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Cell-Free Satellite-UAV Networks for 6G
Wide-Area Internet of Things
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Abstract— In fifth generation (5G) and beyond Internet of
Things (IoT), it becomes increasingly important to serve a
massive number of IoT devices outside the coverage of terrestrial
cellular networks. Due to their own limitations, unmanned aerial
vehicles (UAVs) and satellites need to coordinate with each other
in the coverage holes of 5G, leading to a cognitive satellite-UAV
network (CSUN). In this paper, we investigate multi-domain
resource allocation for CSUNs consisting of a satellite and a
swarm of UAVs, so as to improve the efficiency of massive access
in wide areas. Particularly, the cell-free on-demand coverage is
established to overcome the cost-ineffectiveness of conventional
cellular architecture. Opportunistic spectrum sharing is also
implemented to cope with the spectrum scarcity problem. To this
end, a process-oriented optimization framework is proposed for
jointly allocating subchannels, transmit power and hovering
times, which considers the whole flight process of UAVs and
uses only the slowly-varying large-scale channel state information
(CSI). Under the on-board energy constraints of UAVs and
interference temperature constraints from UAV swarm to satellite
users, we present iterative multi-domain resource allocation
algorithms to improve network efficiency with guaranteed user
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fairness. Simulation results demonstrate the superiority of the
proposed algorithms. Moreover, the adaptive cell-free coverage
pattern is observed, which implies a promising way to efficiently
serve wide-area IoT devices in the upcoming sixth genera-
tion (6G) era.

Index Terms— Cell free, cognitive satellite-UAV network,
multi-domain resource allocation, wide-area Internet of Things.

I. INTRODUCTION

IN FIFTH generation (5G) and upcoming sixth genera-
tion (6G) networks, the demand for wide-area Internet

of Things (IoT) with a massive number of devices keeps
increasing [1]–[4]. Thus, it is critical to support massive access
in emerging terrestrial and satellite networks [5]. However,
limited by geographical environments, most IoT devices, e.g.,
buoys on the ocean and sensors in the remote area, are outside
the coverage of terrestrial cellular networks [4]. Consequently,
it is hard for conventional IoT technologies, such as Narrow
Band IoT (NB-IoT) and Long Range Radio (LoRa), to be used
for wide-area IoT directly. Besides, it is also challenging for
current satellite networks to serve these devices, due to their
limited communication rate and inherent large latency [5].

To overcome these challenges, it is widely regarded as an
effective way to integrate unmanned aerial vehicles (UAVs)
with satellite networks. Nevertheless, new difficulties arise in
building a hybrid satellite-UAV network to efficiently support
massive access for wide-area IoT. For example, IoT devices are
always sparsely and unevenly distributed in wide areas [6], [7],
so that it is cost-ineffective to cover them using conventional
cellular architecture [8]. Furthermore, the spectrum scarcity
problem becomes serious, because local spectrum reuse as
cellular architecture is no longer applicable [9], due to the
mobility of UAVs and ubiquitous coverage of satellites. Thus,
opportunistic spectrum sharing for satellite-UAV networks
requires global optimization to tackle the wide-area coupled
interference. To solve these problems, we investigate the
wide-area IoT-oriented cell-free cognitive satellite-UAV net-
work (CSUN), which remains open to our knowledge.

A. Related Works

NB-IoT is a widely-used IoT technology for massive con-
nectivity [10], [11], which has been shown effective in urban
areas [10]. However, NB-IoT was designed based on conven-
tional cellular architectures. As shown in [12], the cellular
architecture is expensive for bringing services to rural areas.

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on May 10,2021 at 15:12:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9067-533X
https://orcid.org/0000-0001-5147-2145
https://orcid.org/0000-0001-8083-1805
https://orcid.org/0000-0002-9729-9592
https://orcid.org/0000-0002-4922-7025


LIU et al.: CELL-FREE SATELLITE-UAV NETWORKS FOR 6G WIDE-AREA INTERNET OF THINGS 1117

When the IoT devices are sparsely deployed within a vast
area, the efficiency of NB-IoT will degrade. Moreover, it is
difficult to establish an NB-IoT network on the ocean or in
a mountainous area, where the deployment of communication
infrastructures is quite limited due to geographical conditions.
Likewise, LoRa, as another promising IoT technology [10],
[13] which can serve IoT devices up to tens of kilometers
away from the gateway [4], also faces challenges in harsh
deploying environments.

To serve a massive number of IoT devices outside the
coverage of terrestrial networks, satellite is widely regarded as
a promising enabler [14], [15]. The authors of [14] discussed
the group-based massive connectivity for satellite-enabled
IoT networks, where spectrum efficiency is shown to be
a huge bottleneck. In [15], a non-orthogonal slotted Aloha
based multiple access framework was proposed for satel-
lites, which can support massive access with narrow band-
width at the expense of large latency. These works have
shown that limited spectrum, lack of efficiency and large
latency are main challenges for satellite-enabled IoT net-
works. To handle the spectrum scarcity problem, cognitive
spectrum sharing techniques can be used [16], for which
interference mitigation techniques are crucial. In [17], a hybrid
analog-digital transmit beamforming scheme was proposed to
mitigate the satellite-terrestrial interference. The authors of
[18] proposed a semi-adaptive beamforming scheme for hybrid
satellite-terrestrial networks. In [19], an optimal beamforming
method was designed considering nonlinear power amplifiers
and imperfect channel knowledge. However, these techniques
mainly focused on the spectrum sharing between satellites
and fixed terrestrial networks. Due to the mobility of UAVs,
cognitive spectrum sharing should be redesigned for CSUNs,
where the spatial distribution of interference is much more
dynamic.

Indeed, UAV is another choice to support massive access
for IoT devices [20]–[24]. In [21], a whole and worth-
while picture of UAV-enabled 5G and beyond networks was
comprehensively investigated. The authors of [22] discussed
the energy efficiency of data aggregation in UAV-enabled
IoT networks. In [23], UAVs and cellular networks shared
spectrum to improve the performance of data aggregation,
where the energy efficiency of IoT devices was also maxi-
mized. The authors of [24] optimized the total flight time of
UAVs to save energy through path planning with guaranteed
data aggregation efficiency. However, limited on-board energy
and limited coverage of a single UAV are still challenging
obstacles, which motivate the utilization of UAV swarm and
the integration of UAVs with satellites [25]–[28]. In [25],
the user scheduling and association, transmit power and tra-
jectory of UAV swarm were elaborately optimized in a joint
way to improve the worst-case performance of UAVs. The
authors of [26] studied the placement of a swarm of UAVs
to optimize the coverage area with co-channel interference.
In [27], a coordinated multi-point transmission scheme was
proposed for a UAV-aided cognitive satellite-terrestrial net-
work, where the trajectory and transmit power of UAVs were
jointly optimized under interference temperature constraints.
The authors of [28] investigated the non-orthogonal multiple

access (NOMA) strategy to integrate UAVs into the satellite
network.

Despite of these achievements, there remain open chal-
lenges for CSUNs to efficiently support massive access out
of the cellular coverage. On one hand, in a wide area, it is
cost-ineffective to serve a massive number of IoT devices by
deploying UAVs under conventional cellular architecture [8],
which motivates the design of cell-free on-demand coverage
for CSUNs. On the other hand, to make the network be focused
on scheduled IoT devices within a vast area, multi-domain
resources, including subchannels, transmit power and hovering
times, should be allocated jointly rather than in a separated or
partially joint manner [24], [27], which needs the channel state
information (CSI) of the whole system. However, the prop-
agation condition is severe for wide-area IoT in practice,
leading to much more complicated channel fading than the
previously widely-used free-space path-loss model [27]. This
renders it necessary to study multi-domain resource allocation
with imperfect CSI for CSUNs.

B. Main Contributions

In this paper, we consider a wide-area IoT-oriented CSUN
consisting of a satellite and a swarm of UAVs. We jointly
allocate the frequency-domain subchannels, transmit power
and hovering time, aiming to establish a spectrum-efficient
cell-free CSUN. Towards this end, a process-oriented opti-
mization framework is proposed. Such framework takes the
whole flight process of UAVs into account, which further
derives multi-domain resource allocation schemes to improve
network efficiency with guaranteed user fairness. Concretely,
the main contributions are summarized as follows.

• We propose a process-oriented optimization frame-
work by considering the whole UAV flight process for
multi-domain resource allocation. The optimization is
performed in a much larger time scale than channel
coherent time, we thus use only the slowly-varying large-
scale CSI, which can be predictively obtained according
to the trajectory of UAV swarm and position information
of IoT devices. Besides, on-board energy constraints
of UAV swarm and interference temperature constraints
from UAVs to satellite users are also taken into account.

• To improve network efficiency, we formulate a data
transmission efficiency maximization problem under the
process-oriented optimization framework. The original
problem is decomposed into three subproblems, where
subchannels, transmit power and hovering times are
allocated by using the time-sharing relaxation method.
Based on the solutions to these subproblems, the original
problem is solved in an iterative way, leading to a
low-complexity joint multi-domain resource allocation
method. To further promote user fairness, i.e., offer-
ing services to all IoT devices as equally as possible,
we formulate a minimum data transmission efficiency
maximization problem under the process-oriented opti-
mization framework. The problem is solved by similar
decomposition and feasible region relaxation methods.

• We evaluate the performance of the proposed algorithms
by simulations. Particularly, the large-scale CSI is derived
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Fig. 1. Illustration of a wide-area IoT-oriented CSUN outside the coverage of terrestrial cellular networks.

based on real geographical environment using channel
models recommended by ITU-R [29], [30]. We observe
an adaptive cell-free coverage pattern using the proposed
multi-domain resource allocation algorithms. Moreover,
although only the large-scale CSI is used for optimization,
both network efficiency and user fairness can be improved
significantly, due to the much enlarged time scale of
optimization.

The rest of this paper is organized as follows. We intro-
duce the system model and the process-oriented optimization
framework in Section II. In Section III, the data transmission
efficiency maximization problem is formulated and solved.
We further discuss the minimum data transmission efficiency
maximization problem and its solution in Section IV. Section V
presents simulation results and discussions, and the conclu-
sions are given in Section VI.

II. SYSTEM MODEL

For future 6G networks, a massive number of IoT devices
will be deployed globally. Thereby, we consider a wide-area
IoT-oriented CSUN, which consists of a satellite and a swarm
of coordinated K single-antenna UAVs, serving Ns satellite
users and NU UAV users, as shown in Fig. 1. We assume
that each UAV user, as advanced IoT device, is equipped with
M antennas, and each satellite user, as general IoT device,
is equipped with a single antenna. To support massive access
with limited spectrum resources, UAV swarm and satellite
share the same frequency band, which is divided into G
subchannels. UAV users are divided into N groups [5], and
the n-th group of users will be served in the n-th time
slot. Suppose that the n-th group has Un users, we have∑N

n=1 Un = NU . The UAV swarm works in a hover-to-serve
mode, i.e., the UAVs transmit data when they are hovering
above a group of users. After the accomplishment of services,
they fly to the next user group. Such mode has advantages

in high energy efficiency, high stability and small path loss
for UAV communications [24], [31], as it matches well the
spatial sparsity of IoT devices in a wide area. We assume the
hovering time of UAV swarm in the n-th time slot as Tn. Then,
the hovering time constraints of UAV swarm are formulated
by [32]

N∑
n=1

Tn ≤ Ttotal (1)

Tn ≤ Tmax ∀n (2)

where (1) denotes the constraint of total hovering time and (2)
shows the maximum available hovering time of UAVs in the
n-th time slot.

The received signal of the u-th UAV user in the n-th user
group using the g-th subchannel can be expressed as

rn,u,g = Hn,u,gtn,g + qn,u,g (3)

where n ∈ {1, . . . , N}, u ∈ {1, . . . , Un}, g ∈ {1, . . . , G},
Hn,u,g ∈ C

M×K denotes the channel matrix, tn,g ∈ C
K

includes the transmitted symbols of UAV swarm and qn,u,g ∈
CM denotes the additive white Gaussian noise following
CN (0M , σ2IM ), where 0M ∈ CM and IM ∈ CM×M are
all-zero vector and identity matrix, respectively. Note that the
leakage interference from the satellite has been ignored in (3),
as it is relatively weak for advanced IoT devices. On the
contrary, the leakage interference from the UAV swarm to
satellite user is significant, which is

In,i =
Un∑
u=1

G∑
g=1

xn,u,gyn,i,ghn,i,gE
{
tn,gtH

n,g

}
hH

n,i,g

=
Un∑
u=1

G∑
g=1

xn,u,gyn,i,ghn,i,gPn,ghH
n,i,g ∀n, i (4)
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where n shows that the interference occurs in the n-th time
slot, i ∈ {1, . . . , Ns} are identifiers of satellite users, xn,u,g ∈
{0, 1} are indicator variables, xn,u,g = 1 means that the
g-th subchannel is used by the u-th UAV user of the n-th user
group, yn,i,g ∈ {0, 1} are also indicator variables, yn,i,g = 1
means that the g-th subchannel is used by the i-th satellite
user in the n-th time slot, hn,i,g ∈ C1×K denotes the channel
vector of the interference link between the UAV swarm and
the i-th satellite user in the n-th time slot using the g-th
subchannel, E

{
tn,gtH

n,g

}
is the correlation matrix of trans-

mitted symbols. Generally, orthogonal symbols are transmitted
by UAV swarm, so that Pn,g = diag {pn,g,1, . . . , pn,g,K} are
diagonal matrices for ∀n, g to represent the transmit power of
UAV swarm in the n-th time slot using the g-th subchannel.

We consider a practical UAV channel model, including both
line-of-sight (LOS) and non-line-of-sight (NLOS) elements,
given by [33], [34]

Hn,u,g = Sn,u,gLn,u,g (5)

where Sn,u,g and Ln,u,g denote the small-scale fading and the
slowly-varying large-scale fading, respectively. Particularly,
the components of Sn,u,g ∈ CM×K are independent and iden-
tically distributed (i.i.d.) standard complex Gaussian random
variables, Ln,u,g = diag {ln,u,g,1, . . . , ln,u,g,K} ∈ R

K×K ,
where l2n,u,g,k represents the path loss between the k-th UAV
and the u-th UAV user in the n-th time slot using the g-th
subchannel. We assume that the interference link from UAV
swarm to satellite user also follows the same channel model
as

hn,i,g = sn,i,gL̃n,i,g (6)

where sn,i,g and L̃n,i,g denote the small-scale fading and
the slowly-varying large-scale fading, respectively, sn,i,g ∈
C1×K consists of i.i.d. standard complex Gaussian random
variables, and L̃n,i,g = diag

{
l̃n,i,g,1, . . . , l̃n,i,g,K

}
∈ R

K×K

with l̃2n,i,g,k representing the path loss between the k-th UAV
and the i-th satellite user in the n-th time slot using the g-
th subchannel. To be practical, we use the space-air channel
models in Recommendation ITU-R P.525 and Recommenda-
tion ITU-R P.676 to derive Ln,u,g and L̃n,i,g based on real
geographical information [29], [30].

We focus on radio resource allocation, thus assume an
arbitrarily given trajectory of UAVs.1 As the time scale
of the whole UAV flight is much larger than the channel
coherent time, it is impractical to acquire full CSI. We use
the position-related large-scale CSI, i.e., Ln,u,g in (5) and
L̃n,i,g in (6), for resource allocation, which can be predictively
obtained according to trajectory and user locations [35]. Using
large-scale CSI, multi-domain resources can be allocated in
an offline manner prior to UAV take-off, taking the whole
flight process into account. This leads to a process-oriented
optimization framework, under which the resource allocation
is designed in a large time scale. Accordingly the leakage

1Resource allocation and trajectory planning of UAVs can be jointly
optimized for CSUNs based on the results of this paper, which is an interesting
future direction.

interference, network metrics and practical constraints should
be derived in large-scale forms.

Based on (4), we rewrite the leakage interference from UAV
swarm to satellite user as

Ie
n,i = Es{In,i}

=
Un∑
u=1

G∑
g=1

xn,u,gyn,i,g

Esn,i,g

{
sn,i,gL̃n,i,gPn,gL̃n,i,gsH

n,i,g

}
=

Un∑
u=1

K∑
k=1

G∑
g=1

xn,u,gyn,i,g l̃
2
n,i,g,kpn,g,k ∀n, i (7)

where s = {sn,i,g ∀n, i, g} is the set of small-scale channel
parameters, Es represents the expectation with respect to
small-scale parameters. Moreover, network efficiency and user
fairness are important metrics to evaluate the performance of
IoT-oriented CSUNs. From the network efficiency perspective,
we focus on the overall data transmission efficiency, which is
expressed as [36]

De(P,T,x) = ES

{
N∑

n=1

Un∑
u=1

G∑
g=1

xn,u,gTnRn,u,g

}
(8)

where P = {Pn,g ∀n, g} is the set of power matrices,
T = (T1, . . . , TN)T , x = {xn,u,g ∀n, u, g} is the set of
indicator variables, S = {Sn,u,g ∀n, u, g} denotes the set of
small-scale channel parameters, ES represents the expectation
with respect to small-scale parameters, and

Rn,u,g = log2det

(
IM +

1
σ2

Sn,u,gLn,u,gPn,gLn,u,gSH
n,u,g

)
(9)

denotes the downlink rate of the u-th UAV user in the n-th
user group using the g-th subchannel. From the user fairness
perspective, we consider the minimum data transmission effi-
ciency of all users as

Dmin(P,T,x) = min
n,u

ES

{
G∑

g=1

xn,u,gTnRn,u,g

}
. (10)

For practical constraints, the on-board energy, transmit power
and hovering time of the UAV flight process are regarded. Con-
sidering both propulsion energy and communication energy,
we formulate the on-board energy constraints of UAV swarm
as [32]

c

ηk

N∑
n=1

Un∑
u=1

G∑
g=1

xn,u,gpn,g,kTn + Eind
k + Eprop

k ≤ Eob
k ∀k

(11)

where c is the power loss coefficient, ηk denotes the efficiency
of power amplifiers in radio frequency chains, Eind

k is the
transmit-power-independent energy, including e.g., the energy
consumed by cooling systems [37], Eprop

k represents the
propulsion energy which varies with the trajectory of UAVs.

Authorized licensed use limited to: Southeast University. Downloaded on May 10,2021 at 15:12:34 UTC from IEEE Xplore.  Restrictions apply. 



1120 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 4, APRIL 2021

Given trajectories, both Eind
k and Eprop

k will be fixed. Hence,
we simplify the constraints of communication energy as

N∑
n=1

Un∑
u=1

G∑
g=1

xn,u,gpn,g,kTn ≤ Ecom
k ∀k (12)

where Ecom
k = (Eob

k −Eind
k −Eprop

k )ηk

c . The maximum transmit
power constraint of each UAV is also considered as

Un∑
u=1

G∑
g=1

xn,u,gpn,g,k ≤ pmax ∀n, k. (13)

In the following Section III and Section IV, we optimize the
network efficiency and further promote the user fairness under
this process-oriented optimization framework.

III. PROCESS-ORIENTED DATA TRANSMISSION

EFFICIENCY MAXIMIZATION

We first formulate a data transmission efficiency maximiza-
tion problem as

max
P,T,x

De(P,T,x) (14a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xn,u,gyn,i,g l̃
2
n,i,g,kpn,g,k≤�p ∀n, i (14b)

N∑
n=1

Un∑
u=1

G∑
g=1

xn,u,gpn,g,kTn ≤ Ecom
k ∀k (14c)

Un∑
u=1

G∑
g=1

xn,u,gpn,g,k ≤ pmax ∀n, k (14d)

N∑
n=1

Tn ≤ Ttotal (14e)

Tn ≤ Tmax ∀n (14f)
Un∑
u=1

xn,u,g ≤ 1 ∀n, g (14g)

xn,u,g ∈ {0, 1} pn,g,k ≥ 0 Tn ≥ 0 ∀n, u, g, k (14h)

where �p in (14b) denotes the interference temperature
threshold, (14c)–(14f) are practical constraints as discussed
in (1)–(13), and (14g) means that one subchannel can only
be used by one UAV user to avoid harmful interference.
The problem in (14) is a mixed-integer nonlinear program-
ming (MINLP) problem, which is not convex and hard to be
solved directly. In the following, we simplify (14) and solve
it in an iterative way.

A. Problem Transformation

First, we formulate a new objective function Da(P,T,w,x)
to closely approximate De(P,T,x) without expectation as
follows.

Da(P,T,w,x) =
N∑

n=1

Un∑
u=1

G∑
g=1

xn,u,gTnRa(Pn,g, wn,u,g)

(15)

where

Ra(Pn,g, wn,u,g) =
K∑

k=1

log2

(
1 +

Ml2n,u,g,kpn,g,k

wn,u,gσ2

)
+M

[
log2wn,u,g − log2e(1 − w−1

n,u,g)
]

(16)

and w = {wn,u,g ∀n, u, g} is a set of slack variables which
satisfies

wn,u,g = 1 +
K∑

k=1

l2n,u,g,kpn,g,k

σ2 +Ml2n,u,g,kpn,g,kw
−1
n,u,g

. (17)

The equation in (16) shows that the approximate rate is a
sum of modified data rates and compensation terms, both of
which are related to w. The equation in (17) indicates that w
is an intractable implicit function of P. The accuracy of this
approximation technique has been discussed in [36] in details.
Thus, we recast (14) as

max
P,T,x

Da(P,T,w,x) (18a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xn,u,gyn,i,g l̃
2
n,i,g,kpn,g,k ≤ �p ∀n, i (18b)

N∑
n=1

Un∑
u=1

G∑
g=1

xn,u,gpn,g,kTn ≤ Ecom
k ∀k (18c)

Un∑
u=1

G∑
g=1

xn,u,gpn,g,k ≤ pmax ∀n, k (18d)

N∑
n=1

Tn ≤ Ttotal (18e)

Tn ≤ Tmax ∀n (18f)
Un∑
u=1

xn,u,g ≤ 1 ∀n, g (18g)

wn,u,g = 1 +
K∑

k=1

l2n,u,g,kpn,g,k

σ2 +Ml2n,u,g,kpn,g,kw
−1
n,u,g

∀n, u, g

(18h)

xn,u,g ∈ {0, 1} pn,g,k ≥ 0 Tn ≥ 0 ∀n, u, g, k (18i)

where (18h) is introduced by the coupling between P and w
as shown in (17).

B. Problem Decomposition

The new problem in (18) is not convex. To solve it,
we decompose (18) into three subproblems, following the
block coordinate descent method [25]. Denoting the iteration
index as r, three subproblems are formulated as

max
xr

Da(Pr−1,Tr−1,wr−1,xr) (19a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,k p

r−1
n,g,k ≤ �p ∀n, i (19b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,kT

r−1
n ≤ Ecom

k ∀k (19c)
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Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,k ≤ pmax ∀n, k (19d)

Un∑
u=1

xr
n,u,g ≤ 1 ∀n, g (19e)

xr
n,u,g ∈ {0, 1} ∀n, u, g (19f)

max
Pr

Da(Pr,Tr−1,wr,xr) (20a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,k p

r
n,g,k ≤ �p ∀n, i (20b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r−1
n ≤ Ecom

k ∀k (20c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,k ≤ pmax ∀n, k (20d)

wr
n,u,g

=1+
K∑

k=1

l2n,u,g,kp
r
n,g,k

σ2+Ml2n,u,g,kp
r
n,g,k(wr

n,u,g)−1
∀n, u, g

(20e)

pr
n,g,k ≥ 0 ∀n, g, k (20f)

max
Tr

Da(Pr,Tr,wr,xr) (21a)

s.t.

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r
n ≤ Ecom

k ∀k (21b)

N∑
n=1

T r
n ≤ Ttotal (21c)

0 ≤ T r
n ≤ Tmax ∀n. (21d)

The subproblem in (19) is an integer linear programming (ILP)
problem, and its solution is referred to as the subchannel allo-
cation scheme. The subproblem in (20) is non-convex, whose
solution is referred to as the coordinated power allocation
scheme. The subproblem in (21) is a linear programming prob-
lem, which can be directly solved using linear optimization
tools [38]. Its solution is referred to as the hovering time
scheduling scheme. We solve (18) iteratively via solving these
subproblems in a turbo fashion, and focus on deriving the
solutions to (19) and (20). The methods will be described in
Section III-C and Section III-D.

C. Subchannel Allocation

We use the time-sharing relaxation technique [39] to solve
the subproblem in (19). Concretely, xr

n,u,g ∈ {0, 1} is relaxed
to continuous zr

n,u,g ∈ [0, 1]. Actually, zr
n,u,g can be regarded

as the fraction of time that is used by the u-th UAV user in the
n-th user group at the g-th subchannel. Then, we recast (19)
as

max
zr

Da(Pr−1,Tr−1,wr−1, zr) (22a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

zr
n,u,gyn,i,g l̃

2
n,i,g,kp

r−1
n,g,k≤�p ∀n, i (22b)

N∑
n=1

Un∑
u=1

G∑
g=1

zr
n,u,gp

r−1
n,g,kT

r−1
n ≤ Ecom

k ∀k (22c)

Un∑
u=1

G∑
g=1

zr
n,u,gp

r−1
n,g,k ≤ pmax ∀n, k (22d)

Un∑
u=1

zr
n,u,g ≤ 1 ∀n, g (22e)

0 ≤ zr
n,u,g ≤ 1 ∀n, u, g (22f)

which is a linear programming problem that can be solved
using linear optimization tools [38]. Then, the key point is
how to find xr by using zr.

For this purpose, we formulate the Lagrangian dual function
of (22) as

L(zr,λ,μ,γ, ζ)
= Da(Pr−1,Tr−1,wr−1, zr)

+
N∑

n=1

Ns∑
i=1

λn,i(�p −
Un∑
u=1

K∑
k=1

G∑
g=1

zr
n,u,gyn,i,g l̃

2
n,i,g,kp

r−1
n,g,k)

+
K∑

k=1

μk(Ecom
k −

N∑
n=1

Un∑
u=1

G∑
g=1

zr
n,u,gp

r−1
n,g,kT

r−1
n )

+
N∑

n=1

K∑
k=1

γn,k(pmax −
Un∑
u=1

G∑
g=1

zr
n,u,gp

r−1
n,g,k)

+
N∑

n=1

G∑
g=1

ζn,g(1 −
Un∑
u=1

zr
n,u,g) (23)

where λ,μ,γ, ζ are Lagrangian multipliers and the
Lagrangian dual problem of (22) is derived as

min
λ,μ,γ,ζ

f(λ,μ,γ, ζ) (24a)

s.t. λn,i ≥ 0 μk ≥ 0 γn,k ≥ 0 ζn,g ≥ 0 ∀n, i, k, g (24b)

where

f(λ,μ,γ, ζ) = sup
zr

L(zr,λ,μ,γ, ζ) (25)

is the least upper bound of (23). Based on (23)–(25),
the desired xr can be obtained in an iterative way. Denoting
the iteration index as t, xt is derived by

xt
n,u∗,g =

{
1, if u∗ = arg maxu{V t

n,u,g ∀n, g}
0, else

(26)

where

V t
n,u,g

=
∂L(zr,λt−1,μt−1,γt−1, ζt−1)

∂zr
n,u,g

+ ζt−1
n,g

= T r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g) −

Ns∑
i=1

K∑
k=1

λt−1
n,i yn,i,g l̃

2
n,i,g,kp

r−1
n,g,k

−
K∑

k=1

μt−1
k pr−1

n,g,kT
r−1
n −

K∑
k=1

γt−1
n,k p

r−1
n,g,k (27)

is formulated using the Karush-Kuhn-Tucker (KKT) condi-
tions of (24) [38], which is a sum of overall data transmission
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Algorithm 1 Algorithm to Solve (19)

Input: {Ecom
k ∀k}, pmax, �p, Tr−1, Pr−1, δ11 , δ12 , δ13 .

1: Initialization: x0 = 0, λ0 = 0, μ0 = 0,γ0 = 0, t = 1;
2: repeat
3: Calculate V t

n,u,g using (27);
4: Update xt using (26);
5: Update λt using (28), where δt

1 = δ11/t;
6: Update μt using (29), where δt

2 = δ12/t;
7: Update γt using (30), where δt

3 = δ13/t;
8: t = t+ 1;
9: until xt does not change;
Output: xt.

efficiency and penalty terms. Then, the Lagrangian multipliers
are updated iteratively using the subgradient method by

λt
n,i =

[
λt−1

n,i + δt
1

∂L(xt,λ,μ,γ, ζ)
∂λn,i

]+
(28)

μt
k =

[
μt−1

k + δt
2

∂L(xt,λ,μ,γ, ζ)
∂μk

]+
(29)

γt
n,k =

[
γt−1

n,k + δt
3

∂L(xt,λ,μ,γ, ζ)
∂γn,k

]+
(30)

where xt has been substituted into the Lagrangian function
in (28)–(30), [·]+ = max(·, 0) and

∂L(xt,λ,μ,γ, ζ)
∂λn,i

= �p−
Un∑
u=1

K∑
k=1

G∑
g=1

xt
n,u,gyn,i,g l̃

2
n,i,g,kp

r−1
n,g,k

(31)

∂L(xt,λ,μ,γ, ζ)
∂μk

=Ecom
k −

N∑
n=1

Un∑
u=1

G∑
g=1

xt
n,u,gp

r−1
n,g,kT

r−1
n

(32)

∂L(xt,λ,μ,γ, ζ)
∂γn,k

= pmax −
Un∑
u=1

G∑
g=1

xt
n,u,gp

r−1
n,g,k. (33)

Based on (26)–(33), the subchannels can be allocated by
Algorithm 1. The convergence of this algorithm can be
guaranteed when the input parameters are appropriately
designed [39]. In Algorithm 1, xt

n,u,g = 1 if and only if
Ra(Pn,g, wn,u,g) in (27) is the largest one for ∀u at the t-th
step of iteration, showing that Da(P,T,w,x) is maximized
at every step of iteration. Hence, at least a locally optimal
solution to (19) can be obtained by Algorithm 1.

D. Coordinated Power Allocation

In this section, we give the solution to (20). The objec-
tive function in (20a) is convex when both Pr and wr

satisfy (20e) [36]. However, the coupling between Pr and
wr is too complicated as shown in (20e), so that it is hard
to solve (20) directly with low computational complexity.
To reduce the complexity, we relax (20e) and then solve (20)

in an iterative way. Denoting the iteration index as j, (20) can
be recast to

max
Pj

Da(Pj ,Tr−1,wj−1,xr) (34a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

j
n,g,k≤�p ∀n, i (34b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,kT

r−1
n ≤ Ecom

k ∀k (34c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,k ≤ pmax ∀n, k (34d)

pj
n,g,k ≥ 0 ∀n, g, k (34e)

where wj−1 is regarded as constant in (34). After Pj is
obtained, wj is updated by solving

wj
n,u,g = 1 +

K∑
k=1

l2n,u,g,kp
j
n,g,k

σ2 +Ml2n,u,g,kp
j
n,g,k(wj

n,u,g)−1
∀n, u, g.

(35)

Based on the solutions to (34) and (35), we can derive the
solution to (20) using Algorithm 2.

Then, we investigate the convergence of Algorithm 2.
To this end, we first substitute wr

n,u,g = evr
n,u,g into (20) to

recast it as

max
Pr

min
vr

Da(Pr,Tr−1,vr,xr) (36a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r
n,g,k ≤ �p ∀n, i (36b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r−1
n ≤ Ecom

k ∀k (36c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,k ≤ pmax ∀n, k (36d)

pr
n,g,k ≥ 0 vr

n,u,g ≥ 0 ∀n, g, k, u (36e)

where

Da(Pr,Tr−1,vr ,xr)

=
N∑

n=1

Un∑
u=1

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, v
r
n,u,g) (37)

and

Ra(Pr
n,g, v

r
n,u,g) =

K∑
k=1

log2

(
1 +

Ml2n,u,g,kp
r
n,g,k

evr
n,u,gσ2

)
+M log2e(v

r
n,u,g − 1 + e−vr

n,u,g). (38)

The equivalence between (20) and (36) can be proved by
[36, Theorem 1]. Then, (36) can be further decomposed into
two subproblems as

max
Pj

Da(Pj ,Tr−1,vj−1,xr) (39a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

j
n,g,k≤�p ∀n, i (39b)
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N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,kT

r−1
n ≤ Ecom

k ∀k (39c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,k ≤ pmax ∀n, k (39d)

pj
n,g,k ≥ 0 ∀n, g, k (39e)

min
vj

Da(Pj ,Tr−1,vj ,xr) (40a)

s.t. vj
n,u,g ≥ 0 ∀n, u, g. (40b)

According to [32], (39) is equivalent to (34) and (40) is
equivalent to (35). Thus, the solution to (36) is also found
by Algorithm 2, which is equivalent to the solution to (20).
We propose a theorem based on (39) and (40) to show that
Algorithm 2 is guaranteed to converge.

Theorem 1: Suppose

L(Pr,vr,ν, ξ,θ)

= Da(Pr,Tr−1,vr,xr)

+
N∑

n=1

Ns∑
i=1

νn,i(�p −
Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r
n,g,k)

+
K∑

k=1

ξk(Ecom
k −

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r−1
n )

+
N∑

n=1

K∑
k=1

θn,k(pmax −
Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,k) (41)

is the Lagrangian dual function of (39) where ν, ξ,θ are
Lagrangian multipliers, Pr and vr satisfy (36e). Algo-
rithm 2 will converge to the saddle point of L(Pr,vr ,ν, ξ,θ)
where Pr and vr are variables.

Proof: It is not difficult to observe that
Da(Pr ,Tr−1,vr,xr) is concave with respect to Pr

and convex with respect to vr . Thus, L(Pr,vr ,ν, ξ,θ) is
also concave with respect to Pr and convex with respect to
vr, because (36b)–(36d) are linear constraints with respect
to Pr. As a result, we can conclude that the solution to (36)
is a saddle point of L(Pr,vr,ν, ξ,θ) where Pr and vr

are variables. For Algorithm 2, it follows the directions of
subgradients at every step of iteration to find the solution
to (36). Hence, Algorithm 2 will converge to this saddle
point.

According to [36, Theorem 2], Da(Pr ,Tr−1,vr,xr) is
non-decreasing along with iterations, so that at least a locally
optimal solution is derived by Algorithm 2.

Using the solutions to (19), (20) and (21), we propose an
iterative algorithm to solve (18). The steps of this algorithm
are summarized in Algorithm 3.

E. Convergence Analysis

In this section, the convergence of Algorithm 3 is analyzed.
Denoting xr−1 as the solution to (19), Pr−1 as the solution
to (20) and Tr−1 as the solution to (21) at the (r−1)-th step.
At the r-th step of iteration, we first have xr as the locally

Algorithm 2 Algorithm to Solve (20)

Input: {Ecom
k ∀k}, pmax, �p, Tr−1, xr.

1: Initialization: �0 = 1 × 10−3, j = 1, P0 = 0, w0 = 1;
2: Solve (34), denoting the solution as P∗, set P1 = P∗;
3: while |1 − Da(Pj−1,Tr−1,wj−1,xr)

Da(Pj ,Tr−1,wj,xr) | > �0 do
4: Solve (35), denoting the solution as w∗, set wj = w∗;
5: j = j + 1;
6: Solve (34), denoting the solution as P∗, set Pj = P∗;

Output: Pj , wj .

optimal solution after (19) is solved. Hence, we have

Da(Pr−1,Tr−1,wr−1,xr) ≥ Da(Pr−1,Tr−1,wr−1,xr−1).
(42)

Then, after (20) is solved, we have Pr as the locally optimal
solution, and wr can be accordingly calculated in (17), which
satisfies

Da(Pr,Tr−1,wr,xr) ≥ Da(Pr−1,Tr−1,wr−1,xr). (43)

Finally, the optimal hovering time Tr is acquired by solv-
ing (21), which satisfies

Da(Pr ,Tr,wr,xr) ≥ Da(Pr,Tr−1,wr,xr). (44)

Thus, we have

Da(Pr ,Tr,wr,xr) ≥ Da(Pr−1,Tr−1,wr−1,xr−1) (45)

showing that the objective function of (18) keeps increasing
at every step of the iteration, and it is upper bounded by the
given resources. As a result, the convergence of Algorithm 3 is
guaranteed, and at least a locally optimal solution can be
derived using this algorithm.

Remark 1: The subchannel allocation method in
Section III-C implies that the UAV users in better channel
environments have more chance to be served. Using this
strategy, although the overall data transmission efficiency can
be improved, the fairness among UAV users is not guaranteed.
For example, if a UAV user stays in bad channel environment
for a long time, it can hardly be served by UAVs, which
shows the lack of user fairness. Such phenomenon inspires
us to consider a new network metric for user fairness.

IV. PROCESS-ORIENTED MINIMUM DATA TRANSMISSION

EFFICIENCY MAXIMIZATION

A. Problem Formulation and Decomposition

To improve user fairness, we use (10) as the objective
function. Further by using the technique in Section III-A,
the approximate form of (10) can be derived, and the min-
imum data transmission efficiency maximization problem is
accordingly formulated as

max
P,T,x

min
n,u

G∑
g=1

xn,u,gTnRa(Pn,g, wn,u,g) (46a)
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Algorithm 3 Data Transmission Efficiency Maximization
Algorithm

Input: Ttotal, Tmax, {Ecom
k ∀k}, pmax, �p.

1: Initialization: �0 = 1 × 10−2, r = 1, T0 = (Ttotal/N)1,
P0 = 0;

2: Solve (19), denoting the solution as x∗, set x1 = x∗;
3: Solve (20), denoting the solution as P∗, set P1 = P∗;
4: Solve (21), denoting the solution as T∗, set T1 = T∗;
5: while |1 − Da(Pr−1,Tr−1,wr−1,xr−1)

Da(Pr ,Tr,wr ,xr) | > �0 do
6: r = r + 1;
7: Solve (19), denoting the solution as x∗, set xr = x∗;
8: Solve (20), denoting the solution as P∗, set Pr = P∗;
9: Solve (21), denoting the solution as T∗, set Tr = T∗;

Output: xr, Pr, Tr.

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xn,u,gyn,i,g l̃
2
n,i,g,kpn,g,k ≤ �p ∀n, i (46b)

N∑
n=1

Un∑
u=1

G∑
g=1

xn,u,gpn,g,kTn ≤ Ecom
k ∀k (46c)

Un∑
u=1

G∑
g=1

xn,u,gpn,g,k ≤ pmax ∀n, k (46d)

Un∑
u=1

xn,u,g ≤ 1 ∀n, g (46e)

N∑
n=1

Tn ≤ Ttotal (46f)

Tn ≤ Tmax ∀n (46g)

wn,u,g

= 1 +
K∑

k=1

l2n,u,g,kpn,g,k

σ2 +Ml2n,u,g,kpn,g,kw
−1
n,u,g

∀n, u, g

(46h)

xn,u,g ∈ {0, 1} pn,g,k ≥ 0 Tn ≥ 0 ∀n, u, g, k (46i)

where Ra(Pn,g, wn,u,g) has been defined in (16),
and (46b)–(46i) are the same as the constraints in (14).
The problem in (46) is a max-min MINLP problem,
which is not convex and hard to be solved directly. Then,
we decompose it into three subproblems following the block
coordinate descent method, similar to Section III-B. Denoting
the iteration index as r, the subproblems are formulated as

max
xr

min
n,u

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g) (47a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r−1
n,g,k ≤ �p ∀n, i (47b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,kT

r−1
n ≤ Ecom

k ∀k (47c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,k ≤ pmax ∀n, k (47d)

Un∑
u=1

xr
n,u,g ≤ 1 ∀n, g (47e)

xr
n,u,g ∈ {0, 1} ∀n, u, g (47f)

max
Pr

min
n,u

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, w
r
n,u,g) (48a)

s.t.

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r
n,g,k ≤ �p ∀n, i (48b)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r−1
n ≤ Ecom

k ∀k (48c)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,k ≤ pmax ∀n, k (48d)

wr
n,u,g

= 1 +
K∑

k=1

l2n,u,g,kp
r
n,g,k

σ2 +Ml2n,u,g,kp
r
n,g,k(wr

n,u,g)−1
∀n, u, g

(48e)

pr
n,g,k ≥ 0 ∀n, g, k (48f)

max
Tr

min
n,u

G∑
g=1

xr
n,u,gT

r
nRa(Pr

n,g, w
r
n,u,g) (49a)

s.t.

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r
n ≤ Ecom

k ∀k (49b)

N∑
n=1

T r
n ≤ Ttotal (49c)

0 ≤ T r
n ≤ Tmax ∀n. (49d)

For three subproblems, (47) is a max-min ILP problem
and (48) is non-convex, both of which are hard to be solved
directly, while (49) is a linear max-min optimization problem,
which can be directly solved using conventional max-min opti-
mization tools [40]. Hence, we focus on giving the solutions
to (47) and (48).

B. Max-Min Subchannel Allocation

To solve (47), we define a slack variable τ , which satisfies

τ = min
n,u

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g). (50)

Then, (47) can be equivalently transformed to

max
xr,τ

τ (51a)

s.t.

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g) ≥ τ ∀n, u (51b)
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Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r−1
n,g,k ≤ �p ∀n, i (51c)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,kT

r−1
n ≤ Ecom

k ∀k (51d)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r−1
n,g,k ≤ pmax ∀n, k (51e)

Un∑
u=1

xr
n,u,g ≤ 1 ∀n, g (51f)

xr
n,u,g ∈ {0, 1} ∀n, u, g. (51g)

We can observe that (51) is a mixed-ILP (MILP) problem and
hard to be solved directly. Thus, we propose a theorem to
simplify it.

Theorem 2: The optimal solution to (51) will not change
after (51c)–(51e) are relaxed.

Proof: See Appendix A.
Theorem 2 states that (51b) has the highest priority com-

pared with other constraints, as it is a transformed form of the
original objective function. According to Theorem 2, we can
recast (51) to

max
xr,τ

τ (52a)

s.t.
G∑

g=1

xr
n,u,gT

r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g) ≥ τ ∀n, u (52b)

Un∑
u=1

xr
n,u,g ≤ 1 ∀n, g (52c)

xr
n,u,g ∈ {0, 1} ∀n, u, g. (52d)

To solve (52), we have a property to show the condition
that the solution to (52) must satisfy.

Property 1: Suppose xr∗ as a non-trivial solution to (52),
then xr∗ must satisfy

G∑
g=1

xr
n,u,g ≥ 1 ∀n, u. (53)

Otherwise, if (53) is not satisfied, (52) only has a trivial
solution, where the maximum value of τ is 0.

Proof: If (53) is satisfied, the conclusion of this property is
naturally given. Then, if (53) is not satisfied, as the variables
in xr are either 0 or 1, there exists n∗ ∈ {1, . . . , N} and
u∗ ∈ {1, . . . , U∗

n} which satisfy

G∑
g=1

xr
n∗,u∗,g = 0 (54)

which means xr
n∗,u∗,g is 0 for all g ∈ {1, . . . , G}. Substituting

xr
n∗,u∗,g into (52), we can find that the maximum value of τ

is 0. Hence, the conclusion of Property 1 is given.
Property 1 shows that each user must have at least one

subchannel to use, indicating that the user in worst condition
has the highest priority to be served. Using Property 1,
a solution to (47) can be derived based on (52) in a greedy
manner, which is summarized in Algorithm 4. At every step

Algorithm 4 Max-Min Subchannel Allocation Algorithm

Input: Tr−1, Pr−1, wr−1.
1: Initialization: �0 = 1 × 10−3, j = 1, τ0 = 0;
2: Initialize x1 according to [41];
3: Define V j

n,u =
∑G

g=1 x
j
n,u,gT

r−1
n Ra(Pr−1

n,g , w
r−1
n,u,g);

4: Set τ j = minn,u V
j
n,u;

5: while |1 − τ j−1

τ j | > �0 do
6: for n = 1:N do
7: Find the minimum value of V j

n,u, denoting the index
as u∗;

8: Find the maximum value of V j
n,u that satisfies the

condition
∑G

g=1 x
j
n,u,g > 1, denoting the index as u∗∗;

9: Define the index set as I = {g|xj
n,u∗∗,g = 1};

10: Find g∗ = arg ming∈I T
r−1
n Ra(Pr−1

n,g , w
r−1
n,u∗∗,g);

11: if V j
n,u∗ + T r−1

n Ra(Pr−1
n,g∗ , wr−1

n,u∗,g∗) ≤ V j
n,u∗∗ −

T r−1
n Ra(Pr−1

n,g∗ , wr−1
n,u∗∗,g∗) then

12: Set xj
n,u∗,g∗ = 1;

13: Set xj
n,u∗∗,g∗ = 0;

14: j = j + 1;
15: Set τ j = minn,u V

j
n,u;

Output: xj .

of Algorithm 4, the minimum data transmission efficiency
is improved by allocating the subchannels to the user in
worst condition as much as possible. Hence, Algorithm 4 can
converge to the locally optimal solution to (47).

Remark 2: Note that we have proposed two different
methods to solve the subchannel allocation subproblem in
Section III-C and the max-min subchannel allocation subprob-
lem in Section IV-B. The reason is that the algorithms are
designed to accommodate the objective functions of differ-
ent problems to achieve better performance. The subchannel
allocation algorithm in Section III-C can maximize the overall
data transmission efficiency, while the method in Section IV-B
can improve the minimum data transmission efficiency.

C. Max-Min Power Allocation

To solve (48), we define the slack variable τ similar to (50),
then (48) is rewritten as

max
Pr ,τ

τ (55a)

s.t.

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, w
r
n,u,g) ≥ τ ∀n, u (55b)

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

r
n,g,k ≤ �p ∀n, i (55c)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,kT

r−1
n ≤ Ecom

k ∀k (55d)

Un∑
u=1

G∑
g=1

xr
n,u,gp

r
n,g,k ≤ pmax ∀n, k (55e)
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wr
n,u,g

= 1 +
K∑

k=1

l2n,u,g,kp
r
n,g,k

σ2 +Ml2n,u,g,kp
r
n,g,k(wr

n,u,g)−1
∀n, u, g

(55f)

pr
n,g,k ≥ 0 ∀n, g, k. (55g)

Note that (55) is non-convex, due to the coupling between P
and w in (55b) and (55f). To handle this problem, we propose
a theorem to recast (55b) and (55f).

Theorem 3: The constraints in (55b) and (55f) can be
equivalently transformed to

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, v
r
n,u,g) ≥ τ ∀n, g (56)

vr
n,u,g ≥ 0 ∀n, u, g (57)

where vr
n,u,g = log(wr

n,u,g), Ra(Pr
n,g, v

r
n,u,g) has been

defined in (38).
Proof: See Appendix B.

Theorem 3 shows that (55b) and (55f) can be equivalently
replaced by (56) and (57), indicating that Pr and vr can be
decoupled in (55). Consequently, successive convex optimiza-
tion method can be used to solve (55), but the computational
overhead is too large [42]. Hence, we solve (55) in an iterative
way with low complexity. Denoting the iteration index as j,
(55) is recast to

max
Pj ,τ j

τ j (58a)

s.t.

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pj

n,g, v
j−1
n,u,g) ≥ τ j ∀n, u (58b)

Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

j
n,g,k ≤ �p ∀n, i (58c)

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,kT

r−1
n ≤ Ecom

k ∀k (58d)

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,k ≤ pmax ∀n, k (58e)

pj
n,g,k ≥ 0 ∀n, g, k (58f)

where vj−1 is regarded as constant. Then, vj is derived by
solving the equations as follows.

evj
n,u,g = 1 +

K∑
k=1

l2n,u,g,kp
j
n,g,k

σ2 +Ml2n,u,g,kp
j
n,g,ke

−vj
n,u,g

∀n, u, g.

(59)

Note that (58) is convex, which can be readily solved using
convex optimization tools. An iterative algorithm can be
proposed to solve (55) based on the solutions to (58) and (59),
which is summarized in Algorithm 5. Then, to show the

Algorithm 5 Algorithm to Solve (55)

Input: {Ecom
k ∀k}, pmax, �p.

1: Initialization: �0 = 1 × 10−3, j = 1, P0 = 0, v0 = 0,
τ0 = 0;

2: Solve (58), denoting the solution as (P∗, τ∗), set P1 = P∗,
τ1 = τ∗;

3: while |1 − τ j−1

τ j | > �0 do
4: Solve (59), denoting the solution as v∗, set vj = v∗;
5: j = j + 1;
6: Solve (58), denoting the solution as (P∗, τ∗), set Pj =

P∗, τ j = τ∗;

Output: Pj , τ j .

convergence of Algorithm 5, we can derive the Lagrangian
dual function of (58) as

L(Pj ,vj−1, τ j ,ψ,ν, ξ,θ)

= τ j +
N∑

n=1

Un∑
u=1

ψn,u(
G∑

g=1

xr
n,u,gT

r−1
n Ra(Pj

n,g, v
j−1
n,u,g)−τ j)

+
N∑

n=1

Ns∑
i=1

νn,i(�p −
Un∑
u=1

K∑
k=1

G∑
g=1

xr
n,u,gyn,i,g l̃

2
n,i,g,kp

j
n,g,k)

+
K∑

k=1

ξk(Ecom
k −

N∑
n=1

Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,kT

r−1
n )

+
N∑

n=1

K∑
k=1

θn,k(pmax −
Un∑
u=1

G∑
g=1

xr
n,u,gp

j
n,g,k). (60)

The function in (60) is concave with respect to Pj and τ j ,
while convex with respect to vj−1. Hence, Algorithm 5 is
to find the saddle point of (60), which is guaranteed to
converge according to Theorem 1. Besides, the acquired saddle
point is an extreme point of (60) when vj−1 is constant,
so that τ j is non-decreasing along with iterations according to
[36, Theorem 2]. As a result, a locally optimal solution to (55)
can be obtained by Algorithm 5.

Based on the solutions to (47)–(49), (46) can be iteratively
solved. The steps of this method is recorded in Algorithm 6.
Similar to Algorithm 3, the convergence of Algorithm 6 is
guaranteed, and at least a locally optimal solution can be
derived.

Remark 3: Observing the methods proposed in Section III
and Section IV, we can find some similarities and differences.
On one hand, both optimization problems are solved in an
iterative way, because both of them focus on jointly allocating
subchannels, transmit power and hovering times. On the other
hand, time-sharing relaxation method can not be used to
solve the max-min subchannel allocation subproblem, because
subchannels can not be allocated to users in worst conditions
due to the inadequate design of relaxation.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate the
proposed algorithms. We consider a CSUN with a satellite
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Algorithm 6 Minimum Data Transmission Efficiency Maxi-
mization Algorithm

Input: Ttotal, Tmax, {Ecom
k ∀k}, pmax, �p.

1: Initialization: �0 = 1 × 10−2, r = 1, T0 = (Ttotal/N)1,
P0 = 0;

2: Solve (47), denoting the solution as x∗, set x1 = x∗;
3: Solve (48), denoting the solution as P∗, set P1 = P∗;
4: Solve (49), denoting the solution as T∗, set T1 = T∗;

5: while |1 − minn,u

�G
g=1 xr−1

n,u,gT r−1
n Ra(Pr−1

n,g ,wr−1
n,u,g)

minn,u
�G

g=1 xr
n,u,gT r

nRa(Pr
n,g,wr

n,u,g)
| > �0 do

6: r = r + 1;
7: Solve (47), denoting the solution as x∗, set xr = x∗;
8: Solve (48), denoting the solution as P∗, set Pr = P∗;
9: Solve (49), denoting the solution as T∗, set Tr = T∗;

Output: xr, Pr, Tr.

and K = 6 UAVs in UAV swarm. We set the number of
satellite users as Ns = 10, the total number of UAV users as
NU = 200, which are divided into N = 20 user groups with
10 UAV users each. All UAV users are equipped with M = 6
antennas. We assume that the CSUN works at 5.8 GHz with
G = 16 subchannels.2 For the UAV channel, we generate
the large-scale CSI based on real channel environment [29],
[30] using a simulation software named as Visualyze 7. The
locations of UAVs, UAV users and satellite users, as well as the
subchannels of satellite users, are generated by this software,
and the noise power is set as σ2 = −107 dBm. We set
the interference temperature threshold as �p = −77 dBm,
parameters of practical constraints are set as pmax = 300 mW,
Ttotal = 100 s, and Tmax = 7.5 s for more flexible time
scheduling. For simplicity, we assume that each UAV has the
same Ecom

k for ∀k. The sum of Ecom
k is denoted as Etotal,

which is set as Etotal = 30 J.
We firstly verify the convergence performance of the pro-

posed algorithms. In Fig. 2, 10 snapshots with different user
locations are evaluated. For Algorithm 3, it only needs 2 itera-
tions to converge. The reason is that the best subchannel can be
selected at the first iteration, and given subchannel allocation
the problem becomes convex with respect to transmit power
and hovering time. For Algorithm 6, the number of iterations
needed is no more than 6. These results further indicate that
these algorithms have good potentials in being applied to
CSUNs in practice.

Then, we compare the performances of the proposed algo-
rithms with other algorithms. Because the formulated problems
are non-convex, it is too time-consuming to search the globally
optimal solution using brute force methods, even though
we have cut down the number of subchannels for ease of
simulations. Thereby, we compare the proposed algorithms
with the following state-of-the-art methods.

• Scheme 1: Allocating the subchannels based on path loss
using the cellular-based subchannel allocation method

2In practice, more users can be served by using the proposed scheme,
because there are more available subchannels. For example, if the bandwidth is
20 MHz and the subcarrier spacing is 15 kHz, there are at least 1200 available
subchannels. In this case, over 15000 users can be served.

Fig. 2. Convergence performance of the proposed algorithms.

Fig. 3. Comparison of different algorithms considering the overall data
transmission efficiency.

in [41], then using the power allocation algorithm and
hovering time scheduling algorithm in [32].

• Scheme 2: Allocating the subchannels based on path loss
using the cellular-based subchannel allocation method
in [41], then using the power allocation algorithm and
hovering time scheduling algorithm in [27].

• Scheme 3: Allocating the subchannels based on path loss
using the cellular-based subchannel allocation method
in [41], then equally allocating the transmit power and
hovering times to all users.

Besides, for the power allocation algorithms in Scheme 1 and
Scheme 3 which did not consider interference temperature
constraints, the transmit power is divided by a large constant
to satisfy these constraints.

In Fig. 3, we evaluate the performances of differ-
ent algorithms in terms of data transmission efficiency
with varying interference temperature thresholds, which
can demonstrate the performance gain when the enlarged
time scale of optimization is regarded. We can observe
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Fig. 4. Comparison of different algorithms regarding the minimum data
transmission efficiency.

Fig. 5. Illustration of cell-free coverage areas in one time slot at different
subchannels for CSUNs.

that when the interference temperature threshold increases,
Scheme 1 approaches Algorithm 3. The reason is that although
interference temperature constraints were not considered by
Scheme 1, these constraints will be negligible when the inter-
ference temperature threshold is high. Moreover, we can find
that with low interference temperature threshold, Scheme 2,
in which the algorithm in [27] did not use large-scale CSI,
performs worse than Scheme 3. This result indicates that
the underestimation of interference temperature can seri-
ously affect the network efficiency. Besides, the overall data
transmission efficiency can be to some extent improved by
Algorithm 6, showing that a certain amount of network effi-
ciency can be guaranteed when optimizing the user fair-
ness. Furthermore, as shown in Fig. 4, we can observe that
Algorithm 6 can effectively improve user fairness compared
with other schemes.

In Fig. 5, we demonstrate how the coverage of CSUN can
be optimized by Algorithm 6. To make the figure more clear,
we consider a simple scenario, where 4 UAV users are served

Fig. 6. The relationship between the overall data transmission efficiency and
the number of UAVs, where the proposed Algorithm 3 is used.

Fig. 7. The relationship between the minimum data transmission efficiency
and the number of UAVs, where the proposed Algorithm 6 is used.

by UAVs in one time slot, 5 satellite users are served by
satellites, and the interference temperature threshold is set as
−92 dBm. When the user can receive the signal whose power
is larger than −92 dBm, this user is regarded to be successfully
served. Following this, we can acquire the coverage areas
when different subchannels are used. As shown in Fig. 5,
the users in plotted regions can be served by UAVs. We can
observe that the shapes of coverage areas are irregular, and
both the shapes and the ranges of coverage areas vary with
the change of subchannels. These results imply that cell-free
CSUN can be efficiently established by using the proposed
methods.

Furthermore, we concentrate on analyzing the relationship
between the size of UAV swarm and the performances of pro-
posed algorithms in Fig. 6 and Fig. 7. As shown by the curves,
both the overall data transmission efficiency and the minimum
data transmission efficiency can be improved by increasing
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Fig. 8. The relationship between the overall data transmission efficiency and
the number of subchannels, where the proposed Algorithm 3 is used.

Fig. 9. The relationship between the minimum data transmission efficiency
and the number of subchannels, where the proposed Algorithm 6 is used.

the number of UAVs. One reason is that a higher diversity
gain can be obtained with more UAVs in a swarm. Moreover,
the coordination among multiple UAVs is more flexible when
the size of UAV swarm is larger. Such phenomenon indicates
that the use of coordinated multiple UAVs is an efficient way to
cope with the varying practical channel environment in a large
time scale. We can further observe that a better performance
is achieved by both algorithms with higher communication
energy. These results imply that the limited on-board energy
of UAV swarm is a dominant bottleneck for cell-free CSUNs.

In Fig. 8 and Fig. 9, we evaluate the relationship between the
number of subchannels and the performances of the proposed
algorithms. We can observe that better performance is achieved
when more subchannels are used for both algorithms. Besides,
the curves in Fig. 9 demonstrate that the performance gain
of improving communication energy fluctuates for different
number of subchannels. This phenomenon emerges because

a locally optimal solution is derived by Algorithm 6, which
implies that the number of available subchannels should be
appropriately designed for more efficient use of resources in
cell-free CSUNs.

VI. CONCLUSION

In this paper, we have investigated multi-domain resource
allocation for cell-free IoT-oriented CSUNs, to support mas-
sive access for IoT devices outside terrestrial cellular networks.
We have proposed a process-oriented optimization framework,
where the whole flight process of UAVs was optimized only
using slowly-varying large-scale CSI. We have formulated
a data transmission efficiency maximization problem and a
minimum data transmission efficiency maximization problem
under the process-oriented framework to improve network
efficiency with guaranteed user fairness. After the optimization
problems have been solved using the time-sharing relaxation
and feasible region relaxation methods, the subchannels, trans-
mit power and hovering times are jointly allocated in an
iterative way. Simulation results have demonstrated that it is
beneficial to use the proposed methods. Moreover, the cell-
free coverage pattern has been observed by using proposed
algorithms in the simulation, which indicates a promising way
to efficiently support massive access for wide-area IoT devices
in the upcoming 6G era.

APPENDIX A
PROOF OF THEOREM 2

Assuming that Pr−1 and xr−1 have been obtained at
the (r − 1)-th step. For an all-zero vector x, the con-
straints in (51c)–(51e) are naturally satisfied. Otherwise, for
any non-zero x which satisfies (51b), (51f) and (51g) with
any given n∗ ∈ {1, . . . , N}, g∗ ∈ {1, . . . , G} and k∗ ∈
{1, . . . ,K}, we have

Un∗∑
u=1

xn∗,u,g∗pr−1
n∗,g∗,k∗ =

Un∗∑
u=1

xr−1
n∗,u,g∗pr−1

n∗,g∗,k∗ (A.1)

because only one element in
{
xr−1

n∗,u,g∗ , u ∈ {1, . . . , Un∗}}
equals to 1 according to (51f) and (51g), which is also correct
for x. Hence, we have

Un∑
u=1

K∑
k=1

G∑
g=1

xn,u,gyn,i,gp
r−1
n,g,k l̃

2
n,i,g,k

=
Un∑
u=1

K∑
k=1

G∑
g=1

xr−1
n,u,gyn,i,gp

r−1
n,g,k l̃

2
n,i,g,k

≤ �p ∀n, i (A.2)
N∑

n=1

Un∑
u=1

G∑
g=1

xn,u,gp
r−1
n,g,kT

r−1
n

=
N∑

n=1

Un∑
u=1

G∑
g=1

xr−1
n,u,gp

r−1
n,g,kT

r−1
n ≤ Ecom

k ∀k (A.3)

Un∑
u=1

G∑
g=1

xn,u,gp
r−1
n,g,k
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=
Un∑
u=1

G∑
g=1

xr−1
n,u,gp

r−1
n,g,k ≤ pmax ∀n, k (A.4)

based on (A.1). Observing (A.2)–(A.4), we can find that for
any x that satisfies (51b), (51f) and (51g), (51c)–(51e) are also
satisfied. As a result, (51c)–(51e) actually have no influence
on (51), which means the conclusion of Theorem 2 is given.

APPENDIX B
PROOF OF THEOREM 3

Substituting vr = {vr
n,u,g ∀n, u, g} into (55b) and (55f),

we have
G∑

g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, v
r
n,u,g) ≥ τ ∀n, g (B.1)

evr
n,u,g = 1 +

K∑
k=1

l2n,u,g,kp
r
n,g,k

σ2 +Ml2n,u,g,kp
r
n,g,ke

−vr
n,u,g

∀n, u, g.

(B.2)

According to [32], if vr∗ satisfies (B.1) and (B.2), we have

Ra(Pr
n,g, v

r
n,u,g) ≥ Ra(Pr

n,g, v
r∗
n,u,g) ≥ τ ∀vr

n,u,g ≥ 0
(B.3)

because the minimum value of Ra(Pr
n,g, v

r
n,u,g) is achieved

by Ra(Pr
n,g, v

r∗
n,u,g). Thus, we have

G∑
g=1

xr
n,u,gT

r−1
n Ra(Pr

n,g, v
r
n,u,g) ≥ τ ∀n, g (B.4)

vr
n,u,g ≥ 0 ∀n, u, g. (B.5)

On the contrary, if (B.4) and (B.5) are satisfied, we can also
have (B.1) and (B.2), because (B.4) and (B.5) are more general
conditions. Hence, (B.1) and (B.2) are equivalent to (B.4)
and (B.5), which gives the conclusion of Theorem 3.
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