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Abstract- To produce multiple uncorrelated Rayleigh fading
waveforms is often required for simulating wideband fading
channels, multiple-input multiple-output (MIMO) channels, and
diversity-combined fading channels. In this paper, a new parame-
ter computation method for deterministic sum-of-sinusoids (SoS)
channel simulators is proposed to guarantee the uncorrelatedness
between different simulated Rayleigh fading processes. Numerical
and simulation results show that the resulting deterministic SoS
channel simulator can accurately and efficiently reproduce all
the desired statistical properties of the reference model.

I. INTRODUCTION

MIMO technologies employing multiple antennas at both
the transmitter and receiver have been suggested to be used
in evolved Universal Terrestrial Radio Access (E-UTRA) and
Universal Terrestrial Radio Access Network (E-UTRAN) [1].
This is due to the fact that MIMO technologies can greatly
improve the signal quality and enhance the system capacity.
For the design and performance evaluation of such MIMO
systems, a thorough understanding and an accurate modeling
of the underlying MIMO channels are indispensable.

In the 3rd Generation Partnership Project (3GPP), the Spa-
tial Channel Model (SCM) [2] and the wideband SCM [3]
were recommended for simulating certain MIMO schemes,
beamforming, and spatial multiplexing for bandwidths up to
5MHz and above 5MHz, respectively [4]. On the other hand,
the SCM is of less interest for receiver/transmit diversity and
initial space-time coding evaluations [4]. In order to simplify
the initial MIMO simulation work and facilitate the rapid
generation of early results for E-UTRA and E-UTRAN, there
is a need to develop MIMO channel simulators which account
for only temporal characteristics while neglect the spatial
properties of MIMO channels. This is essentially to simulate
multiple Rayleigh fading processes correlated in time but
uncorrelated between processes, under the assumption of 2-D
isotropic scattering environments [5]. As well as being useful
for simulating MIMO channels, a channel simulator capable
of generating multiple uncorrelated fading waveforms is also
desirable to simulate, e.g., wideband and diversity-combined
fading channels.

The sum-of-sinusoids (SoS) channel modeling approach [6],
[7] has extensively been applied to the simulation of Rayleigh
fading channels. In order to generate multiple uncorrelated

Rayleigh fading waveforms by using SoS channel simulators,
different parameter computation methods [8]-[16] have been
investigated. Jakes' method [8] and its derivatives [9]-[11]
are designed for deterministic SoS channel simulators, which
have the advantage of simulation efficiency. However, these
channel simulators still retain some undesirable properties. For
example, the cross-correlation function (CCF) of any pair of
underlying complex processes is generally not zero for the
models in [8]-[10]. The inphase and quadrature components
of each underlying complex process have different autocor-
relation functions (ACFs) for the model in [11]. To remedy
the drawbacks of the deterministic channel simulators in [8]-
[11 ], Zheng and Xiao [ 12], [13 ] reintroduced random param-
eters into the employed sinusoids, resulting in non-ergodic
stochastic SoS channel simulators. By averaging over a large
number of simulation trials, the developed stochastic channel
simulators in [12], [13] can approximate closely the desired
statistical properties. However, relatively high computational
complexity has to be paid for the channel simulators in [12],
[13] due to their non-ergodic stochastic nature.
The method of exact Doppler spread (MEDS) was presented

in [14] to determine the parameters of deterministic SoS
channel simulators. In [15], the MEDS was revisited and the
additional boundary conditions were investigated for produc-
ing multiple uncorrelated Rayleigh fading waveforms with the
deterministic SoS channel modeling approach. However, with
the original MEDS, large values have to be chosen for the
numbers of sinusoids when more than 4 uncorrelated Rayleigh
processes are produced [15]. This will greatly increase the
complexity and therefore, restrict the use of the MIMO channel
simulator. An extended version of the MEDS was further
presented in [16], which is in nature a quasi-stochastic method
but shows better performance than the methods in [12], [13]. In
this paper, a new deterministic parameter computation method
is proposed for producing multiple uncorrelated Rayleigh
fading waveforms without using large numbers of sinusoids for
SoS channel simulators. The numerical and simulation results
highlight the advantages of the presented channel simulator
over other forms of channel simulators in [8]-[16] in both
accurate reproduction of all the desired statistical properties
of the reference model and efficient implementation due to
the retained deterministic nature.
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The rest of the paper is organized as follows. Section II
briefly reviews the desired statistical properties of the reference
model. An efficient parameter computation method for deter-
ministic SoS channel simulators is proposed in Section III.
Section IV compares the statistical properties of the reference
model and the simulation model. Finally, the conclusions are
drawn in Section V.

II. THE REFERENCE MODEL
Our purpose is to generate L uncorrelated Rayleigh fading

processes. It is well-known that a Rayleigh process is formed
by taking the absolute value of a zero-mean complex Gaussian
random process. Ideally, these L uncorrelated complex Gaus-
sian random processes should satisfy the following criteria:
1) The inphase and quadrature components of each complex
process are zero-mean independent real Gaussian random
processes with identical ACFs; 2) The CCF of any pair of
complex Gaussian random processes must be zero.

Let us denote the desired fth (1 = 1, 2,... ,L) Rayleigh
fading process by ( (t), which is given by

Here, j = 1, p(t) is a zero-mean complex Gaussian
random process, 1i,f (t) and u2, (t) are uncorrelated real
Gaussian random processes with common variance oo. The
envelope PDF of (; (t) is the Rayleigh distribution [8]

2

p(x) = exp(- 2)' >O. (2)
Adopting Clark's two-dimensional isotropic scattering the-

ory [5], the statistical properties of the reference model are
specified by the following ACFs and CCFs [17]:

(T) = E{ti,f (t)ii,f (t + T)}
= 0 J0 (27ffm7T)

rMl t82 (T) = E{Ii, (t)42, (t + T)}
rM (T) E=F{,i2, (t),il, (t + T)}

r I (T) E{pf (t)pf (t + T)}
2= 2 Jo (27ffmT)

rtA (T) E{pf (t)IL (t + T) 0

0
0

(3)
(4)
(5)

(6)
(7)

where
Ni

i,,(t) = ci,n, COs(2w7fi,n,et + Oi,n,C), i 1, 2 (9)
n=l

Here, Ni defines the number of sinusoids, mainly determining
the realization expenditure and the accuracy of the resulting
channel simulator. The gains Ci,n,f, the discrete frequencies
fi,n,f and the phases Oi,n,f are real-valued parameters, which
are kept constant during simulation. Consequently, Pi,e(t) is a
deterministic function and the resulting channel simulator is of
deterministic feature. It follows that the statistical properties
of our deterministic SoS channel simulator must be calculated
by using time averages instead of statistical averages. The
envelope PDF P(, (x) of f (t) can be computed by [ 14]

27rP4t(x) xj Pti (xcos) p2t(xsinO) dO
where

(10)

oo Ni-
P i ,e (x) = 2 j 17 Jo(27Fci,n,,v) cos(27vx) dv,

i = 1,2 . (11)

The time-averaged correlation functions of the simulation
model, corresponding to (3)-(7) of the reference model, can
be expressed as follows:

rM (T) = NE C2,f cos(217fi,n,, T)
n=l

rltt12, (T) = 0, if fl,n,# ±±f2,m,
rlmt2,.ey ,e (T) = f,l-t1,eA2,, (-T)

(T) = E ,i,ei, (T) +
i=l

j [rt(1,) 2,r (T) -rt2,A1, (T)+

fltemA (T) =f-Ir,eAIe,U A (T) + fl-t2,,M2,A (T) +
j [fl-t1,,e A2,A (T) - f-t2,#8,e (T) I

(12)

(13)
(14)

(15)

(16)

In (16), the CCFs rt,e ,k(T) between ,uf, (t) and ,Uk,A(t)
(i,k = I1,2 and X,> = I1,2,~... L: with f :t A) are given by

for i = 1,2 and ,> 1,2,... ,L with f :t A. Here, E{ }
refers to the statistical average operator, fm is the maximum
Doppler frequency, and J0(.) denotes the zeroth-order Bessel
function of the first kind. The goal of our channel simulator
is then to reproduce the above desired statistical properties as
accurately and efficiently as possible.

III. THE DETERMINISTIC SoS CHANNEL SIMULATOR
The central limit theorem justifies that a Gaussian random

process can be approximated by the superposition of a large
number of properly weighted sinusoids. This fact actually
serves as the foundation of SoS channel simulators. For our
simulation model, the fth (1 1, 2,... ,L) Rayleigh fading
process is modeled as

(et)18 () |= 11,(t) + jU,(t) (8)

r,i,e1k (T) =0, if fi,n,,#7 ±fk,m,.- (17)

From (13), (14), and (17), it is clear that the different pro-
cesses ,uf, (t) and ,Uk,A(t) (i, k = 1, 2 and X, A = 1, 2,... , L;
i = k and f = A do not hold at the same time) are uncorrelated
if and only if

fi,n,# ±i±fk,m,A (18)

holds for all n = 1,2,...,Ni and m = 1,2,...,Nk. This
means that the discrete frequencies for different uncorrelated
processes must be disjoint. The inequality (18) further allows
us to write rMA1,e,27e(T) = rI, 2,,e(T) =0 rA2,,1(T)
r 2 eMA1(T) 0= , and rA (T) = re A(T) 0. In the follow-
ing, a new parameter computation method will be introduced
concerning how to fulfill the desired boundary constraint (18).
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With our proposed method, the phases Oi,n,, in (9) are
simply considered as the outcomes of a random generator
uniformly distributed over (0, 27], while ci,n,, and fi,n,, are
given by

Ci,n,f = (Jo\N (19)

fi,n,f = fm sin[ 1 ] + (fm~[ 4N, 1)£

respectively, where the quantity E will be defined subsequently.
A close observation indicates that the above parameter com-
putation method will reduce to the original MEDS in [14]
if ( -1) = 0, i.e., f 1 or E = 0. Therefore, we call
the proposed method the modified MEDS (MMEDS), which
includes the original MEDS as a special case.
The substitution of (20) into (18) tells us that

N1 2n- 1
N2 2m 1 (21)

for all n =1,2,. . , N1 and m 1,2,.. .,N2 must be
fulfilled in order to guarantee fl,n,, ±f2,rn,C. This implies
that that the ratio of N1 to N2 should not be the ratio of
two odd numbers. In this paper, we choose N2 = N1 + 1 for
simplicity. In order to satisfy the condition fi,r,f# ±fk,m,A
(i, k = 1, 2 and X, A = 1, 2, ... ., L: with f :t A), the quantity E

must be chosen in such a way that the following inequality is
fulfilled

£ t +f sin[ 4(2ui 1)
T

(2m 1)w 2)±(A -£){i[ 4N, 4Nk (2

Given any fn, L, N1, and N2, the values of the right side
of the above inequality can easily be calculated. Then, the
quantity E can be determined.
A properly selected E will make the CCF of any pair of

generated processes be zero, which is one of the desired
properties. In the following, we will investigate the impact of £
on the approximation quality of the ACFs, e.g., r (T) -

r,_Qe,, e(T). An appropriate measure of the error between
the approximate ACF fAi "e i e (T) in (12) and the exact ACF
rli,eli e (T) in (3) is the following mean-square error (MSE)
defined by

Tmax
Ei, = 1 J [r ,( ( Tre(T)]2 dT (23)

Tmax
A

0

where Tmax denotes an appropriate time interval [0, Tmax]
over which the approximation of rMi eMi e (T) is of interest.
According to our investigations, the value Tmax = Ni/(2fm)
has turned out to be suitable. Fig. 1 shows the MSE Ei,e
of the ACF as a function of the quantity E with different
values of T. In this example, we used fm = 91 Hz, jo 1,
L = 4, and Ni = 10. It can clearly be observed that the MSE
increases with the increase of the absolute value of E, while the
minimum MSE is obtained when E = 0. This suggests us to
choose an infinitesimal value for E, e.g., E = 10-7, as long as
it satisfies (22). Compared between L = 4 different processes,
the best approximation to the desired ACF is obtained when

f 1, while f = 4 provides the worst fitting. From Fig. 1, we
can conclude that the original MEDS (E = 0 or f = 1) provides
the best fitting result. In Fig. 2, we compare the ACFs of the
quadrature component for the reference model, the simulation
model by using the MEDS (E 0) and the MMEDS with
E = 0.01 and E = 1. Here, (o7 1, Ni = 10, and f = 2
were used. It is obvious that the best approximation result of
the ACF is obtained by using the MEDS. When E = 0.01, the
resulting ACF with the MMEDS is nearly indistinguishable
from that obtained by using the MEDS. Even when E = 1, the
approximation quality of the resulting ACF is still acceptable.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the statistical properties of the resulting
deterministic SoS channel simulator by using the MMEDS
will be investigated in detail and compared with those of the
reference model.
We can easily show that the deterministic process Pi,f (t) in

(9) with the parameters determined by the MMEDS has the
desired mean value 0 and variance Jo2. The conditions (21)
and (22) make sure that the inequality (18) is fulfilled, which
guarantees that the CCFs shown in (13), (14), and (16) are
identical with those in (4), (5), and (7), respectively. It can
also be shown that the substitution of (19) into (10) results
for Ni -> oc in P( (x) --> p (x). Similarly, with the help
of (19) and (20), rf1,e1,Q(T) -> r,_Q , t(T) and rf (T) >

rkele(T) can be obtained when Ni -> oc and -> 0. In
the following, we demonstrate the approximation qualities of
p (x) p( (x), r,ft,iA e(T) - r,-, e i e (T) and r1,ke(T)
rlee(T) when finite values of Ni are taken. A fixed value
10-7 was selected for the quantity E. Unless specified, f = 2
was used to get the results.

Fig. 3 shows the excellent agreement between the Rayleigh
distribution (o2 1) and the approximate envelope PDF with
N1 = 9 and N2 10. The corresponding simulated envelope
PDF obtained from the output of the channel simulator is also
presented in the figure to validate the analytical result. Fig. 4
illustrates the ACF with Ni = 10 and the CCF with N1 = 9
and N2 = 10 by using the MMEDS. Again, the simulation
results are provided for reasons of verification. The ACF and
CCF of the reference model are also demonstrated in the figure
for comparison purposes. Clearly, the CCFs of the reference
model and simulation model are equal to 0 for all T. The ACF
of the simulation model matches almost perfectly the desired
one if the normalized time delay fmT is within the interval
[0, Nj/2], which includes Ni zero-crossings of the ACF. In
case that fmT > NiI2, the ACFs of the simulation model
and reference model will diverge gradually and never converge
again. A better approximation over larger time delays can only
be achieved with the increase of Ni. It is also shown in Fig. 5
that the ACFs of the complex envelope for the reference model
and simulation model are very close to each other when fmT iS
located in the interval [0, min{N1, N2}/2]. Due to the fact that
short time delays, e.g., fmT < 0.3 [18], are of more interest
for most communication systems, the MMEDS with small
numbers of sinusoids Ni is actually an excellent method in
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terms of the above interested correlation properties. In Fig. 6,
two uncorrelated simulated fading envelops are presented by
using the MMEDS with (or = 1, fm = 91 Hz, N1 = 9,
N2= 1O,and =2,3.
Compared with the MEDS, the proposed MMEDS provides

the same approximation to the desired PDF but worse approx-
imations to the desired quadrature and complex ACFs when
f > 1. However, the performance degradation can completely
be neglected as long as an infinitesimal value is chosen for
the quantity E. On the other hand, the MMEDS does not
require the increase of the numbers of sinusoids when more
uncorrelated processes are produced, while the MEDS [15]
needs. This promising advantage of the MMEDS allows us to
simulate a very large number of uncorrelated fading processes
without increasing the complexity of the channel simulator.

Compared with the non-ergodic stochastic SoS channel sim-
ulators in [12], [13], the presented deterministic SoS channel
simulator with the MMEDS has much better simulation effi-
ciency since the calculation of its statistical properties does not
need the average of a number of random trials. With the same
numbers of sinusoids, our deterministic channel simulator has
similar performance to that of the stochastic simulators in [12],
[13] in terms of the amplitude PDF. The performance of the
deterministic channel simulator is comparable to or even better
than that of the stochastic channel simulators in [12], [13] for
the approximation of the ACFs inside the specified time delay
ranges, e.g., fmaxT C [0, Ni,f/2] for rMi i t (T). Outside the
specified time delay ranges, which may not be relevant for
communication systems [1 8], the stochastic channel simulators
in [12], [13] provide much better approximation to the desired
ACFs than our deterministic channel simulator. Furthermore,
the accuracy of the statistic properties of the non-ergodic
stochastic channel simulators can be improved by increasing
either the numbers of sinusoids or the number of random
trials to be averaged. On the other hand, the performance
of the presented deterministic channel simulator can only be
improved by increasing the numbers of sinusoids.

It is well known that multiple cross-correlated processes
can be obtained by using a linear combination of uncorrelated
processes [17], [19]. As shown in [19], the above presented
deterministic channel simulator can easily be extended to
the generation of multiple cross-correlated Rayleigh fading
processes for simulating more realistic MIMO channels.

V. CONCLUSION

In this paper, a new parameter computation method, the so-
called MMEDS, for deterministic SoS channel simulators is
presented to generate multiple uncorrelated Rayleigh fading
processes, which are useful for the modeling of MIMO,
wideband, and diversity-combined multipath fading channels.
Compared with the MEDS, the MMEDS provides similar
good approximations to the desired statistical properties of
the reference model, while requires much lower numerical
computation expenditure. In order to guarantee the uncorre-
latedness between different simulated fading processes, the
MMEDS is quite simple and straightforward. The MEDS,

however, demands the increase of the numbers of sinusoids
and therefore the increase of the channel simulator complexity.
Clearly, the MMEDS overall outperforms the MEDS and is
highly recommended for the simulation of a large number of
uncorrelated fading processes.
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