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Abstract—The generation of multiple uncorrelated Rayleigh
fading waveforms is often demanded for simulating wideband
fading channels, multiple-input multiple-output (MIMO) chan-
nels, and diversity-combined fading channels. In this letter, an
improved deterministic sum-of-sinusoids (SoS) channel simulator
with a new parameter computation method is proposed to sim-
ulate a large number of uncorrelated Rayleigh fading processes.
Compared with the existing SoS channel simulators, the pro-
posed deterministic SoS model yields a much better simulation
efficiency while still preserving satisfactory approximations to
the desired statistical properties of the reference model.

Index Terms—Uncorrelated Rayleigh fading processes, sum-
of-sinusoids channel simulator, parameter computation method,
correlation properties.

I. INTRODUCTION

THE sum-of-sinusoids (SoS) channel modeling approach
has been extensively applied to the simulation of

Rayleigh fading channels [1]–[15]. An SoS channel sim-
ulator can be either ergodic stochastic (deterministic) [2]–
[6], [10]–[15] or non-ergodic stochastic [6]–[9] depending on
the underlying parameters (gains, frequencies, and phases).
For an ergodic stochastic SoS channel simulator, gains and
frequencies are kept constant during simulation, while only
phases are random variables [6], [14]. Due to the ergodicity,
such a channel simulator needs only one simulation trial
to represent its statistical properties. Its degenerated form
or a single simulation trial results in a deterministic chan-
nel simulator, where all the parameters (gains, frequencies,
and phases) are constants during simulation. A non-ergodic
stochastic SoS channel simulator has at least one parameter
(frequencies and/or gains) as random variables, the values of
which vary for different simulation trials [6]. The relevant
statistical properties of a non-ergodic stochastic SoS channel
model also vary for each simulation trial and have to be
calculated by averaging over a large number of simulation
runs. In general, a deterministic SoS channel simulator has a
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better simulation efficiency than a non-ergodic stochastic SoS
channel model.

A channel simulator capable of generating multiple un-
correlated Rayleigh fading waveforms is often required for
simulating multiple-input multiple-output (MIMO) channels
[16], wideband fading channels [7], and diversity-combined
fading channels [15]. In order to generate multiple uncorre-
lated Rayleigh fading waveforms by using SoS channel simu-
lators, different parameter computation methods [2]–[11] have
been investigated. Jakes’ method [2] and its derivatives [3]–
[6] were designed for deterministic SoS channel simulators,
which retain some undesirable statistical properties. The cross-
correlation function (CCF) of any pair of underlying complex
processes is generally not zero for the deterministic SoS
models as given in [2]–[4]. For the models suggested in [5],
[6], the autocorrelation functions (ACFs) of the inphase and
quadrature components of each underlying complex process
do not match closely to the desired ones. To remedy the
drawbacks of the deterministic SoS channel simulators given
in [2]–[6], non-ergodic stochastic SoS channel simulators
were proposed in [6]–[9] with random parameters in the
employed sinusoids. By averaging over a large number of
simulation trials, the developed channel simulators in [6]–[9]
can approximate closely the desired statistical properties but
have a low simulation efficiency.

The method of exact Doppler spread (MEDS) [10] was
revisited in [11] by investigating additional boundary con-
ditions in order to produce multiple uncorrelated Rayleigh
fading waveforms with a deterministic SoS channel simulator.
A disadvantage with the MEDS is that large numbers of
sinusoids have to be deployed when more than four uncorre-
lated Rayleigh processes are produced [11]. This will greatly
increase the model complexity and therefore restrict the use
of the underlying SoS channel simulator. In this letter, a new
parameter computation method originating from the MEDS is
proposed for deterministic SoS channel simulators capable of
producing multiple uncorrelated Rayleigh fading waveforms
without using large numbers of sinusoids. Compared to the ex-
isting SoS channel simulators shown in [2]–[11], the improved
deterministic SoS channel simulator has superior simulation
efficiency, while it can still achieve similar good or even
better approximations to the desired statistical properties of
the reference model.

The remaining of this paper is outlined as follows. Section II
describes the reference model with its desired statistical prop-
erties. In this section, we also present the deterministic SoS
simulation model and the conditions that must be fulfilled in
order to generate multiple uncorrelated fading waveforms. In
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Section III, a new parameter computation method is proposed
and performance of the resulting deterministic SoS channel
simulator is investigated. Finally, conclusions are drawn in
Section IV.

II. REFERENCE MODEL AND DETERMINISTIC SOS
SIMULATION MODEL

Our aim is to produce L uncorrelated Rayleigh fading
processes

ζ�(t) =
∣∣∣μ�(t)

∣∣∣ =
∣∣∣μ1,�(t) + jμ2,�(t)

∣∣∣, � = 1, 2, . . . ,L (1)

where j =
√−1 and μ�(t) is a complex Gaussian random

process with zero-mean. The inphase component μ1,�(t) and
quadrature component μ2,�(t) are uncorrelated real Gaussian
random processes, i.e., rμ1,�μ2,�

(τ) = rμ2,�μ1,�
(τ) = 0, with

common variance σ2
0 and identical ACFs. The CCF of any

pair of complex Gaussian random processes must be zero, i.e.,
rμ�μλ

(τ) = 0 for �, λ = 1, 2, . . . ,L with � �= λ. Assuming a
two-dimensional isotropic scattering environment [1], the ACF
rμi,�μi,�

(τ) of μi,�(t) (i=1, 2) for the reference model is [2]

rμi,�μi,�
(τ) = σ2

0J0(2πfmaxτ) (2)

where J0(·) denotes the zeroth-order Bessel function of the
first kind and fmax = vfc/c is the maximum Doppler
frequency. Here, v represents the mobile speed, c is the speed
of light in free space, and fc is the carrier frequency. Since
rμ1,�μ2,�

(τ) = rμ2,�μ1,�
(τ) = 0, the ACF of the complex

Gaussian random process μ�(t) is rμ�μ�
(τ) = 2rμi,�μi,�

(τ) =
2σ2

0J0(2πfmaxτ) [2], [11]. The objective of the proposed
SoS channel simulator is then to reproduce accurately and
efficiently the above desired statistical properties.

By invoking the central limit theorem, a Gaussian random
process can be approximated by the superposition of a large
number of properly selected sinusoids. Based on this principle
of the SoS channel simulators, the �th (� = 1, 2, . . . ,L)
Rayleigh fading process is modeled as

ζ̃�(t) =
∣∣∣μ̃�(t)

∣∣∣ =
∣∣∣μ̃1,�(t) + jμ̃2,�(t)

∣∣∣ (3)

where

μ̃i,�(t) =
Ni,�∑
n=1

ci,n,� cos
(
2πfi,n,�t + θi,n,�

)
, i = 1, 2 . (4)

Here, Ni,� denotes the number of sinusoids, ci,n,�, fi,n,�, and
θi,n,� are the gains, discrete frequencies, and phases, respec-
tively. Note that all the above simulation model parameters
will be kept constant during simulation. This indicates that
μ̃i,�(t) is a deterministic function and the statistical properties
of the resulting deterministic SoS channel simulator must
be calculated by using time averages instead of statistical
averages.

The time-averaged ACF r̃μi,�μi,�
(τ) of μ̃i,�(t) can be ex-

pressed as

r̃μi,�μi,�
(τ) =

Ni,�∑
n=1

c2
i,n,�

2
cos

(
2πfi,n,� τ

)
(5)

It has been shown in [10], [11] that the different processes
μ̃i,�(t) and μ̃k,λ(t) (i, k = 1, 2 and �, λ = 1, 2, . . . ,L, where

i = k and � = λ do not hold at the same time) are
uncorrelated, i.e., r̃μi,�μk,λ

(τ) = 0, if and only if

fi,n,� �= ±fk,m,λ (6)

holds for all n = 1, 2, . . . , Ni,� and m = 1, 2, . . . , Nk,λ. In
other words, the discrete frequencies for different uncorrelated
processes must be orthogonal. The fulfillment of the inequality
(6) will also result in r̃μ1,�μ2,�

(τ) = rμ1,�μ2,�
(τ) = 0,

r̃μ2,�μ1,�
(τ) = rμ2,�μ1,�

(τ) = 0, and r̃μ�μλ
(τ) = rμ�μλ

(τ) =
0. Consequently, the ACF r̃μ�μ�

(τ) of the �th complex wave-
form μ̃�(t) can be written as r̃μ�μ�

(τ) = r̃μ1,�μ1,�
(τ) +

r̃μ2,�μ2,�
(τ). In what follows, a new parameter computation

method will be introduced to address the issues on how to
properly design fi,n,� under the constraint (6).

III. A NEW PARAMETER COMPUTATION METHOD

The proposed method originates from the MEDS [11],
where the discrete frequencies are given by

fi,n,� = fmax sin
[ (2n − 1)π

4Ni,�

]
. (7)

The only way to fulfill (6) with the MEDS in (7) is to
guarantee that Ni,�/Nk,λ �= (2n − 1)/(2m − 1) for all
n = 1, 2, . . . , Ni,� and m = 1, 2, . . . , Nk,λ [11]. With the
increase of the required number of simulated uncorrelated
fading processes, the numbers of sinusoids of the deterministic
SoS channel simulator with the MEDS will increase almost
exponentially. This obvious drawback prevents the applica-
tions of the MEDS to the simulation of a large number of
uncorrelated processes.

To overcome the disadvantage of the MEDS, we propose
to define the discrete frequencies as

fi,n,� = fmax sin
[ (2n − 1)π

4Ni,�

]
+ Si,� (8)

where Si,� should be chosen as an infinitesimal real value,
and its reason will become clear subsequently. The gains are
given by ci,n,� = σ0

√
2/Ni and the phases θi,n,� in (4)

are simply considered as the outcomes of a random number
generator uniformly distributed over (0, 2π] [10], [11]. It can
be observed from (8) that the proposed method will be reduced
to the original MEDS in (7) if Si,� = 0. This encourages us to
name the proposed method as the modified MEDS (MMEDS),
which includes the original MEDS as a special case.

In contrast to the MEDS, the introduction of the new
quantity Si,� into the MMEDS relaxes the constraint of Ni,�

in order to fulfill (6). For simplicity, in this letter we choose
Ni,� = Ni = N (i = 1, 2 and � = 1, 2, . . . ,L). Then, (8) can
be rewritten as

fi,n,� = fmax sin
[ (2n − 1)π

4N

]
+ Si,�. (9)

Since 1 ≤ n ≤ N , we can conclude that π/(4N) ≤ (2n −
1)π/(4N) ≤ π/2 − π/(4N) holds. It follows from (9) that
fmax sin[π/(4N)] + Si,� ≤ fi,n,� ≤ fmax cos[π/(4N)] + Si,�

holds. Let us limit the values of fi,n,� in (9) to the interval
[0, fmax]. Thus, the following inequality

−fmax sin
( π

4N

)
≤ Si,� ≤ fmax − fmax cos

( π

4N

)
(10)
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Fig. 1. The MSE Ei,� of the ACF by using the MMEDS (σ2
0 = 1, fmax =

91 Hz).

holds. By keeping (10) in mind, the substitution of (9) into
(6) tells us that the following condition must be fulfilled

Si,� − Sk,λ �= fmax sin
[ (2m − 1)π

4N

]
− fmax sin

[ (2n − 1)π
4N

]
(11)

for all n, m = 1, 2, · · · , N , where i, k = 1, 2 and �, λ =
1, 2, . . . ,L. Note that i = k and � = λ do not hold at the
same time. Given any fmax and N , the values of the right
hand side of the above inequality can easily be calculated.
The selection of Si,� must be under the constraints of both
(10) and (11).

In the following text, we will investigate the impact of Si,�

on the approximation quality of r̃μi,�μi,�
(τ) ≈ rμi,�μi,�

(τ). A
widely used measure of the error between the approximate
ACF r̃μi,�μi,�

(τ) in (5) and the exact ACF rμi,�μi,�
(τ) in (2)

is the mean-square error (MSE) defined by

Ei,� =
1

τmax

τmax∫

0

[
rμi,�μi,�

(τ) − r̃μi,�μi,�
(τ)

]2

dτ (12)

where τmax denotes an appropriate time interval [0, τmax]
over which the approximation of rμi,�μi,�

(τ) is of interest.
According to [10], [11], the value τmax = N/(2fmax) has
turned out to be suitable. Fig. 1 shows a representative
example of the MSE Ei,� as a function of Si,� with different
values of N . Here, we used the normalized variance σ2

0 = 1
and fmax = 91 Hz, which corresponds to a mobile speed
of v=109.2 km/h and a carrier frequency of fc=900 MHz.
It can be observed clearly that for any given value of N ,
the MSE increases with the increase of the absolute value of
Si,�. The minimum MSE is obtained when Si,� = 0. which
indicates that the original MEDS provides the best fitting to
the desired ACF rμi,�μi,�

(τ). Fig. 1 actually suggests us that
an infinitesimal value should be chosen for Si,� as long as
(10) and (11) are satisfied. In this letter, we propose to define

Si,� = (−1)i−1�ε (13)

where ε is an infinitesimal positive value, e.g., ε = 10−7.
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Fig. 2. The ACFs of the quadrature component for the reference model
and the simulation model by using the MEDS and the MMEDS (σ2

0 = 1,
N = 20).

Using fmax = 91 Hz and N = 20 as an example, we
calculate the constraints of Si,� in (10) and (11). Let us assume
L = 16, which corresponds to, e.g., a 4 × 4 MIMO channel.
It turns out to be that ε = 10−7 in (13) can be taken so
that for any given �, λ = 1, 2, . . . ,L, the conditions (10) and
(11) can be fulfilled. In Fig. 2 we compare the ACFs of the
quadrature component for the reference model, the simulation
model by using the MEDS (ε = 0) and the MMEDS with
ε = 10−7 and � = L = 16. Here, σ2

0 = 1 was used. It is
noted that Fig. 2 presents the worst approximation results of
the ACF r̃μi,�μi,�

(τ) for the MMEDS with Si,� = ±16×10−7,
which are obtained when � = L in (13). For � < L, the
approximation results are better, which is also obvious from
Fig. 1. On the other hand, even with the worst case, the
resulting ACF for the MMEDS is nearly indistinguishable
from that obtained by using the MEDS (ε = 0). For both
the MEDS and MMEDS with the given parameters ε and
�, the approximation r̃μi,�μi,�

(τ) ≈ rμi,�μi,�
(τ) is excellent

when τ ∈ [0, N/(2fmax)], i.e., fmaxτ ∈ [0, 10]. Note that this
conclusion holds for arbitrary values of fmax, σ2

0 , and N . In
case of fmaxτ > N/2, the ACFs of the simulation model and
reference model will diverge gradually and never converge
again [11]. A better approximation over larger time delays
can only be achieved with the increase of N . Due to the fact
that short time delays, e.g., fmaxτ ≤ 0.3 [13], are of more
interest for most communication systems, the MMEDS with
small numbers of sinusoids N is actually an excellent method
in terms of the above interested correlation properties.

By analogy with (12), we measure the quality of the
approximation r̃μ�μ�

(τ) ≈ rμ�μ�
(τ) over the interval [0, τmax]

with the following MSE

E� =
1

τmax

τmax∫

0

[
rμ�μ�

(τ) − r̃μ�μ�
(τ)

]2

dτ (14)

The behavior of E� is illustrated in Fig. 3 as a function of
Si,� with various values of N . The comparison of Figs. 1 and
3 clearly demonstrates that E� is overall much smaller than
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Fig. 3. The MSE E� of the ACF by using the MMEDS (σ2
0 = 1, fmax =

91 Hz).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

Normalized time separation, fmaxτ

A
C

F 
of

 th
e 

co
m

pl
ex

 w
av

ef
or

m

 

 

Reference model
Simulation model, MEDS, Si,l =0

Simulation model, MMEDS (Si,l =16 × 10 −7)

Simulation model, MMEDS (Si,l =−16 × 10 −7)

Fig. 4. The ACFs of the complex waveform for the reference model and the
simulation model by using the MEDS and the MMEDS (σ2

0 = 1, N = 20).

Ei,�. Fig. 4 shows the ACFs of the reference model rμ�μ�
(τ)

and the simulation model r̃μ�μ�
(τ) for the MEDS (Si,� = 0)

and MMEDS (Si,� = ±16×10−7). In consistency with Fig. 3,
the approximation r̃μi,�μi,�

(τ) ≈ rμi,�μi,�
(τ) is excellent for

both the MEDS and MMEDS with the given parameter Si,�

when fmaxτ ∈ [0, N/2], i.e., fmaxτ ∈ [0, 10]. In Fig. 5, we
present L = 4 uncorrelated simulated fading envelopes ζ̃�(t)
by using the MMEDS with σ2

0 = 1, fmax = 91 Hz, N = 20,
ε = 10−7, and � = 1, 2, 3, 4.

Compared with the MEDS, the proposed MMEDS provides
similar approximations to the desired ACFs as long as an in-
finitesimal value is chosen for the quantity Si,�. In other words,
the performance degradation due to the introduction of Si,�

can completely be neglected. On the other hand, the MMEDS
does not require the increase of the numbers of sinusoids when
more uncorrelated processes are produced, while the MEDS
[11] needs. This promising feature of the MMEDS allows us to
simulate a very large number of uncorrelated fading processes
without increasing the complexity of the channel simulator.
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Fig. 5. Uncorrelated simulated fading envelopes ζ̃�(t) (�=1, 2, 3, 4) by using
the MMEDS (σ2

0 = 1, fmax = 91 Hz, N = 20).

In comparison with the non-ergodic stochastic SoS channel
simulators given in [6]–[9], the improved deterministic SoS
channel simulator with the proposed MMEDS can provide
similar good approximation of the ACFs within the specified
delay range fmaxτ ∈ [0, N/2], which is of most relevance to
communication systems [13]. In terms of the implementation
complexity, our deterministic channel simulator is superior to
the stochastic channel simulators suggested in [6]–[9] since
the calculation of its statistical properties does not need the
average of a large number of random trials.

It is noted that the above presented deterministic SoS
channel simulator with the MMEDS can easily be extended to
the generation of multiple correlated Rayleigh or even other
fading waveforms, which is useful for simulating MIMO and
ultra-wide band (UWB) channels [17]–[19] in a more practical
way. This can be done by using a linear combination of
multiple uncorrelated processes [12], [15].

IV. CONCLUSION

In this letter, a new parameter computation method, called
MMEDS, for deterministic SoS channel simulators has been
proposed to generate multiple uncorrelated Rayleigh fading
processes, which are useful for the modeling of MIMO,
wideband (or UWB), and diversity-combined multipath fad-
ing channels. Compared with MEDS, the MMEDS provides
similar good approximations to the desired statistical prop-
erties of the reference model, while it offers a much lower
computational complexity. It is simple and straightforward
to apply MMEDS to generate multiple uncorrelated fading
processes. The MEDS, however, demands increasing numbers
of sinusoids, thus increasing channel simulator complexity.
Therefore, the MMEDS is suitable for simulation of a large
number of uncorrelated fading processes.
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channel output and its application to efficient simulation,” IEEE J. Select.
Areas Commun., vol. 15, no. 4, pp. 640–646, May 1997.

[8] Y. R. Zheng and C. S. Xiao, “Improved models for the generation of
multiple uncorrelated Rayleigh fading waveforms,” IEEE Commun. Lett.,
vol. 6, no. 6, pp. 256–258, June 2002.

[9] Y. R. Zheng and C. S. Xiao, “Simulation models with correct statistical
properties for Rayleigh fading channels,” IEEE Trans. Commun., vol. 51,
no. 6, pp. 920–928, June 2003.

[10] M. Pätzold, Mobile Fading Channels. Chichester, UK: John Wiley &
Sons, 2002.

[11] C.-X. Wang, M. Pätzold, and D. Yuan, “Accurate and efficient simula-
tion of multiple uncorrelated Rayleigh fading waveforms,” IEEE Trans.
Wireless Commun., vol. 6, no. 3, pp. 833–839, Mar. 2007.
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