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Abstract—This paper deals with the learning and decision
making issue for cognitive radio (CR). Two reinforcement-
learning algorithms proposed in the literature are compared for
opportunistic spectrum access (OSA): Upper Confidence Bound
(UCB) algorithm and Weight Driven (WD) algorithm. This paper
also introduces two new metrics in order to evaluate the machine
learning algorithm performance for CR: effective cumulative
regret and percentage of successful trials. They provide a fair
evaluation means for CR performance.

Index Terms—Cognitive radio, opportunistic spectrum access,
machine learning, MAB, UCB

I. INTRODUCTION

The spectrum utilization is becoming sub-optimal due to
extensive grants of licenses [1]. Such inefficient and inflexible
distribution of the spectrum may not be sustainable in the
future as the demand of access to the spectrum increases
rapidly with the exponential growth of new high-data-rate
applications. An alternate providing more flexibility is to
introduce CR systems that are aware of the environment and
adapt in order to achieve the best possible use of resources [2].
In this paper, we focus on the problem of OSA allowing
Secondary Users (SUs) to transmit in available spectrum left
blank by Primary Users (PUs) [3]. The major issue for SUs is
then to keep interference to PUs to a minimum. In an OSA
context, the key point for SUs is to find the best resources
available. In [4], a possible solution to such challenge was
proposed based on Reinforcement Learning (RL). RL is a way
to tackle learning and decision making for CR, especially
when no a priori knowledge is available on what to learn
about (in OSA, this is the channel vacancy rate), as shown in
[5].Such RL algorithms learn from the success and failure of
past trials in order to predict which frequency channel(s) is
(are) probably free in a given band. Using a RL approach has
been motivated as the well-known uniform random walk
approach has been proven to be the most inefficient way to
explore the statistics of a set of solutions [6]. RL relies on the
following principle for OSA: only one channel is sensed at a
time; each channel is given a note; a reward is granted to a
channel when a trial is successful, e.g., the channel is detected
free and an opportunistic transmission can be done. If the
channel is detected being occupied by a PU, there is no reward
and transmission does not occur in order not to jam the PU.
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Then the initial problem can now be reduced to the
maximization of the reward, which was formalized as the
Multi Armed Bandit (MAB) issue in [7][8]. This paper is
aimed at comparing two RL algorithms proposed in the
literature for OSA: UCB algorithm proposed in [4] and WD
algorithm described in [9].

The remainder of this paper is organized as follows. In
Section II, UCB and WD algorithms are presented. Section III
aims at comparing their performance according to the existing
RL metrics. But we show that these metrics are not consistent
for CR, so that we propose to define new metrics for CR in
Section IV. Finally, conclusions will be drawn in Section V.

II. REINFORCEMENT LEARNING ALGORITHMS

A. Cognitive Radio context

A CR system or equipment must run the cognitive cycle as
described in [2] in order to adapt its operation to the changes
of the environment, e.g., it must include (simplified here for
clarity purposes [10]) sensing, decision/learning, and
adaptation processes. A CR can be used for any kind of
adaptation, including but not limited to spectrum-oriented
adaptation. CR can also contribute to green radio for instance
in [11]. This paper focuses on the spectrum-oriented OSA
which is a special case of CR.

The advantage of RL algorithms for CR is that in such an
approach where only one channel is sensed at a time, the
Radio Frequency (RF) and digital processing of the radio do
not have to support a larger bandwidth than the bandwidth of
one channel which is required for the transmission itself. In
other words, there is no need for a wideband RF (and the
associated digital processing power) to sense all the channels
of interest in parallel. As shown in Fig. 1, the proposed OSA
radio equipment can be based on a conventional radio with the
addition of sensing, decision making, and learning
components. Here, we assume that the OSA system is able to
change frequency statically, i.e. select a frequency for
communications, but does not change during communications.
Therefore, ‘adapt’ component was present in the conventional
radio.

In this paper, we focus on the learning and decision process,
which aims at:

1. deciding on which channel to try for a transmission,

2. deciding to transmit or not,

3. updating learning information.
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Fig. 1: Cognitive cycle elements to be added to a conventional
radio to support the proposed OSA features.

Point 1 uses the results of previous trials which enable to learn
the channels’ occupancy probabilities. In order to maximize
transmission opportunity, it decides to sense the channel with
the highest probability of vacancy at next iteration. Point 2
uses the output of the sensing to decide to transmit or not.
Whatever the sensing output, point 3 is the learning process
that will orient next iteration decision at point 1. Even if no
transmission occurs at a stage because the selected channel
was not free, the same learning will be preserved. Fig. 2
details how outputs of the sensing block are used for learning
and decision making. Outputs of the learning and decision
block manage both transmission and reception chains in order
to enable the communication at the current iteration. The
learning block will also utilize the updated channel knowledge
to decide the frequency to be used for next iteration.

B. Model for OSA

In this paper we will consider UCB and WD as RL
algorithms. To be fair, both algorithms need to be run using
the same model based on the MAB method, which is
described as the following. The spectrum is divided in
channels denominated by k € {1,2,..,K}, each having the
same bandwidth and representing one arm for the RL
algorithm. We suppose that time is discrete, slotted in
iterations, and only one channel per slot is sensed at each
iteration. Moreover we assume the sensing is perfect. The
temporal occupancy of every arm follows a Bernoulli
distribution 6, for which the expected value, u, = E[0;], can
be set independently. The PU is supposed to be synchronous
with SUs. Coordination or cooperation between SUs is not
discussed in this study but can be found in [12].

C. UCB algorithm

We define ¢ as the discrete time index representing the total
number of times that the algorithm has been played. The
cumulative number of times that the channel £ has been
chosen in the previous steps is T, and a; is the index of the
channel chosen at the time index ¢ while r; is the throughput
achieved at ¢ if D bits are transmitted when a channel is free.
An independent realization Xy r, ) of the statistical
distribution 6, described previously has an empirical sample
mean Yk,Tk(t) and Ay, () is a bias added to the empirical

sample mean Yk,Tk(t) to compute UCB coefficients By y 1, (¢)-

update knowledge LEARNING \

next iteration
. L
frequency choice

DECISION

Fig. 2: Learning and decision making processes based on a
machine learning approach.

Then UCB algorithm returns the index of the maximum
value of Bgyr, ) as indicated in Fig. 3. Indeed Bjr, (1)
returns the estimated probability of occupation of all channels,
each one upper bounded by its own A; 1, () bias. So the SU
will choose to transmit at next iteration on the channel having
the highest By r, ) index. A consequence is that the best
channels are also sensed more than others and the knowledge
on their vacancy is closer to the reality.

Adding the bias to the sample mean enables the algorithm
to explore the channels that apparently do not provide a lot of
communication opportunities (i.e. with a low reward). In fact
without bias, the best resource would be picked exclusively
while the knowledge on the others would remain uncertain,
thus provoking potential divergence if bad luck has artificially
lowered first trials on actually “good” channels (and
respectively good luck has artificially increased first trials on
actually “bad” channels).

Choosing a channel on which the algorithm already has a
good knowledge can be related to exploitation. Seeking
knowledge on a low potency channel may be assimilated to an
exploration process. The particularity of the UCB is that it
combines both exploration and exploitation all the time. The
amount of each phase can be controlled through the
exploration parameter a of the algorithm inside parameter
A¢ k- In fact, the smaller a is, the more the algorithm
relies on past trials. The exploration is therefore reduced and
the algorithm is willing to play on well-known channels. The
mathematical expression of the bias Ay r, (), allows us to
provide a proof of convergence [8].

Parameters: K, a exploration parameter.
Input: {ag, 79, Q1,71 oy Te—1, Ap—1}
Output: a,
Algorithm:
If
t < K,a,=t+1
Else

T () « Yo o=k ,Vk

oln (t
At,k,Tk(t) « Tk(i)) ,Vk

Beirety < Xrewy + Avkrice - VK
Return  a; = argmax, (Be k. t)

Fig. 3: UCB algorithm.
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If we define the regret of a policy m by Rf = D pt — W,
where D is the number of bits that the cognitive agent can
transmit per time slot in one channel, p,, is the probability that
the channel £ is free, and W/ is the cumulated throughput on
the time range [0, 7], we can prove that the regret of UCB is -
consistent (with 0<f<1). This means that UCB algorithm can
converge to the optimum set of channels for an infinite time.
However, it has been shown by simulations (both with perfect
sensing [4] and with sensing errors [13]) and experimentations
on real radio signals [14] that convergence to the best channel
is very fast (even faster to a set of best channels). This makes
UCB accurate for learning into realistic radio conditions even
if there are several tens of channels considered [14].

D. WD algorithm

The WD algorithm is structured the same way as UCB
except from the introduction of a preferred set. It also relies
on an index given to each channel, called a weight here, based
on past trials and measures. Each channel is ranked thanks to
this weight which reflects the quality of the resource. The WD
algorithm 1is directly derived for the two stages of RL
algorithms proposed in [15]. After each trial, the weight of the
channel £ that has been chosen for transmission is updated as:

Wisrpe = Wi f (1

where an addition is used if the channel is rewarded and a
substraction is used if it is punished. The decision process is
based on a statistical distribution based on the weights:

Wik

P(k) = 2)

ch{l,...,K}Wt,c
where P, (k) is the probability that the channel & is chosen.
Note that the weight W, does not reveal somehow the
probability of occupation of the channel as for UCB.
Moreover, WD algorithm does not directly select the channel
with the highest weight. If the weight of a channel is above a
given threshold V;, then the channel is selected to enter the
preferred set. When the preferred set is full, the choice is
restricted to the channels in the set only. In other words, the
algorithm moves from exploration to exploitation. The
threshold V, and the size of the preferred set allow us to
control the trade-off between exploration and exploitation.
Here, unlike for UCB algorithm, the two phases are quite
separated, as once the preferred set is full, exploration only
continues on the channels of the set. Another key difference to
be pointed out may be that UCB indexes of all channels are
updated at each iteration as ¢ changes. For WD, the only one
change at the iteration ¢ is the weight from the chosen channel.

III. COMPARISON OF THE PERFORMANCES

To compare the algorithms, two metrics are used. The
percentage of choice of the optimal channel is a common
method to evaluate the performance of learning algorithms.
The cumulative regret is useful because it is directly related to
the blocking probability (probability that a channel picked is
not free). To guarantee an accurate comparison we analyze the

impact of the different control parameters on the
performances. We propose to consider a frequency band
comprising of 8 channels. The probability of occupancy of
each channel used for simulation follows a Bernouilli
distribution. Channels are ordered with no loss of generality so
that their respective probabilities of vacancy are chosen here
as {0.1,0.3,0.4,0.5,0.6,0.7,0.8, 0.9}.

A. Percentage of choice of the optimal channel

From the machine learning point of view, a cognitive agent
should transmit as much as possible in the optimal channel as
it provides the lowest blocking probability for the SU. The
quality of a learning algorithm can therefore be evaluated
considering the percentage of choice of the optimal channel,
which is a usual machine learning criteria.

Fig. 4 compares the percentages of time the most available
channel has been chosen within the set of eight channels, as a
function of the number of trials, for three UCB algorithms
with different values of a (values after UCB in the figure
legend) and WD algorithm. Note that a sets the level of
exploration. As mathematically proven, UCB converges to the
best solution at infinity. However, we can see that after ten
thousand trials, all the 4 studied cases play the most available
channels more than 70% of time and UCB 1.2 obtains this
result after only 1000 to 2000 trials. The higher a, the more
the algorithms explore solutions, even if they are not the best.
In other words, the lower a, the more confidence UCB makes
to its past trials and the less it tries to learn about exotic
solutions. That is why the results are converging slower
towards the best solution when « is high. However, in terms
of optimization, this is a guarantee for UCB to avoid staying
in a local minimum and can always converge. Fig. 4 also
shows that WD algorithm converges faster than UCB, which
will be discussed later.

Fig. 5 is the dual of Fig. 4 for the WD algorithm. Here the
parameter influencing the level of exploration is the size of the
preferred set. In terms of performances, the WD algorithm
benefits from the introduction of the preferred set. In the case
where the optimal channel and some other good resources are
selected for exploitation, the algorithm has more chance to
pick the optimal channel as it restricts its exploration range.
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Fig. 4: Percentage of choice of the optimal channel with
variable exploration parameter a for UCB algorithm.
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Fig. 5: Percentage of choice of the optimal channel with
variable size of the preferred set for WD algorithm.

Consequently it overwhelms UCB at the early stage. We
remark that for a low value of @ and after around 3x10* slots,
both algorithms have approximately similar performances.
Considering a LTE frame iteration period of 1 ms, the
matching of the two algorithms would occur after about 30 s.

This does not mean, however, that UCB-based SUs would
have reached so much less communication opportunities than
WD-based SUs. Selecting another channel than the best one
indeed does not mean it is occupied by a PU. In the CR
context, selecting the best channel is not the goal, while
selecting a good channel may be enough. Although this metric
provides a possible criterion to evaluate the performance from
a machine learning perspective, it does not make indeed a real
sense in the CR context. The most important is to compare the
number of opportunities reached for communicating. The
introduction of the cumulative regret is a way to take it to the
next level. Moreover, it does not convey a clear thought.

B. Cumulative regret

The regret associated with an action is defined in the
machine learning community as the difference of the
probability of availability of the optimal channel and the
probability of availability of the selected one. The summation
of the regrets over all the channels and time slots gives the
cumulative regret. Such a metric is a better metric for the
comparison because it reflects the conflicts with the PU. In
fact a high level of regret means that a huge amount of
mistakes were made during the learning process compared to
the systematic selection of the best channel. This reflects
consequently the potential wastes of communication
opportunities. We understand now why it is an utmost priority
to keep the regret level as low as possible. As in the previous
section, the following two figures compare UCB and WD for
different parameters @ for UCB and size of the preferred set
for WD. Fig. 6 and Fig. 7 show that the WD algorithm
produces a very low regret compared to UCB. Once again, it
benefits from the introduction of the preferred set that focuses
the knowledge on a few good channels. In compensation the
WD algorithm cannot provide an equivalent estimation outside
of the set. This global lack of knowledge makes it very
sensitive to errors in the first few steps when it fills up the set.
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Fig. 6: Cumulative regret with variable exploration parameter
for UCB algorithm.
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Note that when the UCB’s exploration parameter is
increased, the cumulative regret is growing since more
exploration is done throughout the learning process. Moreover
the size of the preferred set influences the level of cumulated
regret because it bounds the regret when switching to the
exploitation phase. In the ideal case for a set of size 3, the best
3 channels are supposed to be selected. Hence the maximum
instantaneous regret value is 0.2 (0.9-0.7) while it reaches 0.8
for UCB (0.9-0.1). Note also that WD’s cumulative regret is
growing faster at the infinite than UCB’s. We can explain that
by the presence of the set that focuses the exploitation on 3
channels. The algorithm has been structured such that it
probes those three channels. On the contrary, UCB is designed
to converge towards the optimal channel, which ensures a very
low growing rate of the cumulative regret at the infinite.

C. Robustness

The robustness can be defined here as the ability for an
algorithm to guaranty a fast convergence towards the best
channel. While the UCB algorithm was proven to converge to
the optimal channel, WD algorithm is purely empirical, which
does not exclude some diverging scenarios. Such cases occur
especially when “bad luck” happens at the early stage, while
deciding which channels are selected for the preferred set. If
several channels actually have a high probability to be free,
the competition to enter the preferred set can provoke some
scenarios where the optimal channel remains unpicked.
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Fig. 7: Cumulative regret with variable size of the preferred
set for the WD algorithm.
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Fig. 8: Cumulative Regret in the case of divergence for the
WD algorithm.

The probability of missing the optimal channel increases
also when the size of the preferred set is reduced. Even if the
threshold is increased significantly to extend the exploration
phase, the WD algorithm does not explore as efficiently as
UCB. Actually, as good resources are granted rapidly of a
very high weight value, the probability to explore other
channels is very low. Effectively, the more the exploration
phase lasts, the less bad resources are probed. WD algorithm
is then blocked picking only the good resources he found at
the early stages. Fig. 8 shows a case of divergence for the WD
algorithm. The temporal vacancy of the channels here follows
the following Bernoulli distribution: {0.7, 0.7, 0.7, 0.3, 0.2,
0.6, 0.8, 0.9}. This context is a little bit harder as more than 3
channels (the size of the preferred set) have good chances to
be free at first trials. So once the algorithm fills its preferred
set, even another very good channel may be excluded. The
cumulative regret of the WD, previously widely below the
regret of the UCB is now increasing linearly because the
optimal channel was not selected to enter the preferred set.

IV. MACHINE LEARNING ANALYSIS IN TERMS OF
DATA VOLUME EFFECTIVELY TRANSMITTED

The metrics used in the previous section to compare the
algorithms are those of the machine-learning community. Yet
we showed that they are not suitable to efficiently compare RL
algorithms in the context of CR, as the outcomes are different.
The most important criterion in CR systems is the amount of
data effectively transmitted opportunistically.

A. First new evaluation criteria. effective
cumulative regret

The cumulative regret does not exactly reflect truthfully the
ability of an algorithm to find transmission opportunities. Not
choosing the optimal channel does not necessarily mean that
the throughput will be nulled at this stage since other channels
might be free. As a result, it would be more relevant to
consider another metric that we could call the effective
cumulative regret or effective regret. It is based on the
cumulative regret but takes into account the impact of
successful trials by nulling the regret when the chosen channel

is actually free, even if it is not the optimal resource. The
effective cumulative regret R, s is defined as

Reff = Zt et,at(eapt - gat) 3)
_ 0 ifthe band a, is free
where e, 5, = { 1 ot

This new definition infers that the regret is lowered down
when ‘good luck’ happens. It allows us to evaluate more
accurately the algorithm’s behavior while not choosing the
optimal channel, which occurs at a significant number of
times, especially at the early stages. Bringing such
probabilistic considerations in the comparison is necessary to
evaluate the actual performance of the global CR system.

Fig. 9 shows the simulation results of the effective
cumulative regret for both policies. We also displayed on the
same plot the classic cumulative regret presented in the
previous section. We notice that the growing rate of the
effective regret is lowered by the communication opportunities
reached out of the optimal channel. The WD algorithm in
particular scales very well since it exploits the channels in its
preferred set more uniformly than UCB. UCB policy tends to
pick the optimal channel most of the time and explore the
other channels periodically (jumps in the curve). Considering
the effective regret will only affect the height of the jumps.
We deduce from these results that the gap between UCB and
WD at the infinite is finally closing up. If we consider the
growing rates between slots 3000 and 10000, we notice that
WD’s effective cumulative regret slope has been divided by
4.74 while this same slope is only divided by 3.03 for UCB.

B. Second new evaluation criteria: percentage of
successful trials

Following the same idea of using metrics suitable for CR
purposes, we suggest the percentage of successful trial. The
percentage of choice of the optimal channel is not suitable to
fairly estimate one policy’s performances indeed. Choosing
the optimal channel does not guarantee that the SU will reach
an opportunity of transmission because the channel might be
occupied. Moreover picking another channel may also provide
a transmission opportunity (imagine the case where several
channels are mostly idle).
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Fig. 9: Effective and classic cumulative regret for both
algorithms.
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So we consider it is useful to take into account the primary
network’s usage as part of the metric. It led us to consider the
percentage of successful trial that is closely related to the
averaged throughput of the system. The metric is constructed

as follows:

X
Pouccess = L “4)

t
5 = { 1 ifband a; is freeatt
t 0 otherwise.

with

Fig. 10 shows the percentage of successful trials for both
policies. We remark that WD reaches more transmission
opportunities at the early stage, which is coherent with the
higher percentage of choice of the optimal channel also
observed on the same graph. We see that after approximately
3000 slots both policies are equivalent but once again, the WD
algorithm is converging faster. The percentage of successful
trial is converging towards the maximum channel capacity
(although we only consider the percentage of availability
here), which is 90%. This metric allows us to analyze both the
maximum amount of data that can be transmitted as well as
the time that the policy takes to reach it. It is consequently a
metric most suitable for a CR perspective. As a conclusion,
the new metrics we propose for RL algorithms’ performance
evaluation mitigate the regret thanks to the effective
cumulative regret. They also decrease the non successful trial
rate at the beginning of the process while providing a clear
idea of communication opportunities. They consequently offer
a fair and consistent view on CR matters.

V. CONCLUSION

The comparison of the WD and UCB algorithms has shown
that the main difference of the two RL approaches can be sum-
up a trade-off between the ability to have an overall
knowledge of the occupancy of the spectrum and the
efficiency of convergence. As the WD algorithm prioritizes a
fast convergence, it cannot provide the same level of
robustness as the UCB algorithm. The more RL algorithms
rely on past trials, the faster they can converge to the optimal
channel but the risk of divergence is also increased. The
choice between the two approaches should mainly be based on
a prior estimation of the PU traffic. WD will be preferred if
fast convergence is wanted whereas UCB will be picked to
provide more robustness in the cases of high uncertainty. We
have also defined two new metrics, closer to CR philosophy.
We will also propose in the future a mixed solution,
combining the advantages of both WD and UCB.
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