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Abstract—The statistical gap between existing correlation-
based stochastic channel models (CBSMs) and practical propa-
gation is a longstanding issue, especially for massive multiple-
input multiple-output (MIMO) transmission. To address this
problem, a pervasively correlated channel model (PCCM) ap-
plicable to MIMO channels with arbitrary antenna configura-
tions and scenarios is proposed. Unlike the conventional jointly
correlated channel model (JCCM) based on an independently
and identically distributed (i.i.d.) random matrix, a new ran-
dom matrix whose elements are independent and nonidentically
distributed (i.n.d.) generalized Gamma complex Gaussian mix-
ture (GGCGM) variables with correlated envelopes is used to
approximate the real channel statistics better. Moreover, the
PCCM can be simplified via the Rayleigh fading assumption for
rapid evaluation of channel performance and supports backward
compatibility with existing CBSMs under specific assumptions.
Demonstrative numerical experiments for MIMO channels are
conducted based on the 3GPP TR 38.901 model considering
various scenarios, frequencies, and antenna configurations. The
channel capacity distributions are obtained based on random
samples generated using the geometry-based stochastic channel
model (GBSM), the JCCM, and the proposed PCCM. The
numerical results show that the PCCM is more flexible than
the JCCM with respect to high-order statistics, enabling more
accurate estimation of massive MIMO transmission channel
performance.

Index Terms—Channel modeling, multiple-input multiple-
output (MIMO), massive MIMO, correlation-based stochastic
channel model (CBSM), channel capacity, spatial correlation,
channel statistical properties.

I. INTRODUCTION

THE massive multiple-input multiple-output (MIMO)
transmission has been recognized as a key technology
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to increase the array gain and degrees of freedom for spatial
multiplexing in future wireless communications [1]–[6]. As
the most intuitive feature of channel performance, substantial
attention has been drawn in recent years to studying the MIMO
channel capacity associated with the transmission scheme
and multipath richness [7]–[10]. With channel characteris-
tics acquired through channel measurements, the multipath
transmission coefficients can be represented by mathematical
expressions, i.e., channel modeling. Considering the significant
workload and cost of the channel measurement campaign,
a reliable channel model is of great importance for the ar-
rangement, evaluation and optimization of the communication
system.

There are two mainstream channel modeling methods in
the literature, i.e., the stochastic-based model and the deter-
ministic model [11], [12]. In particular, the stochastic-based
channel model [13]–[16] uses a set of random input variables
for each channel implementation and is commonly used to
obtain the statistical properties of the link- and system-level
channel, while the deterministic model [17] uses fixed inputs
to simulate the realistic signal propagation process.

In this work, we focus on the stochastic-based channel
model, which can be further divided into two categories: the
geometry-based stochastic channel model (GBSM) and the
correlation-based stochastic channel model (CBSM). A GBSM
is considered relatively accurate compared to a CBSM since it
is derived based on the fundamental laws of wave propagation
with a predefined distribution of random scatterers [18]–[21].
Therefore, recent official standard channel models, such as
the 3rd Generation Partnership Project spatial channel model
(3GPP SCM) [22], the International Telecommunication Union
Wireless World Initiative for New Radio II (ITU WINNER
II) model [23] and the European Cooperation in Science and
Technology 2100 (COST 2100) channel model, are commonly
proposed with GBSMs. However, the implementation com-
plexity of the GBSM makes it difficult for further use in
analytical operations.

To overcome this drawback, CBSMs with concise expres-
sions for statistical channel properties that are more applicable
for signal processing research and channel performance evalu-
ation have been proposed. The simplest CBSMs are Rayleigh,
Rice, and Nakagami-m fading channel models for single-
input single-output (SISO) wireless communications, which
are used to characterize the statistical properties of the signal
envelope. However, they are not applicable for correlated
MIMO channels. Assuming the spatial correlation properties
at both link ends are independent of each other, the Kronecker-
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based channel model (KBSM) was proposed in [24]. On this
basis, a number of studies have addressed the relationship
between the MIMO channel performance and spatiotemporal
correlation [25]–[28].

Nevertheless, studies clearly indicate that the KBSM cannot
fit well into the practical channel due to its excessive sim-
plification of the spatial correlation model. Considering joint
correlations over MIMO channels, [29] presented a virtual
channel representation (VCR) that provides an insightful imag-
ing interpretation of the scattering geometry. However, this
representation supports MIMO links with only single polarized
uniform linear arrays (ULAs). Inspired by the KBSM and
VCR, the primary jointly correlated channel model (JCCM),
i.e., Weichselberger’s model, was proposed in [30] for non-
line-of-sight (NLOS) MIMO channels that consider both the
mutual correlation and coupling between both link ends, but
this approach has limitations in that the independent random
elements in the model are complex Gaussian variables and
the line-of-sight (LOS) components are not embodied in
the expression. These restrictions were further liberalized in
the jointly correlated channel model (JCCM) formula [31],
where a determined LOS coupling matrix was introduced
and the normalized random elements were still independently
distributed but no longer restricted to a Gaussian shape. On
this basis, the closed-form upper-bound expression of the
ergodic capacity based on statistical eigenmode transmission
was derived. However, the JCCM still assumes that the inde-
pendent channel coefficients are identically distributed, which
may cause deviations from reality, and the distortion can be
even worsen along with the growth of the MIMO antenna
scale. In view of the increasing application of massive MIMO
antennas in communication systems, developing a CBSM with
high accuracy in statistics for massive MIMO transmission has
become an urgent issue.

Two schemes transformed from the CBSM that apply to
massive MIMO channels have been discussed in the liter-
ature. Based on Monte Carlo (MC) simulation, a Gamma
distribution-based eigenvalue (EV) model associated with the
transmitting and receiving correlation properties was proposed
in [32], [33], which makes the prediction of the channel
capacity more convenient. However, this model cannot be
transformed to existing CBSMs representing the channel ma-
trix and supports only a 2 × N or N × 2 MIMO channel.
The other scheme is an integration of the GBSM and CBSM.
A typical example is presented in [21], [34], where the beam
domain channel model (BDCM) is introduced in the JCCM
as a substitute for the random matrix. This model applies
the physical fundamentals of the GBSM, which improves the
JCCM accuracy for massive MIMO channels while somewhat
increasing the complexity of modeling. In addition, the BDCM
is proposed based on the massive MIMO assumption, which
means performance degradation for small-scale MIMO com-
munication scenarios.

In summary, there is a clear demand for a more general
CBSM with both low structural complexity and high statistical
accuracy for massive MIMO transmission. To address this
need, a pervasively correlated channel model (PCCM) is
proposed in this paper; the approach is pervasively appli-

cable to arbitrary antenna configurations and scenarios. The
proposed channel model has been demonstrated to provide
a perfect statistical approximation to the 3GPP TR 38.901
channel model [35], a widely recognized GBSM standard. The
contributions of this study are summarized as follows:
1) The statistical properties of jointly correlated MIMO chan-

nels are investigated in detail, aiming to elucidate the
distortions encountered in conventional JCCM;

2) An independent and nonidentically distributed (i.n.d.) ran-
dom matrix, which comprises entries that follow a multidi-
mensional generalized Gamma complex Gaussian mixture
(GGCGM) distribution, is proposed;

3) On this basis, a novel CBSM termed PCCM, which has
versatile applicability in MIMO channels with arbitrary
antenna configurations and scenarios, is presented. The
random entries exhibit correlated magnitudes and indepen-
dent phase components, rendering it a suitable tool for
accurately modeling stochastic MIMO channel coefficients;

4) The PCCM is compatible with existing CBSMs. Addi-
tionally, two reduced variants, i.e., the simplified PCCM
(SCCM) and the generalized JCCM (GCCM), are also pro-
posed for efficient parameterization and analytical analysis;

5) Notably, the PCCM boasts a concise framework and excep-
tional statistical accuracy. These attributes position it as an
efficient and dependable tool for channel characterization
and transmission design for massive MIMO communica-
tion.

The rest of this paper is organized as follows. First, the fun-
damentals of MIMO communications over jointly correlated
MIMO channels are given in Section II. On this basis, a new
JCCM named PCCM is then proposed in Section III with a de-
tailed parameterization method. Finally, to verify the proposed
model, Section IV presents a series of numerical experiments
of MIMO channels with various scenarios, frequencies and
antenna configurations, as well as comparisons of the channel
performance based on the GBSM, JCCM and PCCM.

Notation: The following notation is adopted throughout
this paper. We use upper (lower) bold-face letters to denote
matrices (vectors). The subscripts t and r indicate the trans-
mitter and receiver sides, respectively. IM×M represents an
identity matrix of size M × M . diag{·} means outputting a
diagonal matrix with the elements of a vector on the main
diagonal. The vectorization of an M ×N matrix A, denoted
vec (A), is the MN × 1 column vector obtained by stacking
the columns of the matrix A on top of one another. (·)T, (·)∗,
and (·)H are the transpose, conjugate and conjugate-transpose
operations, respectively. ⊙ represents the matrix dot product,
and ⊗ represents taking the Kronecker product. Operations
E {·}, Var{·} and Kr{·} are, respectively, defined as taking
the expectation, variance and kurtosis of a random variable or
matrix elements. The rank and trace of a matrix are indicated
by rank{·} and tr{·}, respectively.

II. FUNDAMENTALS OF MIMO TRANSMISSION

A. Signal Model

Without loss of generality, a single-user link system over
a frequency-flat time-varying MIMO fading channel with M
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transmit (Tx) and N receive (Rx) antennas is considered. The
M ×N MIMO channel matrix is denoted as H, in which the
element [H]m,n is the channel gain from the nth Tx antenna
to the mth Rx antenna. Then, the N×1 received signal vector
in a single symbol interval can be modeled as:

y = Hx+ z (1)

where x ∈ CM×1 represents the transmit complex signal
vector and z ∈ CN×1 is the additive white Gaussian noise
(AWGN) vector at the receiving end with covariance matrix
σ2

z IN×N .
Assuming that the x sequences are independent and identi-

cally distributed (i.i.d.) complex Gaussian entries, the average
transmit signal power is:

E
{
tr
{
xxH

}}
= Pt (2)

where Pt is the total transmit signal power. Particularly, if
uniform power allocation is employed, we have

E
{
xxH

}
=

Pt

M
IM×M . (3)

The singular value decomposition (SVD) of the channel matrix
reads as

H = UΣVH (4)

where U ∈ CN×rank{H} and V ∈ CM×rank{H} are unitary
matrices and Σ is the diagonal matrix of the nonzero singular
values (SVs) of H, i.e.,

Σ = diag
{[
ε1, ε2, · · · , εrank{H}

]}
. (5)

In theory, via SVD-based multiplexing, the MIMO channel
can be decomposed into rank {H}) parallel and independent
SISO subchannels. We recall that a unitary matrix U satisfies
UUH = UHU = I, and we have the eigenvalue decomposi-
tion (EVD) of HHH given by:

HHH = UΛUH (6)

where Λ is a rectangular matrix whose diagonal elements are
the ordered positive real EVs of the MIMO channel:

Λ = ΣΣH = diag
{[
λ1, λ2, · · · , λrank{H}

]}
. (7)

Thus, the MIMO channel power gain can be obtained:

G = tr
{
HHH} =

rank{H}∑
i=1

λi. (8)

Then, the average signal-to-noise ratio (SNR) per Rx antenna
can be estimated as

SNRavg =
GPt

Nσ2
z
=

tr
{
HHH

}
Pt

Nσ2
z

. (9)
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Fig. 1. Diagram of a wireless MIMO channel.

B. Jointly Correlated MIMO Channels

The structure of a wireless MIMO channel is represented
schematically in Fig. 1. The channel spatial behavior can be
represented by the full correlation matrix of H defined below,
including the joint correlation properties of both link sides.

RH ≜ E
{
vec (H) vec (H)

H
}
. (10)

However, the full correlation matrix is not recommended for
channel modeling since it has massive entries to be specified.
As a special case, an i.i.d. Gaussian-distributed H can be fully
characterized by its full correlation matrix, while this strict
condition is rare to achieve in reality.

Previous research [29] has noted that the joint correlation
properties over the wireless MIMO channel are key char-
acteristics of the MIMO channel that cannot be omitted in
rigorous channel modeling. Thus, the expression of the one-
sided correlation matrices should consider the statistical signal
properties of the other link end, as given below:{

Rt,Qr ≜ E
{
HHQrH

}
,

Rr,Qt ≜ E
{
HQtH

H
}
.

(11)

where Qt and Qr are the spatial signal covariance matrices at
the transmitter and receiver sides, respectively.

To further simplify, considering a spatial multiplexing trans-
mission, in theory, a reasonable approximation can be made
that the signal covariance of the other link is spatially white.
On this basis, the transmit and receive correlation matrices are
established as:{

Rt ≜ E
{
HHH

}
= UtΛtU

H
t

Rr ≜ E
{
HHH

}
= UrΛrU

H
r

(12)

where Ut, Ur and Λt, Λr are the eigenbases and the diagonal
matrices consisting of the eigenvalues of Rt, Rr, respectively.

With the above assumption, the spatial eigenbases Ut and
Ur are independent of the signal correlation, which lays the
foundation for the JCCM development:

HModel = UrH̃U
H

t (13)

where H̃ is a random matrix with independent elements.
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III. PERVASIVELY CORRELATED CHANNEL MODEL

A. PCCM Formula

As in (13), the statistics of the MIMO wireless channel
consist of three parts: the eigenbasis matrices Ur and Ut,
which reflect the spatial correlation of the MIMO channel
depending on the transmit and receive antenna configurations,
and a random matrix H̃, which statistically characterizes the
realistic propagation environments.

It is easy to find that H̃ dominates the random properties
of the MIMO channel without spatial correlation. On this
basis, we have the mathematical fundamental for eigenmode
transmission:

H̃ = UH
r HUt. (14)

In the JCCM [31], the matrix H̃ is further divided into
determined LOS and random NLOS components and a random
matrix Hiid with i.i.d. elements, which are assumed to be
the normalized NLOS H̃ coefficient and reflect the diversity
of each independent subchannel. However, due to the strict
precondition of identical distribution, the higher-order statistics
represented by the JCCM may differ from physical reality for
correlated MIMO channels. In addition, the distortion worsens
with increasing MIMO scale and spatial correlation, thereby
leading to significant deviations of the channel performance
for massive MIMO transmission.

To achieve a better approximation of the real channel
properties, we propose a new CBSM, named PCCM, for
massive MIMO channels, which is pervasively applicable to
arbitrary scenarios and antenna configurations. The PCCM
proceeds to use the classic JCCM structure framework. The
formula is given below:

HPCCM = UrH̃U
H

t

= Ur

(
D̃+ M̃⊙Hiid

)
UH

t .
(15)

Compared with conventional JCCMs, the new model has a
similar structure with some changes made to the definitions
of partial parameters: the elements Ur, Ut and Hiid have the
same definitions as those in the JCCM. The difference is that
the LOS and NLOS coupling matrices in the PCCM, i.e., D̃
and M̃, consist of N × M independent random nonnegative
entries.

B. PCCM Parameterizations

The matrices D̃ and M̃ reflect the LOS and NLOS scat-
tering components of the channel, respectively. Once the LOS
component is determined, (15) can be further concretized as

H′ = UrH̃U
H

t

= Ur (D+M⊙Hind)U
H
t .

(16)

where D and M are N ×M deterministic real matrices and
Hind represents an N ×M random matrix with i.n.d. entries.

This model divides the representation of the entire channel
into two parts: the correlation arising from the transceiver
antennas and the transmission coefficients within the air-
interface channel after eliminating antenna-related effects.
Notably, in contrast to JCCM, this model takes into account

the correlation of the propagation envelopes induced by the
propagation environment.

All the parameters can be extracted from channel samples
obtained from either practical measurements or Monte Carlo
(MC) simulations. First, one must obtain the small-scale
channel coefficients HSS by normalizing the raw data set of
the channel impulse responses H:

HSS =
Hraw

βLS
(17)

where βLS denotes the large-scale channel path gain between
the BS and the UE.

The unitary matrices Ur and Ut can be obtained based
on the EVDs of the transmit and receive channel correlation
matrices as (12), respectively. After removing the spatial
correlations of the MIMO channel with the eigenbases Ur
and Ut, the resulting matrix H̃ reflects the practical statistical
behavior of the multipath propagation,

H̃ = UH
r HSSUt. (18)

On the premise that the deterministic matrices D and M
are, respectively, given by

D = E
{
H̃
}

(19)

[M]m,n =

√
Var

{
[H̃]m,n

}
=

√
Var

{
[HSS]m,n − [D]m,n

}
.

(20)
The elements of the random matrix Hind statistically represent
the normalized elements of H̃.

The key to accurately representing the channel characteris-
tics is to find proper probability distributions for the elements
of matrix Hind. Unlike previous CBSMs that model the random
matrix with defined distributions for its real and imaginary
(R/I) parts, potentially ignoring correlations between the mag-
nitudes and phases of individual elements, we adopt a different
approach. Specifically, we assume that the entries of Hind
are represented using an alternative representation, namely,
the magnitude and phase representation, which enables the
capture of more statistical characteristics. The corresponding
expression is given below:

Hind = Acnd ⊙ exp (jPiid) (21)

where Acnd represents the amplitude components of Hind and
consists of correlated and nonidentical generalized Gamma
entries, whereas Piid is the phase matrix, whose i.i.d. elements
are uniformly distributed within [−π, π].

Since the operations on Gamma variables do not possess
linearity invariance, it is not feasible to directly generate
a multidimensional Gamma variable (MGV) with specific
correlation properties. Nevertheless, generating a multivariate
normal distribution proves to be more convenient. There-
fore, a distribution transformation approach wherein correlated
Gamma variables are generated with the cumulative probabil-
ities of correlated standard Gaussian variables is proposed,
providing control over the statistical properties of the target
MGV. The detailed scheme is outlined below.
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Fig. 2. Flowchart of establishing the predictive model.

(1) Fit the magnitude of [Hind]m,n to a generalized Gamma
distribution, notated as

[Acnd]m,n =
∣∣∣[Hind]m,n

∣∣∣ ∼ Γ (αm,n, βm,n, γm,n, 0) .

(22)
(2)

∣∣∣[Hind]m,n

∣∣∣ is transformed into a Gamma distribution:

[A′
cnd]m,n =

{∣∣∣[Hind]m,n

∣∣∣}γm,n

∼ Γ (αm,n, βm,n, 1, 0) .

(23)
(3) Calculate the full correlation matrix of A′

cnd:

RA′cnd = E
{
vec (A′

cnd) vec (A
′
cnd)

H
}
. (24)

(4) Calculate the full correlation matrix RMNVs of the multidi-
mensional normal variable (MNV) mapped to RA′cnd . Due
to the challenge of deriving an analytical solution for map-
ping correlation coefficients between Gamma variables
to those between Gaussian variables, a machine learning
predictive model is constructed, as depicted in Fig. 2.

(5) MNV samples are generated using the specified full cor-
relation matrix RMNVs and are transformed into MGV
samples (i.e., A′

cnd) following Appendix A.
(6) Corresponding Acnd samples are restored through the

operation below:

[Acnd]m,n = [A′
cnd]

1/γm,n

m,n . (25)

By this point, all the parameters in the PCCM are initialized.
The distance between the statistical properties of the PCCM
and GBSM samples can be efficiently evaluated in terms of
the multidimensional KLD between the EVs obtained from
the raw channel coefficients Hraw and the replicated samples
generated by the PCCM:

∆ = DKL

(
pΛHSS

∥∥∥ qΛH′
SS

)
+DKL

(
qΛH′

SS

∥∥∥ pΛHSS

)

=

L∑
l=1


pΛHSS

(Xl) ln

(
pΛHSS

(Xl)

qΛH′
SS

(Xl)

)

+ qΛH′
SS

(Xl) ln

(
qΛH′

SS
(Xl)

pΛHSS
(Xl)

)


(26)

where pΛHSS
and qΛH′

SS
represent the joint probability func-

tions of the PCCM and practical EVs, respectively.

C. Backward Compatibility of the PCCM

The PCCM offers a versatile framework for achieving
compatibility with various existing CBSMs through specified
shape and scale parameters. This adaptability arises from
the transformation of a generalized Gamma variable into
distributions such as Rayleigh, Rice, or Nakagami-m. In this
section, we elaborate on the key points illustrating how PCCM
establishes compatibility.
1) JCCM Simplification (Acnd Independence): Under the as-

sumption that Acnd consists of i.i.d. elements, the PCCM
formula reduces to the classical JCCM [31];

2) Weichselberger’s Model Derivation: By degenerating all
Hind elements to complex Gaussian variables and under
the premise that D = 0, Weichselberger’s model [30] is
obtained;

3) Kronecker Model for Separable-Correlated NLOS MIMO
Channels: On the basis of (2), if the spatial correlations
between the transmitting and receiving ends are neglected,
the PCCM can be further reduced to a Kronecker model
[27] for separable-correlated NLOS MIMO channels;

4) Transformation of Earlier CBSMs: With some additional
preconditions of the channel properties, even earlier CB-
SMs can be transformed from the PCCM framework. Such
transformations have been discussed in published works
[30], [31] and are not elaborated on here.

By neglecting the correlation properties between the ele-
ments of Acnd, the PCCM can be simplified to a generalized
JCCM (GCCM) with the matrix Hind consisting of i.n.d.
GGCGM entries (Appendix B), which can be further expressed
as:

Hind = Rind ⊙Giid (27)

where the elements of the random matrices Giid and Rind are
independent of each other. Specifically, the elements of the
matrix Giid are restricted to obey a standard complex Gaussian
distribution, while the elements of the matrix Rind are i.n.d.
power-generalized Gamma variables, i.e.,

[Hind]m,n = rpm,n
m,n gm,n (28)

where rm,n ∼ Γ (αm,n, βm,n,Γm,n, µm,n) and gm,n denotes
a standard complex Gaussian variable.

According to the definition of the GGCNM distribution,
by taking different values of pm,n, the elements of Hind can
be transformed into complex Gaussian-distributed, complex
Student-distributed or near-complex Laplace-distributed vari-
ables. Thus, the GCCM is compatible with the JCCM and
Weichselberger’s model.

Another simplification of the PCCM can be achieved by
assuming the elements of Hind to be identically distributed,
i.e., substituting Acnd with Acid consisting of correlated and
identical Rayleigh-distributed entries, which is more tractable
for mathematical analysis. The realization of Acid is similar
to the MGV generation scheme. To distinguish it from the
GCCM, we refer to this model as the simplified PCCM
(SCCM). The SCCM degrades to the JCCM when the cor-
relation properties of the elements of Acid are neglected.

Taken together, the i.n.d. Hind elements have more statistical
degrees of freedom than do the i.i.d. random elements in the
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existing JCCMs, making the PCCM more general and accurate
in representing MIMO channels with arbitrary scenarios and
MIMO scales. The PCCM formula can statistically represent
the wireless MIMO channels of the following situations:
1) The stochastic LOS/NLOS MIMO channels at the cluster

level, which means constant base station and user terminal
(BS/UE) locations, antenna orientations, cluster positions
and random scatters within a cluster;

2) Stochastic LOS/NLOS MIMO channels with constant
BS/UE locations, antenna orientations and K factor but
random multipath scattering;

3) The continuous time evolution of NLOS MIMO channels,
which indicates time-varying arrival angles, cluster and
subpath offsets;

4) The stochastic NLOS MIMO channels for multiple users
that are uniformly dropped in a cell.

D. Channel Capacity

To facilitate evaluating the performance of MIMO channels
of different scales, the eigenvalues decomposed from HHH

are normalized to the mean power of all the subchannel
coefficients between each pair of single Tx and single Rx
antennas, i.e.,

λ̄k =
MNλk

E
{

M∑
m=1

N∑
n=1

∣∣∣[H]m,n

∣∣∣2} (29)

where k = 1, 2, · · · , rank {H}.
Assuming the transmitter has no knowledge of the CSI, the

narrowband MIMO channel capacity can be expressed as

C = log2 det

(
IN×N +

SNRavg

M
HHH

)
[bps/Hz] . (30)

With uniform power allocation at the transmit end, the
normalized channel capacity is given based on eigenvalue
characteristics:

C̄ =

rank(H)∑
k=1

log2

(
1 +

λ̄kPt

Mσ2
z

)
[bps/Hz] . (31)

IV. NUMERICAL RESULTS AND ANALYSIS

The latest 3GPP channel model for the full frequency range
from 0.5 GHz to 100 GHz, covering the entire frequency spec-
trum from 0.5 GHz to 100 GHz and encompassing definitions
and specifications of geometric channel parameters for various
scenarios, is detailed in 3GPP TR 38.901, which is hereinafter
called the 3GPP 38.901 model. This model is widely regarded
as a standard GBSM for link- and system-level channel simula-
tions. However, it is crucial to emphasize that the 3GPP 38.901
model achieves perfect channel representation performance at
the expense of implementation simplicity.

To verify the proposed PCCM, the 3GPP 38.901 model is
adopted for a series of MIMO channel simulations based on
the quasideterministic radio channel generator (QuaDRiGa)
platform with various scenarios, frequencies and MIMO an-
tenna configurations. For simplicity, only outdoor users are
considered in the experiments, all the transceiver antennas
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Fig. 3. Flow chart of the ergodicity analysis for a stochastic channel.
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are omnidirectional and linearly polarized, and the cell is not
divided into sectors. To further improve the ergodicity perfor-
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Fig. 6. The distribution fits for the small-scale channel coefficients. (a) (d) [HSS]V,+ and [HSS]V,- of the 2×8 MIMO channel; (b) (e) [HSS]V,+ and [HSS]V,-
of the 2× 32 MIMO channel; (c) (f) [HSS]V,+ and [HSS]V,- of the 4× 64 MIMO channel.

mance, Latin hypercube sampling (LHS) is applied to generate
random phases in sum-of sinusoids (SOS) initializations. For
clarity, we use the 3D coordinate [x, y, z] in meters to describe
the BS/UE positions, where [x, y] is the 2D plane coordinate
within the cell and z represents the height.

A. Ergodicity analysis of the stochastic channel

To comprehensively study the statistical behavior of the
stochastic channel, it is first necessary to analyze the ergodicity
of the channel states. With the “3GPP 38.901 UMi NLOS” at
4.8 GHz, an MC simulation is conducted for a single-user
downlink over a 2 × 4 MIMO channel. The locations of the
BS and UE are fixed at [0, 0, 10] and [0, 100, 1.5], respectively.
The BS antenna is a horizontal uniform linear array (ULA)
composed of four omni-elements alternating with +/−45◦

polarization, and the UE side uses two vertically polarized
(VP) omni-antennas. Both the BS and UE antenna elements
are arranged at 1 wavelength interval. During the simulation,
both the BS and UE remain stationary, while the scattering
environment varies for each channel generation. That is, the
channel parameters are randomly initialized according to the
distributions specified in the 3GPP TR 38.901. A total of 106

random channel samples are generated and regarded as the
reference ergodic channel states.

The execution flow of the Kullback–Leibler divergence
(KLD)-based scheme is presented in Fig. 3. With a proper
KLD threshold, one can learn the minimum size of channel
samples to simulate that can be traversable as far as possible
with the lowest computational cost. Fig. 4 shows the KLD

results calculated between the eigenvalues obtained from the
reference ergodic channel samples and the dynamic H data
set evenly spaced with 5000 samples. The KLD remains below
0.001 with a sample size larger than 3×105; thus, we consider
3 × 105 as the proper size of the stochastic channel samples
to simulate for further statistical analysis.

B. Monte Carlo MIMO channels for fixed user links

A series of MC simulations for the stochastic MIMO
channels between a BS and a fixed UE are conducted. By
numerical analysis, we focus on the following three problems:
1) The performance of the proposed PCCM compared with

that of the GBSM and the JCCM (Weichselberger’s model);
2) The channel capacities of a single-user link with different

MIMO configurations;
3) The channel capacities of fixed user links associated with

different scenarios and frequencies.
The randomness of the MIMO channel characteristics is

reflected in the stochastic multipath scattering, i.e., the NLOS
components. To investigate the distribution of the small-scale
channel coefficients, without loss of generality, the “3GPP TR
38.901 UMi NLOS” at 4.8 GHz is adopted, and the UE is
located at [0, 100, 1.5] with arbitrary orientations. The BS/UE
arrays are configured with four different MIMO scales (i.e.,
2×8 MIMO, 2×32 MIMO, 4×64 MIMO and 4×128 MIMO).
The 8-element Tx antenna is a horizontal ULA composed of 4
pairs of cocenter elements with +/−45◦ orthogonal polariza-
tions and an interval of 1 wavelength, whereas the 32-element,
64-element and 128-element Tx antennas are uniform planar
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Fig. 7. The distribution fits for the decorrelated channel coefficients. (a) (d)[H̃]1,3 and [H̃]2,8 of the 2 × 8 MIMO channel; (b) (e) [H̃]2,1 and [H̃]2,4 of
the 2× 32 MIMO channel; (c) (f) [H̃]1,6 and [H̃]1,61 of the 4× 64 MIMO channel.

arrays (UPAs), each consisting of cocenter elements with
+/−45◦ orthogonal polarizations that are evenly arranged in 4
rows with 0.5 wavelength spacing. The 4-element Rx antenna
is composed of 2 × 2 VP omni-antennas with 1 wavelength
spacing. For each MIMO configuration, a total of 3 × 105

GBSM channel samples are generated.
First, we employed code execution time as a metric for

comparison to assess the computational complexity of channel
simulations across various MIMO antenna configurations. Uti-
lizing an identical computer configuration featuring an AMD
EPYC 7H12 64-Core Processor and 512 GB of memory, we
generated 300,000 samples of MIMO channels in configu-
rations of 2 × 8, 2 × 32, 4 × 64, and 4 × 128, employing
QuaDRiGa and PCCM codes, respectively, within the MAT-
LAB environment. Fig. 5 presents a comparative bar chart
illustrating the average program execution time obtained from
100 repeated simulations. The simulation time for channel
simulations based on the GBSM is not substantially influenced
by the MIMO scale. This phenomenon is attributed to the fact
that the predominant computational consumption in the GBSM
occurs during the generation of random channel parameters
using the SoS algorithm, for which the number of invocations
is associated with the number of clusters and subchannels.
Conversely, the computational complexity of the PCCM in-
creases in proportion to the size of the random matrix Hind,
which corresponds to the dimensions of the transceiver antenna
arrays. Nonetheless, despite this increase, the computational
complexity of the channel simulations based on the PCCM
remains significantly lower than that based on the GBSM.

For clarity, the subscripts V, + and − are used to indicate

vertical polarization, +45◦ linear polarization and −45◦ linear
polarization, respectively. For example, the distribution of
[HSS]V,+ covers the distributions of all the channel coefficients
between a VP Rx antenna and a +45◦ linearly polarized
Tx antenna. As shown in Fig. 6, the R/I components of
the [HSS]V,+ elements follow an i.i.d. Gaussian distribution,
while the others (i.e., the [HSS]V,- elements) obey a T-location
scale distribution with positive excess kurtosis. That is, the
R/I components of the small-scale channel coefficients are
i.i.d. and associated with the antenna polarizations. With
decorrelation, as presented in Fig. 7, the independent [H̃]
elements show even more freedom in statistics and fit well
with the GGCGM distributions with various shapes and scales,
which demonstrates the excellent capability of the PCCM
in characterizing the practical propagation environment. In
addition, the overall gap in statistics between the GBSM and
the fitted Gaussian samples becomes larger with an increase in
the MIMO scale, which aggravates the drawback of the i.i.d.
complex Gaussian Hiid (i.e., the G matrix)-based JCCM for
massive MIMO transmission.

Simulations of a 2 × 32 MIMO channel with UMi/UMa
NLOS scenarios at 4.8 GHz are adopted to compare the
stochastic MIMO channels in various scenarios. The channel
performance is represented by the PDF of the channel capacity
and the cumulative probability function (CDF) of the normal-
ized EVs. As shown in Figs. 8 and 9, taking the GBSM results
as reference, overestimation of the channel performance may
occur based on the classical JCCM, and the gap between the
GBSM and JCCM for the UMa NLOS channel is much larger
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Fig. 8. Comparison of the 2× 32 UMi NLOS MIMO channel performance
among the GBSM, JCCM, SCCM and PCCM. (a) PDFs of the capacity; (b)
CDFs of the normalized EVs.

than that in the UMi NLOS case. However, for both scenarios,
the PCCM demonstrates significant improvement in statistical
accuracy, thereby providing a more reliable channel statistical
characterization approach to the high-performance GBSM.

As shown in Figs. 10 and 11, the PCCM also exhibits
excellent performance in the massive MIMO channel sce-
nario. The overestimation of the capacity based on the JCCM
worsens with increasing MIMO scale. Therefore, the classic
JCCM is no longer reliable for massive MIMO channel char-
acterization. In contrast, the proposed PCCM shows perfect
statistical approximation to the GBSM with arbitrary MIMO
configurations. Furthermore, upon comparing the performance
of the GCCM, SCCM and PCCM, it is found that the PCCM
achieves the best statistical agreement with the GBSM. The
GCCM shows a good statistical fit to the maximum eigenvalue,
while there are deviations when fitting other EVs. The SCCM
exhibits better performance than the JCCM in scenarios with
multiple EVs (i.e., rank {H} > 2).

The PCCM also showcases its versatility in scenarios featur-
ing nonuniform antenna arrays. In the experiments, we conduct
simulations on a MIMO channel with a nonuniform planar
array (NUPA) at the BS antenna, wherein the BS antenna
elements transition from an initially uniform arrangement with
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Fig. 9. Comparison of the 2× 32 UMa NLOS MIMO channel performance
among the GBSM, JCCM, SCCM, GCCM and PCCM. (a) PDFs of the
capacity; (b) CDFs of the normalized EVs.

0.5-wavelength spacing to random spacing ranging from 0.5
to 1 wavelength. The validation results are presented in Fig.
12.

To investigate the channel performance with respect to
frequency, the 2 × 32 MIMO channels with the “3GPP TR
38.901 UMa NLOS” at 4.8 GHz and 26.5 GHz are adopted
for simulation. Considering the millimeter wave channel char-
acteristics, only 6 effective clusters (i.e., 1 LOS cluster and
5 NLOS clusters) are generated for each channel realization.
Fig. 13 compares the normalized channel capacities estimated
from the GBSM, JCCM and PCCM. Due to different numbers
of clusters, the channel diversity capability at 26.5 GHz is
weaker than that at 4.8 GHz, but the JCCM fails to show this
difference. In contrast, the PCCM achieves perfect agreement
with the GBSM in terms of channel performance.

The PCCM is also applicable to LOS MIMO channels. For
the 2 × 32 MIMO channel and 4 × 64 UMi MIMO channel
in the “3GPP TR 38.901 UMi LOS” scenario at 4.8 GHz, the
distributions of the normalized channel capacities and EVs are
given in Fig. 14 and Fig. 15, respectively. The accuracy of the
PCCM is significantly improved compared with that of the
classic JCCM.
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Fig. 10. Comparison of the 4 × 128 UMi NLOS MIMO channel performance among the GBSM, JCCM, SCCM, GCCM and PCCM. (a) PDFs of the
capacity; (b)(c) CDFs of the normalized EVs.
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Fig. 11. PDFs of the capacities for UMi NLOS channels with different MIMO scales. (a) 2 × 8 MIMO channel; (b) 2 × 32 MIMO channel; (c) 4 × 64
MIMO channel; (d) 4× 128 MIMO channel.

C. Continuous Time Evolution NLOS MIMO channels

Two channel configurations, i.e., a 2 × 8 MIMO channel
and 2 × 128 MIMO channel, are adopted for simulation of
the continuous time evolution NLOS MIMO channel. The
scenario is “3GPP TR 38.901 UMa NLOS” at 4.8 GHz.
The UE moves straight eastward at a constant speed of 60
km/h from [0, 50, 1.5] to [0, 150, 1.5]. Based on the QuaDRiGa
framework, when the UE is moving, the arrival angles, delays
and phases are updated using geometric calculations. To ensure

the ergodicity of the channel samples, 3×105 channel samples
are generated over the user track.

For the case of the 2× 8 UMa NLOS MIMO channel, the
distribution fittings for the GBSM HSS and [H̃] samples are
presented in Fig. 17. The HSS elements are approximately
complex Gaussian distributed, while the i.n.d. [H̃] elements
deviate from the Gaussian shape due to large kurtosis and fit
well with the proposed GGCGM distribution.

The channel statistical properties for the GBSM, JCCM and
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Fig. 12. Comparison of the 4 × 128 UMi NLOS MIMO channel performance with a NUPA BS antenna. (a) PDFs of the capacity; (b)(c) CDFs of the
normalized EVs.
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PCCM are presented with the corresponding distributions of
the channel capacities (SNR = 15 dB) and the EVs in Fig. 18
and Fig. 19. Compared to the JCCM, the PCCM is reliable,
with an excellent approximation to the GBSM.

D. Cell-based Ergodic NLOS MIMO channels

The cell-based MIMO ergodic channel is defined as the
stochastic wireless MIMO channel between the BS and mobile
users that drop ergodically in the effective communication
area of a cell. Numerical experiments demonstrate that the
proposed PCCM is also applicable to characterize cell-based
MIMO NLOS channels.

To efficiently traverse the channel states, the simulation is
realized based on a spatially correlated multiuser channel. Tak-
ing the 3GPP TR 38.901 UMi NLOS scenario, for example,
the QuaDRiGa model is developed with the layout shown
in Fig. 20, where 3 × 104 mobile users evenly drop in the
circular open area and move with a constant linear speed and
arbitrary orientations. Time evolution channel simulations are
performed simultaneously for all user links; accordingly, the
“3GPP baseline” is disabled in the QuaDRiGa setup to enable
spatial consistency of the channel states. With 10 snapshots
per user generated along the user track with a space of a
half wavelength, 3 × 105 channel samples are acquired in
total for the cell-based MIMO channel. On this basis, both
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Fig. 14. Comparison of the 2 × 32 UMi LOS MIMO channel performance
among the GBSM, JCCM, SCCM, GCCM and PCCM. (a) PDFs of the
capacity; (b) CDFs of the normalized EVs.

the JCCM and PCCM are developed for comparative analysis
of modeling performance.

Without loss of generality, 2×8 and 2×32 MIMO antennas
are configured at the transceiver ends in the “3GPP TR 38.901
UMi NLOS” and “3GPP TR 38.901 UMa NLOS” scenarios
at 4.8 GHz. The UMi/UMa NLOS channel capacities and the
EVs generated by the GBSM, JCCM and PCCM are presented
in Figs. 21 and 22, respectively. The PCCM achieves a better
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Fig. 15. Comparison of the 4 × 64 UMi LOS MIMO channel performance
among the GBSM, JCCM, SCCM, GCCM and PCCM. (a) PDFs of the
capacity; (b) CDFs of the normalized EVs.

Fig. 16. Layout of the QuaDRiGa model for a moving UE.

approximation of the statistical channel performance to the
3GPP 38.901 model.

V. CONCLUSION

A PCCM for massive MIMO transmission that provides a
pervasive expression for representing stochastic MIMO chan-
nels with arbitrary MIMO scales and statistical behavior has
been proposed. To reduce the model complexity, the GCCM
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Fig. 17. The distribution fits for the 2×8 time evolution UMa NLOS MIMO
channel coefficients. (a) [HSS]V,+/-; (b) [H̃]1,1; (c) [H̃]2,6.

and SCCM are also addressed as alternatives for application.
The statistical properties of the small-scale MIMO channel
have been investigated with and without spatial correlations,
and a novel mixture distribution named GGCGM is proposed
to obtain excellent fitting of the higher-order statistics for
each independent subchannel. This approach makes the PCCM
capable of reflecting more detailed features of the signal prop-
agation over the air. The elements in the matrix Rind can be
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Fig. 18. Comparison of the 2×8 time evolution UMa NLOS MIMO channel
performance among the GBSM, JCCM, SCCM, GCCM and PCCM. (a) PDFs
of the capacity; (b) CDFs of the normalized EVs.

arbitrarily distributed by classifying the Hind distributions into
three typical categories and quick initialization formulae for
the GGCGM feature parameters are provided to adapt different
distribution shapes. Numerical results have demonstrated the
advantages of the proposed PCCM in accuracy and universality
compared to existing CBSMs.

APPENDIX A
DISTRIBUTION TRANSFORMATION WITH THE SAME

CUMULATIVE PROBABILITIES

A Gamma variable x ∼ Γ (α, β) can be transformed
from a Gaussian variable y ∼ N (µ, σ) using the uniformly
distributed sequence z ∼ U (0, 1) corresponding to the cumu-
lative probability of y:

z = cdf (y) =
1

2
Erfc

(
−x− µ√

2σ

)
, (32)

x = FΓ
−1 (z |α, β ) = {x : FΓ (z |α, β ) = z} , (33)

where
Erfc (u) =

2√
π

∫ ∞

u

e−t2dt, (34)

FΓ (z |α, β ) =
1

βαΓ (α)

∫ z

0

tα−1e−
t
β dt, z > 0. (35)
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Fig. 19. Comparison of the 2 × 128 time evolution UMa NLOS MIMO
channel performance among the GBSM, JCCM, SCCM, GCCM and PCCM.
(a) PDFs of the capacity; (b) CDFs of the normalized EVs.

Fig. 20. Layout of the QuaDRiGa model of the stochastic MIMO channel
with moving users.

Similarly, a Rayleigh variable h ∼ R (σ) can be obtained
as follows:

h = FRayl
−1 (z |σ ) = {h : FRayl (z |σ ) = z} (36)

where

FRayl (z |σ ) = 1− e−
z2

2σ2 , z > 0. (37)
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Fig. 21. Comparison of the 2 × 8 cell-based ergodic UMi NLOS MIMO
channel performance among the GBSM, JCCM, SCCM, GCCM and PCCM.
(a) PDFs of the capacity; (b) CDFs of the normalized EVs.

APPENDIX B
DEFINITION AND PROPERTIES OF THE GGCGM

DISTRIBUTION

Here, we briefly outline the definition and statistical prop-
erties of the GGCGM distribution proposed in this paper.

The GGCGM variable is defined as the product of a power-
generalized Gamma variable and a standard complex Gaussian
variable that are independent of each other, i.e.,

z = χp (ε+ jη) = x+ jy (38)

where χ follows a generalized Gamma distribution, χp means
the p-th power of an χ variable, and ε and η are i.i.d. half-
varied Gaussian variables,

χ ∼ Γ (α, β, γ, µ) . (39)

[
ε
η

]
∼ N

([
0
0

]
,

[
1/2 0
0 1/2

])
(40)

where α, β, γ, µ, p are constant parameters with α > 0, β >
0, γ > 0.

Since the power-generalized Gamma variable and the com-
plex Gaussian variable are independent of each other, the
distributions of the R/I components of the GGCGM variable
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Fig. 22. Comparison of the 2 × 32 cell-based ergodic UMa NLOS MIMO
channel performance among the GBSM, JCCM, SCCM, GCCM and PCCM.
(a) PDFs of the capacity; (b) CDFs of the normalized EVs.

are identical and both symmetric about zero, and the PDF can
be readily estimated by numerical integration:

f (x;α, β, γ, µ) =

∫ ∞

0

fχp (t)

t
fε

(x
t

)
dt

f (y;α, β, γ, µ) =

∫ ∞

0

fχp (t)

t
fε

(y
t

)
dt

(41)

where

fχp (v) =


γ
[
(v−µ)1/p

β

]αγ
e
−
[

(v−µ)1/p

β

]γ

pvGamma (α)
, v > 0,

0, else,

(42)

fε(v) =
1√
π
e−v2

. (43)

On the premise that the location feature µ is zero, the
possible distributions of z can be roughly classified into three
categories. In the first case, as long as p = 0, the value of χp

is fixed to 1. That is, the GGCGM variable is simplified to a
standard complex Gaussian variable.

In the second case, let χ ∼ Γ (α, β, 1, 0) and p = −1/2;
then, the transformed distribution z = χ−1/2 (ε+ jη) is equiv-
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alent to a complex Student distribution, i.e., z ∼ t (0, σ, ν).
The distribution parameters are mapped as follows:σ =

1√
2αβ

,

ν = 2α.

(44)

Otherwise, supposing that χ ∼ Γ (α, β, γ, 0) and p = 1,
the distribution of z is close to a complex Laplace shape
with higher kurtosis; the shape of z is dominated by its shape
features α and γ, and the parameters of the distribution can
be derived from its statistical features. For example:

M2 =
γ (α+ 2/γ )β2

2γ (α)
,

M4 =
3γ (α+ 4/γ )β4

4γ (α)
,

M6 =
15γ (α+ 6/γ )β6

8γ (α)
.

(45)

where M2, M4 and M6 are the 2nd, 4th, and 6th moments,
respectively, of the R/I component of u.
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