 x 4 �x 2 x 3 x 4 
1 �x 1 �x 2 �x 3 �x 4 � (0, 0 , 0 , 1) 

x 3 x 4 �x 2 x 3 x 4 
1 �x 2 �x 1 x 3 �x 2 x 3 �x 1 x 2 x 3 �x 1 x 4 � (0, 0 , 1 , 0) 

x 2 x 4 �x 3 x 4 �x 1 x 3 x 4 
x 1 �x 2 �x 3 �x 1 x 3 �x 2 x 3 �x 1 x 2 x 3 � (0, 0 , 1 , 1) 

x 1 x 3 x 4 �x 2 x 3 x 4 
x 1 �x 3 �x 1 x 2 x 3 �x 1 x 4 �x 1 x 2 x 4 � (0, 1 , 0 , 0) 

x 1 x 3 x 4 �x 2 x 3 x 4 �x 1 x 2 x 3 x 4 
x 1 �x 1 x 2 �x 4 �x 1 x 4 � (0, 1 , 0 , 1) 

x 1 x 2 x 4 �x 3 x 4 
1 �x 1 �x 1 x 2 �x 3 �x 1 x 3 �x 1 x 2 x 3 � (0, 1 , 1 , 0) 

x 1 x 4 �x 2 x 4 �x 2 x 3 x 4 �x 1 x 2 x 3 x 4 
1 �x 1 �x 1 x 2 �x 1 x 3 �x 2 x 3 �x 1 x 2 x 3 � (0, 1 , 1 , 1) 

x 1 x 2 x 4 �x 1 x 3 x 4 �x 2 x 3 x 4 
1 �x 1 �x 2 �x 1 x 2 �x 2 x 3 �x 1 x 4 � (1, 0 , 0 , 0) 

x 1 x 2 x 4 �x 3 x 4 �x 1 x 3 x 4 �x 2 x 3 x 4 
x 1 �x 1 x 2 �x 1 x 3 �x 1 x 2 x 3 �x 1 x 4 � (1, 0 , 0 , 1) 

x 2 x 4 �x 3 x 4 �x 1 x 3 x 4 �x 2 x 3 x 4 
1 �x 2 �x 3 �x 1 x 3 �x 4 �x 3 x 4 � (1, 0 , 1 , 0) 

x 1 x 3 x 4 �x 2 x 3 x 4 �x 1 x 2 x 3 x 4 
x 1 �x 2 �x 1 x 2 �x 3 �x 1 x 3 �x 1 x 2 x 3 �x 2 x 4 � (1, 0 , 1 , 1) 

x 1 x 2 x 4 �x 3 x 4 �x 1 x 3 x 4 �x 2 x 3 x 4 �x 1 x 2 x 3 x 4 
x 1 �x 2 �x 3 �x 2 x 3 �x 1 x 2 x 3 �x 4 �x 1 x 4 � (1, 1 , 0 , 0) 

x 2 x 4 �x 1 x 2 x 4 �x 3 x 4 �x 1 x 2 x 3 x 4 
1 �x 2 �x 1 x 2 �x 1 x 3 �x 2 x 3 �x 4 �x 1 x 4 � (1, 1 , 0 , 1) 

x 2 x 4 �x 1 x 2 x 4 �x 1 x 3 x 4 �x 2 x 3 x 4 
x 2 �x 1 x 2 �x 1 x 2 x 4 (1, 1 , 1 , 0) 

x 1 x 3 �x 1 x 4 �x 2 x 4 �x 1 x 2 x 4 �x 3 x 4 � (1, 1 , 1 , 1) 

x 1 x 3 x 4 �x 2 x 3 x 4 �x 1 x 2 x 3 x 4 

Table 5 

A comparison related to 1-resilient functions with overall good properties. 

n Resiliency deg ( f ) N f AI deg g + deg h n 
2 

-variable subfunctions Resource 

8 1 6 112 4 ≥ n − 1 = 7 Linear [40] 

8 1 6 112 4 – – [32] 

8 1 6 116 4 ≥ n − 1 = 7 – [38] 

8 1 6 116 4 ≥ n − 1 = 7 Nonlinear New 

10 1 8 472 5 ≥ n − 1 = 9 Linear [40] 

10 1 8 484 5 – – [32] 

10 1 8 484 5 ≥ n − 1 = 9 – [38] 

10 1 8 484 5 ≥ n − 1 = 9 Nonlinear New 

 

 

 

 

 

 

 

 

 

 

 

 

the optimal value n − 1 and the actual value e + d) is even larger for the increased input space n and therefore the resistance

of the class of functions in [40] against fast algebraic attacks is far from being optimal. 

Similarly, a trade-off between the nonlinearity and the resistance against (fast) algebraic attacks of our initial SAO func-

tions has been confirmed by simulations, as in the case of the GMM construction [40] . To achieve good algebraic properties,

we need to slightly decrease the nonlinearity of our initial constructions. The main idea is to look for a suitable/optimal

space decomposition whose choice usually affects both the algebraic properties and nonlinearity of the designed functions.

In fact, the Condition 0, Condition 1, and Condition 2 in [36] essentially provide an approach to estimate the algebraic prop-

erties of designed functions. Therefore, to achieve an optimal resistance against (fast) algebraic attacks and high nonlinearity,

our design strategy includes two phases. In the first phase, we need to search for a suitable space decomposition that en-

sures optimal algebraic properties by using the Condition 0, Condition 1, and Condition 2 given in [36] . In the second phase,

we employ the ideas of Construction 2 to specify the corresponding functions. The details of this approach are given below.

Construction C : (With the same notation as in Construction B and Theorem 2 ). 

The first phase: 

Step 1 For a given integer n, n ≥ 12 even, solve the equation 

∑ n −1 
i = n 

2 
+1 

‖ B i ‖ × 2 n −i = 2 n to obtain all solutions B ( j) =
{ B ( j) 

n 
2 

+1 
, . . . , B 

( j) 
n −1 

} . 
Step 2 For each solution B ( j ) , calculate r + d and r + s + e (related to AA and FAA) by using the Condition 0, Condition 1,

and Condition 2 in [36] . If r + d = � n/ 2 � and r + s + e ≥ n − 1 , then record the solution B ( j) = { B ( j) 
n +1 

, . . . , B 
( j) 
n −1 

} . 

2 
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Table 6 

A comparison of 1-resilient functions satisfying all relevant cryptographic criteria. 

n Resiliency deg ( f ) N f AI deg g + deg h n 
2 

-variable subfunctions Resource 

12 1 10 1960 6 ≥ n − 2 = 10 Linear [40] 

12 1 10 1996 6 – – [32] 

12 1 10 1988 6 ≥ n − 1 = 11 – [38] 

12 1 10 1988 6 ≥ n − 1 = 11 Nonlinear New 

14 1 11 8040 7 ≥ n − 3 = 11 Linear [40] 

14 1 12 8100 7 – – [32] 

14 1 12 8072 7 ≥ n − 1 = 13 – [38] 

14 1 12 8072 7 ≥ n − 1 = 13 Nonlinear New 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3 Call these solutions B (1) , B (2) , . . . , B (u ) . 

Remark that the relations r + d = � n/ 2 � and r + s + e ≥ n − 1 in Step 2 ensure the optimal resistance against (fast) alge-

braic attacks. 

The second phase: 

(1) Select an optimal solution w.r.t. the highest nonlinearity given by (30) , say B ( λ) , 1 ≤ λ ≤ u . Let a i = 1 , if B (λ) 
i 

	 = 0 , or

else a i = 0 , for i = 

n 
2 + 1 , . . . , n − 1 . 

(2) For n 
2 < i ≤ n − 1 and a i = 1 , let ψ i be a mapping from B i to T i , where 

T i = { c (n −i ) · X 

(n −i ) | wt(c (n −i ) ) > 0 } . (29)

Then the Boolean function 

f (X 

(n −i ) , X 

(n ) 
(n −i +1) 

) = ψ i (X 

(n ) 
(n −i +1) 

) � g i (X 

(n ) 
(n −i +1) 

) = ψ 

∗
i (X 

(n −i ) ) � g i (X 

(n ) 
(n −i +1) 

) , 

where X (n ) 
(n −i +1) 

∈ B i , X 
(n ) 
(n −i +1) 

= (x n −i +1 , . . . x n ) ∈ GF (2) i , g i ∈ B i are arbitrary for n 
2 < i ≤ n − 1 , is a balanced function with

nonlinearity 

N f ≥ 2 

n −1 −
n −1 ∑ 

l= n/ 2+1 

a l × μl × 2 

n −l−1 , (30)

where μl = max y ∈ T l ‖{ ψ 

−1 
l 

(y ) }‖ , (l = 

n 
2 + 1 , . . . , n − 1) . 

The result on nonlinearity can be easily derived using a similar method as in Theorem 2 . 

Remark 6. To achieve high nonlinearity, we need to select an optimal solution B ( λ) so that the value 
∑ n −1 

l= n/ 2+1 
a l × μl ×

2 n −l−1 is as small as possible. On the other hand, it is impossible to provide the exact nonlinearity bound in advance since

it depends on suitable decompositions for which the algebraic properties are simultaneously optimized (due to the selection

in Step 2 in the first phase). 

The method given in Construction C allows us to design balanced Boolean functions having optimal algebraic properties

and very high nonlinearity. To demonstrate the efficiency and quality of our approach we provide two examples (among

many others) of one 12-variable and one 14-variable 1-resilient functions with overall good cryptographic properties, see

Table 6 . We only provide the truth table of this 12-variable function in Appendix B. Notice that the space decomposition

of this 12-variable 1-resilient function satisfies 31 × 2 3 + 466 × 2 2 + 992 × 2 = 2 12 , that is, ‖ B 9 ‖ = 31 , ‖ B 10 ‖ = 466 , ‖ B 11 ‖ =
992 , and ‖ B i ‖ = 0 for i 	 = 9, 10, 11. The space decomposition of the 14-variable 1-resilient function satisfies 1 × 2 4 + 140 ×
2 3 + 1784 × 2 2 + 4056 × 2 = 2 14 , that is, ‖ B 10 ‖ = 1 , ‖ B 11 ‖ = 140 , ‖ B 12 ‖ = 1784 , ‖ B 13 ‖ = 4056 , and ‖ B i ‖ = 0 for i 	 = 10, 11, 12,

13. 

Remark 7. In difference to the class of 12-variable and 14-variable functions in [40] , these new functions use many non-

linear n /2-variable subfunctions. This also implies that these new functions have better resistance against (fast) algebraic

attacks than the functions in [40] . On the other hand, the functions in [38] are obtained by using a search algorithm based

on simulated annealing which quite likely becomes inefficient for larger n . The space decomposition of these functions and

the type of subfunctions used there was not discussed in [38] . Nevertheless, the design of resilient functions with SAO

nonlinearity and optimal (or suboptimal) resistance against (fast) algebraic attacks still remains an open problem. 

5.4. A comparison regarding the number of n /2-variable affine subfunctions 

Table 7 below gives the exact value of the number of n /2-variable affine subfunctions used in our constructions and

their number used in [40,41] , for k ≥ 2. Notice that by letting k = 1 (recall that k is related to the set H k of 2 k -variable bent

functions, cf. Theorem 2 ), the number of n /2-variable affine subfunctions is minimal for both our methods since the effect

of increasing k is that m decreases due to the relation m + 2 k = 

n 
2 . In particular, when k = 1 , the employed bent functions

only have two variables (which are then essentially linear functions) so that our method coincides with the approach taken

in [40] . Thus, we necessarily have that k ≥ 2 in order to distinguish the two approaches. 
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Table 7 

The cardinality of affine subfunctions in n /2 variables. 

Number of affine n /2-variable subfunctions Construction ∑ 

n 
2 

i = t+1 

( n 
2 

i 

)
or 2 

n 
2 −1 [40] ∑ 

n 
2 

i = t+1 

( n 
2 

i 

)
[41] ∑ 

n 
2 

i = t+1 

( n 
2 

i 

)
− 2 k × ∑ m + k 

i = t+1 

(
m + k 

i 

)
New 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the constructions in [40,41] , for the case n = 28 , t = 1 , require 16 , 369 affine subfunctions in 14 variables,

whereas our new construction requires at most 561 affine subfunctions in 14 variables if we consider m = 2 (and con-

sequently k = 6 ). Moreover, taking k = 2 , this number is further reduced and only 37 affine 14-variable subfunctions are

needed. In other words, the number of n 
2 -dimensional subspaces/flats on which our functions are weakly normal (being

affine on such a subspace/flat) is substantially reduced which potentially gives a better resistance to various cryptanalytic

methods. 

5.5. Comparisons regarding the resistance against both guess and determine cryptanalysis and (dynamic) cube attacks 

Note that the attack complexity of both guess and determine cryptanalysis and (dynamic) cube attacks largely depends

on the number of input variables that are kept fixed, say l , and the cardinality of induced partial linear relations ( n − l vari-

ables) which we denote by �. If l is relatively small and the cardinality of these partial linear relations is large enough, then

these attacks generally become more efficient. To estimate the resistance against both guess and determine cryptanalysis

and (dynamic) cube attacks, we introduce the concept of probability distribution of partial linear relations, which takes into

account the above mentioned parameters l and �. 

Definition 9. For f ∈ B n , let the set of fixed input variables be (x i 1 , . . . , x i l ) , { i 1 , . . . , i l } ⊂ { 1 , . . . , n } , and let the total cardi-

nality of induced partial linear relations be �, when (x i 1 , . . . , x i l ) runs through GF (2) l . The probability distribution of partial

linear relations of f ( x ) with respect to (x i 1 , . . . , x i l ) is defined as 

P (l) = 

�

2 

l 
. (31) 

In fact, the quantity P ( l ) measures the probability of getting a partial linear relation of f ( x ) by randomly fixing the value

of (x i 1 , . . . , x i l ) . In general, the smaller P ( l ) is the better is the resistance of a Boolean function against both guess and

determine cryptanalysis and (dynamic) cube attacks. In Table 8 , we list the exact values of P (l = 

n 
2 ) for our constructions

and the methods in [40,41] , for 12 ≤ n ≤ 40, 0 ≤ t ≤ 2, and m + 2 k = 

n 
2 , where m = 1 or m = 2 . For instance, when n = 36

then 1-resilient functions (thus t = 1 ) in [40,41] have P (l = 18) = 0 . 999928 ≈ 1 , whereas our new functions only have P (l =
18) = 0 . 010670 if we consider m = 2 , see Table 8 . 

Moreover, taking k = 2 , we find that P (l = 18) for our functions is extremely low, i.e., P (l = 18) = 1 . 869 × 10 −4 . In other

words, for the former methods [40,41] the adversary finds a partial linear relation by fixing almost any value of (x i 1 , . . . , x i 18 
) ,

whereas the probability of getting such relations for our method is negligibly small. Therefore, our new functions potentially

provide much better resistance to both guess and determine cryptanalysis and (dynamic) cube attacks than the functions in

[40,41] . 

Remark 8. For the modified construction proposed in [40] , which uses 2 
n 
2 

−1 many n /2-variable affine subfunctions, one

obtains P (l = 

n 
2 ) = 

2 
n 
2 

−1 

2 
n 
2 

= 

1 
2 . This implies the existence of a large set of partial linear relations and in average fixing two

values of (x i 1 , . . . , x i l ) would result in one partial linear relation. 

6. Conclusions 

In this paper, the concept of non-overlap spectra functions, referring to a set of mutually disjoint spectra functions on

different variable subspaces, has been introduced. Two general methods for designing a large set of non-overlap spectra

functions have been proposed and their use in the construction of resilient functions with SAO nonlinearity has been ad-

dressed. In difference to the best known construction methods proposed by Zhang and Pasalic [40,41] that employ “too

many” n 
2 -variable affine subfunctions, our construction methods only use a few 

n 
2 -variable affine subfunctions which results 

in a more favourable algebraic structure. Moreover, these new functions have better resistance against guess and determine

cryptanalysis (or dynamic cube attacks that use partial linear relations) than the functions provided by Zhang and Pasalic

[40,41] . The trade-off between optimal algebraic properties and the so-called SAO nonlinearity is still unsettled. The question

whether there exist functions with SAO nonlinearity that have an optimal resistance to (fast) algebraic cryptanalysis remains

to be answered. 
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Table 8 

The value of P(l = 

n 
2 
) for 12 ≤ n ≤ 40, 0 ≤ t ≤ 2. 

t n [40] [41] New (maximum) New (minimum) 

0 12 0.984375 0.984375 0 . 046875 , (m = 2) 0 . 046875 , (k = 2) 

14 0.992188 0.992188 0 . 054688 , (m = 1) 0 . 023438 , (k = 2) 

16 0.996094 0.996094 0 . 027344 , (m = 2) 0 . 011719 , (k = 2) 

18 0.998047 0.998047 0 . 029297 , (m = 1) 0 . 005859 , (k = 2) 

20 0.999023 0.999023 0 . 014648 , (m = 2) 0 . 002930 , (k = 2) 

22 0.999512 0.999512 0 . 015137 , (m = 1) 0 . 001465 , (k = 2) 

24 0.999756 0.999756 0 . 007568 , (m = 2) 7 . 324 × 10 −4 , (k = 2) 

26 0.999878 0.999878 0 . 007690 , (m = 1) 3 . 662 × 10 −4 , (k = 2) 

28 0.999939 0.999939 0 . 003845 , (m = 2) 1 . 831 × 10 −4 , (k = 2) 

30 0.999969 0.999969 0 . 003876 , (m = 1) 9 . 155 × 10 −5 , (k = 2) 

12 0.890625 0.890625 0 . 203125 , (m = 2) 0 . 203125 , (k = 2) 

1 14 0.937500 0.937500 0 . 250 0 0 0 , (m = 1) 0 . 1250 0 0 , (k = 2) 

16 0.964844 0.964844 0 . 152344 , (m = 2) 0 . 074219 , (k = 2) 

18 0.980469 0.980469 0 . 167969 , (m = 1) 0 . 042969 , (k = 2) 

20 0.989258 0.989258 0 . 098633 , (m = 2) 0 . 024414 , (k = 2) 

22 0.994141 0.994141 0 . 103516 , (m = 1) 0 . 013672 , (k = 2) 

24 0.996826 0.996826 0 . 059326 , (m = 2) 0 . 007568 , (k = 2) 

26 0.998291 0.998291 0 . 060791 , (m = 1) 0 . 004150 , (k = 2) 

28 0.999084 0.999084 0 . 034241 , (m = 2) 0 . 002258 , (k = 2) 

30 0.999512 0.999512 0 . 034668 , (m = 1) 0 . 001221 , (k = 2) 

12 0.656250 0.656250 0 . 343750 , (m = 2) 0 . 343750 , (k = 2) 

2 14 0.773438 0.773438 0 . 460938 , (m = 1) 0 . 273438 , (k = 2) 

16 0.855469 0.855469 0 . 355469 , (m = 2) 0 . 199219 , (k = 2) 

18 0.910156 0.910156 0 . 410156 , (m = 1) 0 . 136719 , (k = 2) 

20 0.945313 0.945313 0 . 289063 , (m = 2) 0 . 089844 , (k = 2) 

22 0.967285 0.967285 0 . 311035 , (m = 1) 0 . 057129 , (k = 2) 

24 0.980713 0.980713 0 . 207275 , (m = 2) 0 . 035400 , (k = 2) 

26 0.988770 0.988770 0 . 215332 , (m = 1) 0 . 021484 , (k = 2) 

28 0.993530 0.993530 0 . 138062 , (m = 2) 0 . 012817 , (k = 2) 

30 0.996307 0.996307 0 . 140839 , (m = 1) 0 . 007538 , (k = 2) 

 

 

 

 

 

 

 

 

 

 

Appendix A. Evaluating the resistance against (fast) algebraic attacks 

In this section, the resistance of our functions against (fast) algebraic attacks is discussed. 

Theorem 3. Let 1 ≤ i ≤ n − 1 , B i ⊆GF (2) i and B ′ 
i 
= B i × GF (2) n −i such that 

⋃ n −1 
i =1 B ′ 

i 
= GF (2) n and B ′ 

i 1 
∩ B ′ 

i 2 
= ∅ , 1 ≤ i 1 < i 2 ≤

n − 1 . Let X = (x 1 , . . . , x n ) ∈ GF (2) n , X ′ 
i 

= (x j 1 , . . . x j i ) ∈ GF (2) i , X ′′ 
n −i 

= (x j i +1 
, . . . x j n ) ∈ GF (2) n −i , where { j 1 , . . . , j i } ⊂ { 1 , . . . , n } ,

{ j i +1 , . . . , j n } ⊂ { 1 , . . . , n } and { j 1 , . . . , j i } ∩ { j i +1 , . . . , j n } = ∅ . Then any t-resilient function in Theorem 2 can be represented as

given below, 

f (X ) = f (X 

′ 
i , X 

′′ 
n −i ) = 

n −1 ∑ 

i =1 

⎧ ⎨ 

⎩ 

∑ 

σ=(σ j 1 
, ... σ j i 

) ∈ B i 

j i ∏ 

l= j 1 
(x l � σl � 1) · (ϕ i, [ σ ] (X 

′ 
i ) � g i (X 

′ 
i )) 

⎫ ⎬ 

⎭ 

, (32)

where ϕ i, [ σ ] (X ′ 
i 
) is an injective mapping from B i to T i , (the elements of T i are defined on variable space GF (2) n −i , i.e., X ′′ 

n −i 
∈

GF (2) n −i ) , g i ∈ B i , and || B i || 	 = 0 . 

Proof. For any t -resilient function f in Theorem 2 , we assume 

X 

′ 
n/ 2 −k = (x j 1 , . . . , x j (n/ 2 −k ) 

) = X 

(n ) 
(n/ 2 −k +1) 

= (x n/ 2 −k +1 , . . . , x n ) ∈ GF (2) n/ 2 −k , 

X 

′ 
n/ 2 = (x j 1 , . . . x j n/ 2 

) = X 

(n ) 
(n/ 2+1) 

= (x n/ 2+1 , . . . , x n ) ∈ GF (2) n/ 2 , 

and let ψ i be an injective mapping from B i to T i (see Theorem 2 ). Then, f defined by means of Theorem 2 always has the

algebraic representation as in (32) . 

From Theorem 3 , we know that the problem of evaluating the resistance of functions in Theorem 2 against (fast) algebraic

attacks is equivalent to the estimation related to the form in (32) . 

Note that the existence of low degree multipliers (or annihilators) of the Maiorana–McFarland class was originally con-

sidered by Pasalic in [24] . Nevertheless, a general technique to estimate the resistance of a random Boolean function (having

relatively large input of input variables n , say n ≥ 30) against (fast) algebraic attacks has been proposed recently in [36] .

Based on the evaluation methods in [36] , the algebraic properties of our functions are estimated and the results are given

in Tables 9 and 10 , for 12 ≤ n ≤ 36. 
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Table 9 

Theoretical upper bound on AI of 1-resilient functions, (12 ≤ n ≤ 36). 

n n /2 deg(g) = r + d Resource 

12 6 r + d = 5 [40,41] 

r + d = 6 New 

14 7 r + d = 5 [40,41] 

r + d = 7 New 

16 8 r + d = 6 [40,41] 

r + d = 7 New 

18 9 r + d = 7 [40,41] 

r + d = 8 New 

20 10 r + d = 7 [40,41] 

r + d = 9 New 

22 11 r + d = 8 [40,41] 

r + d = 10 New 

24 12 r + d = 9 [40,41] 

r + d = 10 New 

26 13 r + d = 9 [40,41] 

r + d = 11 New 

28 14 r + d = 10 [40,41] 

r + d = 12 New 

30 15 r + d = 11 [40,41] 

r + d = 13 New 

32 16 r + d = 11 [40,41] 

r + d = 14 New 

34 17 r + d = 12 [40,41] 

r + d = 15 New 

36 18 r + d = 13 [40,41] 

r + d = 16 New 

Table 10 

Upper and lower bound related to FAA for 1-resilient functions with deg ( f ) ≥ n − 2 . 

n deg(g ′ ) + deg(h ) = r + s + e Resource 

12 r + s + e = 9 [40,41] 

10 ≤ r + s + e ≤ 11 New 

14 r + s + e = 9 [40,41] 

11 ≤ r + s + e ≤ 13 New 

16 r + s + e = 10 [40,41] 

12 ≤ r + s + e ≤ 14 New 

18 r + s + e = 11 [40,41] 

13 ≤ r + s + e ≤ 17 New 

20 r + s + e = 11 [40,41] 

13 ≤ r + s + e ≤ 19 New 

22 r + s + e = 12 [40,41] 

14 ≤ r + s + e ≤ 21 New 

24 r + s + e = 13 [40,41] 

15 ≤ r + s + e ≤ 22 New 

26 r + s + e = 13 [40,41] 

16 ≤ r + s + e ≤ 25 New 

28 r + s + e = 14 [40,41] 

17 ≤ r + s + e ≤ 26 New 

30 r + s + e = 15 [40,41] 

18 ≤ r + s + e ≤ 28 New 

32 r + s + e = 15 [40,41] 

19 ≤ r + s + e ≤ 29 New 

34 r + s + e = 16 [40,41] 

20 ≤ r + s + e ≤ 31 New 

36 r + s + e = 17 [40,41] 

21 ≤ r + s + e ≤ 33 New 

 

 

 

 

 

In Table 9 , we compare the theoretical upper bounds on AI of our 1-resilient functions to those in [40,41] and deduce

that the upper bound is always larger for our class (the difference between the actual values has also been confirmed by

simulations). 

In Table 10 , based on the possibility of computing both the upper and lower bound on the degree relation deg (g) +
deg (h ) using the method in [36] , it is shown that our functions have a very good resistance against FAA. In particular,

their resistance to FAA is much better than the resistance of functions in [40,41] . For instance, if n = 36 then the resilient
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functions obtained by Construction A (or Construction B) in [40,41] only satisfy the relation r + s + e = 17 < 36 , whereas our

functions achieve 21 ≤ r + s + e ≤ 33 . 

Appendix B. 

The truth table of an (n = 12 , t = 1 , deg ( f ) = 10 , N f = 1988) function (whose AI = 6 and the resistance to FAA ( e + d ≥
11 ) is given in the hexadecimal format below using the convention that the most significant bit is the leftmost bit, e.g.,

(0 0 01) = 1 . 

83ce 72cb 00cc 75e0 9f11 6883 93f8 422f b691 a895 bd5b db89 4ad2 85fc 4799 6e0f 906d a7e3 ac40 d6f6 bef9 70b6

1006 bcea 2420 7145 6ee5 c2cf 1779 a0a6 9454 fde8 d846 3f94 de6a 4e81 4770 d135 fda8 3ba8 3ac5 63f5 fe33 b9be 7fd9

cb51 44a6 ad9d 5e7e 03ad ef82 7116 d3e9 4847 a4cf 84e4 edc3 688e 5180 c3a3 7d57 9009 61f4 251d 8e95 265e 8c7a cb88

7b34 26f2 bb15 1073 abee 00f4 7712 8a41 51ec f7f3 5203 e12e f8f1 32c7 29ad e529 6a24 12c6 0e76 a203 6947 f496 ac50

3679 db3e e1d2 c567 914a 6b42 17c7 3f4a 7751 a2e6 fc14 3a92 2940 a295 228f 6ec9 1fcd cf7c 0972 19ca 4ad5 dd0e 27f4

03fc 8766 71d4 52b9 8fd1 639a 1edd 5702 074d 4512 2636 5ef1 94c9 8acf dd11 889e 5644 b613 0903 a867 fb83 021e d4f1

7773 e047 873d 3da8 7b54 b18f 6690 2753 39e7 6ccc f5da 6d54 30f4 268b e3b9 8f4f 8bcc 475a e6d7 c552 27dc ecdd 1ee7
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