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Abstract—Extremely large-scale multiple-input multiple-
output (XL-MIMO) is a promising technology for the
sixth-generation (6G) mobile communication networks. By
significantly boosting the antenna number or size to at least an
order of magnitude beyond current massive MIMO systems,
XL-MIMO is expected to unprecedentedly enhance the spectral
efficiency and spatial resolution for wireless communication.
The evolution from massive MIMO to XL-MIMO is not simply
an increase in the array size, but faces new design challenges,
in terms of near-field channel modeling, performance analysis,
channel estimation, and practical implementation. In this
article, we give a comprehensive tutorial overview on near-field
XL-MIMO communications, aiming to provide useful guidance
for tackling the above challenges. First, the basic near-field
modeling for XL-MIMO is established, by considering the new
characteristics of non-uniform spherical wave (NUSW) and
spatial non-stationarity. Next, based on the near-field modeling,
the performance analysis of XL-MIMO is presented, including
the near-field signal-to-noise ratio (SNR) scaling laws, beam
focusing pattern, achievable rate, and degrees-of-freedom (DoF).
Furthermore, various XL-MIMO design issues such as near-field
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beam codebook, beam training, channel estimation, and delay
alignment modulation (DAM) transmission are elaborated.
Finally, we point out promising directions to inspire future
research on near-field XL-MIMO communications.

Index Terms—Extremely large-scale MIMO, near-field model-
ing, non-uniform spherical wave, spatial non-stationarity, near-
field SNR scaling law, beam focusing pattern, near-field codebook,
near-field beam training, near-field inter-user interference.

I. INTRODUCTION

A. Background

While the fifth-generation (5G) mobile communication
networks are being deployed worldwide, both academia and
industry have envisioned the roadmap to the future sixth-
generation (6G) wireless systems to accommodate diverse
foreseeable applications such as immersive reality, metaverse,
and fully autonomous vehicles [1]–[5]. In June 2023, the
International Telecommunication Union (ITU) has released its
visions for 6G, together with the timeline, future technology
trends, recommended frameworks, which marks the official
kick-off of the journey towards 6G standardization [6]. In
particular, six major usage scenarios are defined, including
immersive communication (eMBB+), massive communication
(mMTC+), hyper reliable and low-latency communication
(URLLC+), which are extensions of the usage scenarios de-
fined in 5G, as well as three new items that will flourish in the
new era of 6G, namely, integrated sensing and communication
(ISAC), integrated artificial intelligence (AI) and commu-
nication, and ubiquitous connectivity. Moreover, customized
key performance indicators (KPIs) for IMT-2030 (6G) are
presented, which consist of nine enhanced capabilities and six
new capabilities. Compared to 5G, 6G is expected to achieve
a 100-fold increase in peak data rate (from Gbps to Tbps), a
10-fold latency reduction with a hyper-reliability requirement
of 99.99999%, a 10-fold improvement in connection density
[5], [7]. These stringent requirements, however, may not be
achieved by existing 5G technologies, hence calling for new
and disruptive technologies for 6G.

In this context, several promising 6G candidate technologies
have been proposed, such as extremely large-scale multiple-
input multiple-output (XL-MIMO) [8]–[11], ISAC [12], and
Terahertz (THz) communications [13], [14]. In particular, as a
natural evolution of the contemporary massive MIMO technol-
ogy, XL-MIMO further boosts the number of antennas by at
least an order of magnitude, e.g., several hundreds or even
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thousands of antennas [8], [15]–[17], thus unprecedentedly
improving the spectral efficiency and spatial resolution for
wireless communication and sensing. As such, XL-MIMO
is perceived to be a key enabling technology for 6G to
fulfill several stringent KPIs, such as peak data rate, spectral
efficiency, reliability, positioning and sensing accuracy [15],
[18]. Note that the recent evolutions of mobile communication
networks are accompanied by the advances in MIMO technol-
ogy. Initially, the Third Generation Partnership Project (3GPP)
standardized the first MIMO specification in Release 7 at the
tail end of the third generation (3G) era [19]. Subsequently,
MIMO technology flourished in the fourth-generation (4G)
mobile networks and was recognized as the essential trans-
mission technology, where the 4G long-term evolution (LTE)
advanced network supported up to 8×8 MIMO. Hitherto, MI-
MO technology had evolved to massive MIMO in 5G, whose
typical configuration at the base station (BS) is 64 antenna
elements [8], [20]. Looking forward to the forthcoming beyond
5G (B5G) and 6G era, massive MIMO is expected to evolve
towards XL-MIMO, so as to propel the aforementioned usage
scenarios into a reality. For example, the drastically improved
beamforming gain and spectral efficiency of XL-MIMO are
believed to be essential for eMBB+ applications, such as the
augmented/virtual/mixed reality and holographic display [4],
[15], [21], [22]. Besides, deploying an extremely large number
of antennas results in large array aperture, thus enhancing the
array spatial resolution unprecedentedly, which is beneficial to
mMTC+, as well as the high-accuracy localization and sensing
[4], [15], [23]. Besides XL-MIMO, other similar terminologies
used in the literature include extremely large aperture array
(ELAA) [8], ultra-massive MIMO (UM-MIMO) [5], [24], and
extremely large aperture massive MIMO (xMaMIMO) [25].

B. XL-MIMO: New Channel Characteristics

However, the evolution from massive MIMO to XL-MIMO
is not a simple increase in antenna number or size, but fun-
damentally changes the channel characteristics, e.g., shifting
from the conventional far-field uniform plane wave (UPW) to
the new non-uniform spherical wave (NUSW) propagation [9],
[10], and from the conventional spatial stationarity to spatial
non-stationarity [26]–[29], as discussed below.

1) NUSW: The deployment of XL-MIMO at the BS, along
with the progressively shrinking cell size, renders the users/
scatterers more likely to be located in the near-field region,
where the conventional UPW assumption is no longer valid.
Note that the classic criterion for distinguishing the near- and
far-field regions is the Rayleigh/Fraunhofer distance, given by
rRayl , 2D2/λ = 2D2f/c [30]–[34], where D and λ denote
the array physical dimension and the signal wavelength, f and
c denote the carrier frequency and speed of light, respectively.
Consider a uniform linear array (ULA) of M array elements,
where adjacent elements are separated by d = I λ2 , with I
denoting the antenna separation parameter. In general, I ≥ 1
is considered to avoid mutual coupling among elements. Note
that for standard arrays, the elements are separated by half
wavelength, and we have I = 1. The physical dimension is
D = (M − 1) d = (M − 1) Iλ/2. As a result, the Rayleigh
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(a) Rayleigh distance versus the physical dimension D.
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(b) Rayleigh distance versus the antenna number M .

Fig. 1. An example of the Rayleigh distance. For fixed D, Rayleigh distance
increases with the increase of frequency, whereas for fixed M , it increases as
the frequency gets lower.

distance can also be expressed as rRayl = (M − 1)
2
I2c/ (2f).

The above two alternative expressions for rRayl imply that for
any given frequency, the Rayleigh distance increases quadrat-
ically with the array physical dimension D, antenna number
M , and antenna separation parameter I . On the other hand,
the relation of rRayl on the frequency f depends on whether
the physical dimension D or the number of antennas M is a
specified parameter. For the former, Rayleigh distance increas-
es linearly with the frequency f when the physical dimension
D is fixed, whereas for the latter, larger Rayleigh distance is
resulted at lower frequency instead when the antenna number
M is fixed. Fig. 1 illustrates the Rayleigh distances of a ULA
versus D and M , respectively, by considering three carrier
frequencies f = 3.5, 28, and 73 GHz, with I = 1. Two
important observations are made from the figure. Firstly, in
the XL-MIMO regime, the Rayleigh distance can be up to
hundreds or even thousands of meters, which is comparable
or even larger than typical cell size. This implies that the
near-field region that has been previously ignored should be
considered for XL-MIMO systems. Secondly, different from
some existing misconceptions that near-field effect only exists
in high-frequency or low-frequency systems, Fig. 1 shows that
it may exist for all frequency bands, depending on whether an
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(a) Uniform plane wave (b) Non-uniform spherical wave

Fig. 2. Illustration of far-field UPW versus near-field NUSW.

array with large physical dimension or large number of array
elements is deployed.

As a result, when moving towards the XL-MIMO regime,
the more general NUSW is required to accurately characterize
both the phase and amplitude variations across array elements.
Fig. 2 illustrates the differences between the far-field UPW
and near-field NUSW. For the far-field UPW model, for each
signal source, all the array elements are assumed to share
identical angle of arrival/departure (AoA/AoD), and the phases
vary linearly across array elements, with the phase gradient
depending on the AoA/AoD. Besides, all array elements are
assumed to have equal signal amplitude for the same signal
path. By contrast, for the more general near-field NUSW
model, the phases vary nonlinearly across array elements and
the assumption of equal AoA/AoD become invalid in general.
Moreover, for the same signal path, the amplitudes of different
array elements may no longer be equal in general, due to the
non-uniform waves, as illustrated by the faded lines from the
center to the edge in Fig. 2(b).

2) Spatial Non-Stationarity: On the other hand, spatial non-
stationarity means that different from existing spatially sta-
tionary MIMO or massive MIMO systems, different portions
of the XL-MIMO array may undergo distinct propagation
environment, such as visible cluster sets and/or obstacles.
Besides, even when all array elements share the same vis-
ibility regions (VRs), XL-MIMO also exhibits spatial non-
stationarity since the channel correlation across each pair of
array elements depends on their actual locations [27], instead
of their relative locations only as in conventional MIMO
systems.

It is also worth mentioning that there exist differences
between near- and far-field regions in mutual coupling and
polarization. Specifically, the mutual coupling effect refers
to the interaction or coupling between the antenna elements
within the array. When an extremely large-scale number of
array elements are packed in a dense area with quite small
antenna spacing, the distorted radiation pattern introduced by
mutual coupling should be considered, which may result in a
low radiation efficiency [35]. On the other hand, polarization is
the orientation of the electric field vector in an electromagnetic
(EM) wave, and the mismatch between the polarization of
receive antenna and that of the incident wave is another

(a) Collocated XL-MIMO (b) Sparse XL-MIMO

(c) Modular XL-MIMO
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CPU
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(d) Distributed XL-MIMO

Fig. 3. Different architectures of XL-MIMO.

important factor for near-field communications [36]–[39]. In
contrast to the far-field UPW model where all array elements
have the identical polarization mismatch, the array elements
will experience different mismatch due to the distinct AoAs
in the near-field region [37].

C. Different Categories of XL-MIMO

XL-MIMO can be classified according to different criteria,
as elaborated below.

1) Discrete Versus Continuous-Aperture XL-MIMO: Based
on the implementation methods, XL-MIMO can be divided
into discrete antenna array and continuous-aperture surface.
The state-of-the-art MIMO and massive MIMO systems are
realized with discrete antenna arrays, where the array elements
are connected to radio-frequency (RF) chains and analog-to-
digital converters/digital-to-analog converters (ADCs/DACs)
[40]. Typically, the adjacent array elements are separated by
half wavelength, so as to circumvent the impact of mutual
coupling among elements and reap the spatial diversity gain.
However, thanks to the recent advances in metamaterials and
metasurfaces, the element separation may be reduced to sub-
wavelength, rendering it possible to pack more array elements
in the same physical dimension [41]. In particular, when
an uncountably infinite number of antennas are packed in a
compact surface, the continuous-aperture or quasi continuous-
aperture antenna array can be realized, also known as Holo-
graphic MIMO [41], [42] or large intelligent surface (LIS)
[43], [44]. Different from the conventional discrete antenna
array, the whole continuous-aperture surface is capable of
transmitting/receiving signals, thus enabling a signal process-
ing paradigm shift from the conventional hybrid digital-analog
domain to the EM domain. On the other hand, the sub-
wavelength architecture renders the effect of mutual coupling
and spatial correlation among elements non-negligible for
practical modeling and communications [41], [45]. It is also
worth mentioning that metasurface based XL-MIMO differs
from the extensively studied intelligent reflecting surfaces
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Fig. 4. Illustration of XL-MIMO application scenarios in future wireless networks.

(IRSs) or reconfigurable intelligent surfaces (RISs) [46]–[50],
where the active metasurface based XL-MIMO, such as dy-
namic metasurface antenna (DMA) [51] and reconfigurable
holographic surface (RHS) [52], [53], possesses the capabil-
ities of transmitting/receiving signals, while the semi-passive
IRS/RIS without requiring RF chains is usually used for signal
reflection. Unless otherwise stated, this article focuses on XL-
MIMO based on discrete array architecture.

2) Collocated, Sparse, Modular, and Distributed XL-
MIMO: Depending on the array element spacing, XL-MIMO
may be implemented in collocated, sparse, modular, and
distributed architectures, as illustrated in Fig. 3. The col-
located XL-MIMO is the standard array architecture where
all antenna elements are placed on a common continuous
platform, with adjacent elements typically separated by half
wavelength, as illustrated in Fig. 3(a). As the antenna number
drastically increases, the collocated XL-MIMO may face prac-
tical deployment difficulty since a large continuous platform
may not always be available. A similar issue is also faced
by uniform sparse XL-MIMO, whose inter-element spacing
is larger than half wavelength [54], [55], as illustrated in
Fig. 3(b). Compared to the collocated counterpart, sparse XL-
MIMO is able to increase the total array aperture without
increasing the number of antennas. However, sparse XL-
MIMO will lead to undesired grating lobes, which refer to
the additional major lobes that have an equal or comparable
intensity to the main lobe [30], [31], [55]. Moreover, for
ease of practical deployment, a novel modular XL-MIMO
architecture was proposed, for which antenna elements are
arranged in a modular manner [56], [57], like Lego-type
building blocks, as illustrated in Fig. 3(c). The array elements
within each module are regularly arranged like the collocated
array, while the inter-module spacing depends on the actual
deployment environment that can be much larger than the
wavelength scale. For example, when the modular XL-MIMO
is mounted to the facades of buildings, the neighbouring
modules can be separated by windows, thus achieving the
conformity with actual deployment structure. Thanks to the
flexible structure among modules, the modular XL-MIMO re-
laxes the requirement of large continuous deployment platform
as in the collocated and sparse XL-MIMO. On the other hand,
it also gives rise to undesired grating lobes, similar to the

sparse XL-MIMO.
Instead of accommodating all array elements on a common

continuous/discontinuous platform, distributed XL-MIMO ar-
chitecture consists of multiple distributed sites over a large
geographical region, as illustrated in Fig. 3(d). Some typical
distributed antenna systems include coordinated multipoint
(CoMP) [58], cloud radio access network (C-RAN) [59],
network MIMO [60], and cell-free massive MIMO [61]–
[63]. Distributed XL-MIMO systems usually require stringent
synchronization and frequent information exchange among
different sites. Therefore, this article will mainly focus on
collocated, sparse or modular XL-MIMO architectures.

D. Application Scenarios for XL-MIMO

In Fig. 4, we envision several promising application
scenarios of XL-MIMO in future wireless networks, where
different architectures of XL-MIMO can be mounted on the
facades of buildings, advertising boards, and indoor walls.
The leap of data throughput brought by XL-MIMO facilitates
the eMBB+ scenarios, which brings users unprecedentedly
immersive experiences and multi-sensory interactions in the
augmented/virtual/mixed reality and holographic display appli-
cations, and supports services like real-time ultra-high defini-
tion videos. Benefiting from the significant increase in network
throughput, XL-MIMO can achieve coverage enhancement in
hotspot scenarios, e.g., big sports events, concerts, and railway
stations. Thanks to the enhancement of spatial resolution,
XL-MIMO empowers ultra-dense connectivity in Internet of
Things (IoT) applications with extreme reliability, such as
smart home, wearables, and agricultures. The super spatial
resolution is also a prerequisite for achieving high-accuracy
wireless sensing and tracking. For instance, in outdoor envi-
ronments, XL-MIMO mounted on the facades of buildings is
capable of sensing the surrounding environment, e.g., pedes-
trians, vehicles and buildings, or tracking the position and
velocity of objects, and thus a higher level of autonomous
driving is expected. For indoor smart factories, XL-MIMO can
provide the services of high-accuracy localization and naviga-
tion for robots, and support the prompt information exchange
among the same production or cross-production lines, which
is beneficial to the realization of automated manufacturing.
Moreover, the spherical wavefront characteristic in the near-
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field communication endows XL-MIMO with the capability of
beam focusing, which reduces the power/informtaion leakage
to the neighboring regions, thus providing new opportunities
for the applications of wireless power transfer (WPT) and
physical layer security.

E. Motivation and Organization
Despite the appealing advantages, XL-MIMO faces many

new challenges. For example, the new channel characteristics
of the NUSW and spatial non-stationarity render the con-
ventional far-field UPW based channel modeling and perfor-
mance analysis no longer valid, thus calling for the near-field
modeling and performance analysis. Furthermore, accurate
channel state information (CSI) is pivotal to achieving super
beamforming gain brought by XL-MIMO. Thus, developing
efficient near-field channel estimation methods or beam train-
ing algorithms are needed. Besides, XL-MIMO with fully
digital beamforming entails more RF chains than massive
MIMO, rendering the issues of high hardware cost and power
consumption more severe [64]. The large-dimensional channel
exacerbates the signal processing complexity in both the digital
and analog domains, which hinders efficient implementation
of signal precoding and combining.

The appealing benefits of XL-MIMO have spurred active
research recently, and several overviews [52], [65]–[70] and
survey/tutorial [8], [28], [41], [71], [72] papers on XL-MIMO
have appeared, which are summarized in Table I for ease of
reference. Compared to existing overview/survey/tutorial pa-
pers listed in Table I, this article aims to provide a comprehen-
sive tutorial overview on near-field XL-MIMO communica-
tions, with an emphasis on addressing the practical challenges
in near-field modeling, fundamental performance analysis and
XL-MIMO designs. Specifically, in addition to providing a
state-of-the-art literature review on XL-MIMO, this paper
provides technically in-depth results and discussions on near-
field modeling that comprehensively considers the NUSW and
spatial non-stationarity characteristics. Based on such models,
the fundamental performance of near-field communications
is discussed, which is compared with the conventional far-
field communications in detail. Furthermore, practical XL-
MIMO design issues are systematically overviewed, including
near-field beam codebook, beam training, channel estimation
and a novel transmission technology termed delay alignment
modulation (DAM) that exploits the super spatial resolution of
XL-MIMO, as well as the issues of hardware cost and signal
processing complexity.

As shown in Fig. 5, the rest of this paper is organized
as follows. Section II presents the basic near-field modeling
for XL-MIMO, including the array response vector, XL-
MIMO line-of-sight (LoS) and multi-path modeling. Section
III presents the fundamental performance analysis of XL-
MIMO communications, including signal-to-noise ratio (SNR)
scaling laws, near-field beam focusing pattern, achievable rate,
and degrees-of-freedom (DoF). In Section IV, we discuss
the XL-MIMO design issues in near-field beam codebook,
beam training, channel estimation, and the novel transmission
technology DAM, together with the cost-efficient and low-
complexity design. Finally, we conclude this paper in Section

Section II Near-Field Modeling for XL-MIMO

A. Near-Field Array Response Vector

B. Near-Field Free-Space LoS XL-MIMO

C. Near-Field Multi-Path XL-MIMO

D. Spatial Correlation Based Near-Field Modeling

E. Extensions of Near-Field Modeling

F. Near-Field Channel Measurements

G. Lessons Learned

Section III Performance Analysis of XL-MIMO

A. SNR Scaling Laws

B. Near-Field Beam Focusing Pattern

C. Achievable Rate of Near-Field Communication

D. DoF

E. Near-Field XL-MIMO Sensing

F. Lessons Learned

Section I Introduction

A. Background

B.  XL-MIMO: New Channel Characteristics

C.  Different Categories of XL-MIMO

D. Application Scenarios for XL-MIMO

E.  Motivation and Organization

Section IV XL-MIMO Design

A. Near-Field Beam Codebook Design

B. Near-Field Beam Training

C. Channel Estimation

D. Delay Alignment Modulation

E. Cost-Efficient and Low-Complexity Implementation

F. Lessons Learned

Section V Conclusion and Future Directions

A. Conclusion

B. Future Directions

Fig. 5. Organization of this paper.

V, and highlight promising research directions for future work.
For ease of reference, the definitions of the main acronyms are
summarized in Table II.

Notations: Scalars are denoted by italic letters. Vectors
and matrices are denoted by bold-face lower- and upper-case
letters, respectively. CM×N and RM×N represent the space of
M×N complex-valued and real-valued matrices, respectively.
For a vector x, ‖x‖ denotes its Euclidean norm. For a
matrix A, its complex conjugate, transpose, and Hermitian
transpose are denoted by A∗, AT , AH , respectively, and
‖A‖F denotes the Frobenius norm. The distribution of a
circularly symmetric complex Gaussian random vector with
mean x and covariance matrix Σ is denoted by CN (x,Σ);
and ∼ stands for “distributed as”. The symbol j denotes the
imaginary unit of complex numbers, with j2 = −1. For real
numbers x and y, dxe denotes the ceiling operation, and
mod (x, y) returns the remainder after division of x by y.
The notations � and ~ represent the Hadamard product and
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TABLE I
LIST OF REPRESENTATIVE OVERVIEW/SURVEY/TUTORIAL PAPERS ON XL-MIMO

Reference Topics/Theme Major Contributions
[8] Research directions & open problems Envision five promising research directions for antenna arrays and discuss the open problems.

[28] Channel properties & low-cost designs Discuss the new channel properties and low-cost designs of XL-MIMO systems, with an emphasis on the hardware cost, signal processing, computation
complexity, and overhead.

[41] Physical aspects & theoretical foundations
& enabling technologies

Provide a systematic overview of the continuous-aperture holographic MIMO communications, including physical aspects, theoretical foundations, and
enabling technologies, and discuss technical challenges and open research directions.

[52] Basic concept & holographic beamforming Introduce the basic concept of RHS and present a hybrid beamforming scheme for RHS-aided communications, and discuss the key challenges.

[65] Near-field spherical wave & technical
challenges Discuss the principle, recent progress, and future directions of near-field communications.

[66] Physical characteristics & applications Introduce the near-field beam focusing of XL-MIMO and discuss the appealing applications of multi-user communications, accurate localization and sensing,
and WPT.

[67] System structure & applications Provide an overview of near-field WPT in future Internet of Everything networks and discuss the potential research directions.

[68] Hardware design & channel modeling &
effective degrees-of-freedom

Briefly summarize four general XL-MIMO hardware designs and characteristics of XL-MIMO, including channel modeling, performance analysis, and signal
processing.

[69] Near-field beam management Provide an overview of near-field beam management including near-field beam training, beam tacking and beam scheduling, and discuss promising research
directions.

[70] Near-field ISAC designs Provide an overview of near-field ISAC designs including joint near-field communication and sensing, sensing-assisted near-field communication, and
communication- assisted near-field sensing.

[71] Channel modeling & antenna architectures
& performance analysis

Provide a tutorial overview of near-field communications, with an emphasis on spherical wave based channel modeling, hybrid beamforming architectures,
and power scaling laws.

[72] Channel modeling & signal processing &
applications

Provide a survey overview of XL-MIMO communications, including hardware architectures, channel modeling, low-complexity signal processing schemes,
and main application scenarios.

This article Near-field modeling & performance
analysis & practical design issues

Provide a tutorial overview of XL-MIMO communications, with an emphasis on the near-field modeling, performance analysis, and practical design issues,
and point out promising directions for future work.
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Fig. 6. Wireless link between a signal source s and an antenna array of
arbitrary architecture, where the source s can be either an active transmitter
or a passive scatterer.

linear convolution operations, respectively. E [·] denotes the
statistical expectation. For a set S, |S| denotes its cardinality.
O (·) denotes the standard big-O notation.

II. NEAR-FIELD MODELING FOR XL-MIMO

In this section, we present the basic near-field modeling
for XL-MIMO. To this end, the modeling for near-field array
response vector is first discussed, followed by the XL-MIMO
LoS modeling and multi-path modeling. Furthermore, the spa-
tial correlation based near-field modeling and some extensions
are presented. Finally, we provide a review on recent near-field
channel measurement campaigns.

A. Near-Field Array Response Vector

The characteristics of the EM field vary with the distance
from the antenna, which can be partitioned into reactive field
and radiative field [30], [31]. The reactive field region is the
region close to the antenna, where the electric and magnetic
fields are out of phase by 90◦ to each other, with the energy
being stored in capacitive and inductive reactance. By contrast,
in the radiative field, the electric and magnetic fields begin
to become radiative. Typically, the boundary for separating

the reactive and radiative field is r = 0.62
√
D3/λ [30]–[33].

In this article, we are mainly interested in the radiative field
region by assuming r ≥ 0.62

√
D3/λ in the rest of the paper.

1) Generic Near-Field Model Based on Exact Distances:
We first consider a generic wireless link between an isotropic
signal source and an antenna array of arbitrary architecture
with M elements, as illustrated in Fig. 6. The signal source
can be either an active antenna element or a passive scatterer in
the environment. Let s and p denote the locations of the signal
source and a reference point of the antenna array, respectively.
The array architecture can be completely specified by the
locations of the array elements pm = p + δm, where δm
denotes the relative location of the m-th element with respect
to the reference location p. The link distance between the
source and antenna m is

rm = ‖pm − s‖ = ‖p− s + δm‖

=

√
r2 + 2(p− s)

T
δm + ‖δm‖2,

(1)

where r = ‖p− s‖ is the distance between s and the reference
point p. The complex-valued channel coefficient from the
source to antenna m can be expressed as

hm = αme
jϕm , m = 1, · · · ,M, (2)

where αm and ϕm denote the channel amplitude and phase,
respectively. For free-space LoS propagation between s and
pm, both αm and ϕm depend on the link distance rm, given
by 

αm =

√
Um
rm

,

ϕm = −2π

λ
rm,

(3)

where Um accounts for the characteristic of the individual
array element, such as directional gain pattern [30], [31].
Specifically, let G (φ, ξ) denote the directional gain pattern of
each array element, where (φ, ξ) is the local elevation-azimuth
signal direction viewed from the element’s boresight. Then Um
in (3) can be modelled as [31]

Um = G (φm, ξm)

(
λ

4π

)2

, (4)
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TABLE II
LIST OF MAIN ACRONYMS

Acronyms Definition Acronyms Definition
2D Two-dimensional LS Least-squares
3D Three-dimensional LTE Long-term evolution
3G Third-generation MIMO Multiple-input multiple-output
3GPP The Third Generation Partnership Project MISO Multiple-input single-output
4G Fourth-generation MMSE Minimum mean-square error
5G Fifth-generation mMTC+ Massive communication
6G Sixth-generation mmWave Millimeter wave
ADC Analog-to-digital converter MRC/MRT Maximal-ratio combining/transmission
AI Artificial intelligence MRDN Multiple residual dense network
AoA Angle of arrival NLoS Non-line-of-sight
AoD Angle of departure NMSE Normalized mean-square error
AS Angle spread NOMA Non-orthogonal multiple access
AWGN Additive white Gaussian noise NUPW Non-uniform plane wave
B5G Beyond 5G NUSW Non-uniform spherical wave
BS Base station OFDM Orthogonal frequency-division multiplexing
CFO Carrier frequency offset OOB Out-of-band
CKM Channel knowledge map OTFS Orthogonal time frequency space
CoMP Coordinated multipoint PADP Power angle delay profile
CP Cyclic prefix PAPR Peak-to-average-power ratio
CPU Central processing unit PAS Power angular spectrum
C-RAN Cloud radio access network PBW Parabolic wave
CRB Cramér-Rao bound PDP Power delay profile
CS Compressed sensing PLS Power location spectrum
CSI Channel state information RA Random access
DAC Digital-to-analog converter RCS Radar cross section
DAM Delay alignment modulation RF Radio-frequency
DDAM Delay-Doppler alignment modulation RHS Reconfigurable holographic surface
DDRayl Direction-dependent Rayleigh distance RIS Reconfigurable intelligent surface
DFT Discrete Fourier transform rKA Randomized Kaczmarz algorithm
DMA Dynamic metasurface antenna RMS Root mean square
DoF Degrees-of-freedom SF Shadow fading
DS Delay spread SIMO Single-input multiple-output
EDoF Effective degrees-of-freedom SINR Signal-to-interference-plus-noise ratio
EH Energy-harvesting SNR Signal-to-noise ratio
EIT Electromagnetic information theory SWIPT Simultaneous wireless information and power transfer
ELAA Extremely large aperture array SWSS Spatial wide-sense stationarity
EM Electromagnetic THz Terahertz
eMBB+ Immersive communication TTD True-time-delay
FAS Flexible antenna selection UCA Uniform cylindrical array
FBMC Filter bank multi-carrier UE User equipment
FSS Fixed subarray selection ULA Uniform linear array
GA Genetic algorithm UM-MIMO Ultra-massive MIMO
GBSM Geometry-based stochastic model UPA Uniform planar array
HRNP Highest received normalized power UPD Uniform-power distance
IoT Internet of Things UPW Uniform plane wave
IRS Intelligent reflecting surface URLLC+ Hyper reliable and low-latency communication
ISAC Integrated sensing and communication USW Uniform spherical wave
ISI Inter-symbol interference VMP Variational message passing
ITU International Telecommunication Union VR Visibility region
IUI Inter-user interference WPT Wireless power transfer
KPI Key performance indicator XL-MIMO Extremely large-scale multiple-input multiple-output
LIS Large intelligent surface xMaMIMO Extremely large aperture massive MIMO
LoS Line-of-sight ZF Zero-forcing
LPU Local processing unit

where the subscript m is needed for (φm, ξm) since when the
array aperture is large and/or the distance r is small, different
array elements may observe distinct signal directions. The
commonly used directional gain patterns are given as follows.

• Isotropic model: When the array elements are mod-
elled as isotropic, we have G (φ, ξ) = 1, and Um =
(λ/4π)

2, ∀m [31], [73].
• Cosine pattern model: The directional gain pattern of

this model is [31], [74]–[76]

G (φ, ξ) =


2 (2q + 1) cos2q (φ) ,

φ ∈
[
0,
π

2

)
, ξ ∈ [0, 2π] ,

0, otherwise,

(5)

where q is a parameter determining the directivity of
the array element [30], [74]. In practice, the value of
q depends on the specific technology adopted, and a
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larger q corresponds to a higher directivity [76].
• 3GPP element model: Another widely used directional

gain pattern for each array element is the 3GPP model,
given by [77], [78]

G (φ, ξ) =

Gmax −min {− (Ge,V (φ) +Ge,H (ξ)) , Amax} ,
(6)

where Gmax denotes the maximum directional gain of
each array element, Amax = 30 dB is the front-to-
back attenuation [77], [78], and Ge,V (φ) and Ge,H (ξ)
denote the vertical and horizontal cuts of the radiation
pattern, respectively.

By substituting (3) into (2) and after some simple manipu-
lations, we have

hm =

√
U

r
e−j

2πr
λ︸ ︷︷ ︸

α

√
Um
U

r

rm
e−j

2π
λ (rm−r)︸ ︷︷ ︸

am(s)

, m = 1, · · · ,M,

(7)
where U is a parameter corresponding to the reference location
p. Thus, the channel vector h ∈ CM×1 between the source s
and the antenna array can be expressed as h = αa (s), where
α ,

√
U
r e−j

2πr
λ is a common coefficient for all array elements

denoting the complex-valued channel gain at the reference
point p, and a (s) ∈ CM×1 denotes the general near-field array
response vector that depends on the exact source location s,
given by

a (s) =

[√
U1

U

r

r1
e−j

2π
λ (r1−r), · · ·,

√
UM
U

r

rM
e−j

2π
λ (rM−r)

]T
.

(8)
Note that in the conventional far-field region where UPW

model is used, the following three approximations are made
for simplifying the array response vector in (8):

• rm ≈ r, ∀m, for modeling the free-space path loss
across array elements.

• Um ≈ U , ∀m, i.e., all array elements have the same
gain coefficients. When all array elements are placed
with the same orientation, this implies that the signals
from the source s impinge all array elements with
approximately the same direction, i.e., φm ≈ φ and
ξm ≈ ξ, ∀m.

• The first-order Taylor approximation of the link dis-
tance rm in (1) is utilized for phase modeling, i.e.,
rm ≈ rfirst

m , r + (p− s)
T
δm/r.

Under the above three approximations, the array response
vector in (8) reduces to the UPW model

aUPW (s) =

[
e−j

2π
λ

(p−s)T δ1
r , · · · , e−j 2π

λ

(p−s)T δM
r

]T
. (9)

For the special case of ULA shown in Fig. 7, let the array
center be the reference point p, we have δm = δmdû, where
δm = (2m−M − 1) /2, m = 1, . . . ,M , d and û denote
the antenna spacing and the direction vector of the ULA,
respectively, with ‖û‖ = 1. The physical dimension of the
array is D = (M − 1) d. By substituting δm into (1), the

s

p

1p

M
p

1M
p

Reference 

point
m
p û

r

d

Fig. 7. Wireless link between an isotropic signal source and an M -element
ULA.

distance between s and antenna m is

rm =
√
r2 + 2δmdr cos θ + δ2

md
2, (10)

where θ denotes the AoA at the reference point, i.e., the angle
between vectors p − s and û, with cos θ = (p−s)T û

‖p−s‖‖û‖ =
(p−s)T û

r . The first-order Taylor approximation of rm is

rfirst
m = r + δmd cos θ. (11)

Thus, for ULA, the far-field array response vector in (9)
reduces to

aUPW (θ) = β
[
1, · · · , e−j 2π

λ (M−1)d cos θ
]T
, (12)

where β = ej
π(M−1)

λ d cos θ. It is observed that for the far-field
UPW model, all array elements experience the identical signal
amplitude and AoA. Besides, the array response vector only
depends on θ, and the variation of phase across array elements
exhibits a linear relationship with respect to antenna index m.

However, the deployment of XL-MIMO and the shrinking
cell size render users/scatterers less likely to be located in the
far-field region, and the conventional far-field UPW model
is no longer valid. As a classic criterion for separating the
near- and far-field regions, the Rayleigh distance corresponds
to the minimum link distance so that if the array is used
for reception, the maximum phase difference of the received
signals across array elements is no greater than π/8 by
assuming normal incidence [30], [31]. Besides, the Rayleigh
distance only concerns about the phase variations across array
elements, while ignoring the amplitude variations. As a result,
the classic Rayleigh distance is insufficient for separating
the near- and far-field regions. In the following, we try to
answer the following questions: i) When channel phases can
be modelled linearly across array elements? ii) When channel
amplitudes can be modelled uniformly across array elements?

2) Near-Field Phase Modeling: In the far-field region r ≥
rRayl, the channel phases are modelled linearly across array
elements under the approximation of UPW model. On the
other hand, in the near-field region r < rRayl, the phase
across array elements are no longer linear. Instead, the more
accurate spherical wave is required for phase modeling, i.e.,
the exact link distance rm. Besides, the second-order Taylor
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approximation of link distance is another common method for
near-field phase modeling. For the case of ULA, it follows
from (10) that the second-order Taylor approximation of rm
is

rsecond
m = r + δmd cos θ +

δ2
md

2sin2θ

2r
+O

(
1

r2

)
, (13)

where O
(
1/r2

)
denotes the higher-order terms that can be

ignored, and such an approximation is also referred to as
Fresnel approximation [30], [79],

Furthermore, to reflect the impact of signal direction on
the phase variations across array elements, a new direction-
dependent Rayleigh distance (DDRayl) was introduced in [10].
Let ∆ (r, θ) denote the maximum phase error across array
elements, i.e., the phase difference between the exact value and
that based on the first-order Taylor distance approximation,
given by

∆ (r, θ) , max
m

2π

λ

(
rm − rfirst

m

)
. (14)

In order to be compatible with the classic Rayleigh dis-
tance, the direction-dependent Rayleigh distance, denoted as
rDDRayl (θ), is then defined as the minimum distance r satis-
fying ∆ (r, θ) ≤ π/8 [10], i.e.,

rDDRayl (θ) , arg min
r

∆ (r, θ) ≤ π

8
. (15)

It is difficult to directly obtain the closed-form solution to
(15), but its value can be found numerically. To gain useful
insights, by replacing the exact distance rm with its second-
order Taylor approximation in (14), the direction-dependent
Rayleigh distance can be obtained in closed-form as

rDDRayl (θ) ≈ 2D2sin2θ

λ
. (16)

In particular, for the normal incidence with θ = π/2, the
direction-dependent Rayleigh distance reduces to the classic
Rayleigh distance, i.e., rDDRayl (π/2) = 2D2/λ [10]. It is
observed that the direction-dependent Rayleigh distance is
affected by the signal direction via sin2θ, and the classic
Rayleigh distance exaggerates the boundary of the near- and
far-field regions, since sin2θ ≤ 1.

The comparison of the classic Rayleigh distance and the
direction-dependent Rayleigh distance is shown in Fig. 8. The
carrier frequency is f = 2.4 GHz. A ULA with M = 128 array
elements is placed along the y-axis, with its center located at
the origin, and the adjacent elements are separated by half
wavelength. It is observed that the boundary corresponding
to the classic Rayleigh distance is a quarter circle, which is
expected since its definition ignores the actual direction of
the signal source. It is also observed that the approximate
direction-dependent Rayleigh distance in (15) matches well
with the exact value, whose boundaries exhibit a semi-ellipse
shape. Note that when the signal source is at inclined direc-
tions, the classic Rayleigh distance exaggerates the near-field
region, i.e., it is rather conservative from the perspective of
phase modeling.

0 200 400 600 800 1000 1200
x (m)
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400

600

800

1000
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r
Rayl

r
DDRayl

r
DDRayl

, approximation

r
UPD

Fig. 8. Comparison of the classic Rayleigh distance, the direction-dependent
Rayleigh distance, and the UPD by considering the cosine pattern model with
q = 2. The ULA is placed along the y-axis and centered at the origin. Due
to symmetry, only the first quadrature is shown.

3) Near-Field Amplitude Modeling: In the conventional
UPW modeling, the channel amplitude is modelled uniformly
across array elements with the approximations of Um ≈ U
and rm ≈ r, ∀m. When the array physical dimension increases
and/or the link distance decreases, the impacts of direction gain
pattern and link distance variations across array elements on
the channel amplitude may become non-negligible, rendering
the assumption of “uniform” wave invalid.

To determine whether the EM waves are uniform or not, a
new distance criterion termed uniform-power distance (UPD)
was introduced in [10], which focuses on the variation of am-
plitude across array elements. Specifically, let Υ (r, θ) denote
the ratio of the weakest and the strongest power across array
elements, given by

Υ (r, θ) ,
min
m
|αm|2

max
m
|αm|2

=
min
m

Um/r
2
m

max
m

Um/r2
m

. (17)

The UPD is then defined as

rUPD (θ) , arg min
r

Υ (r, θ) ≥ Υth, (18)

where Υth is a certain threshold, and the value of UPD can be
obtained numerically. As such, for any given signal direction
θ, when the link distance r ≥ rUPD (θ), the variation of
signal amplitude across array elements is negligible, i.e., the
assumption of “uniform” waves holds. When r < rUPD (θ),
the significant power difference renders the assumption of
“uniform” waves no longer valid. The result of the UPD is
also shown in Fig. 8, by adopting the cosine pattern model
with q = 2. The power ratio threshold is Υth = 0.9. It
is observed that compared to the classic and the direction-
dependent Rayleigh distances, the UPD yields quite different
curve, which is expected since different criteria are used. For
example, the direction-dependent Rayleigh distance achieves
the maximum value for the normal incidence, under which the
value of UPD is the minimum. In other words, compared to
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the case of normal incidence, a larger link distance is required
to neglect the amplitude variations for the general case with
inclined incidence.

Based on the above observations, a refined direction-
dependent near- and far-field separation criterion is illustrated
in Fig. 9(a). Due to symmetry, only the first quadrant is shown.
It is observed that the space is partitioned into four parts, each
corresponding to one model, i.e., UPW, non-uniform plane
wave (NUPW), uniform spherical wave (USW), and NUSW
models, as elaborated below.

• UPW model: For the given signal direction θ, when
r ≥ max {rUPD (θ) , rDDRayl (θ)}, the EM waves can be
regarded as UPW, and the array response vector is given
by (12).

• NUPW model: When rDDRayl (θ) ≤ r < rUPD (θ),
though the plane wave approximation is valid, the non-
negligible power variation across array elements renders
the EM waves no longer uniform. Such a surprising result
is mainly due to the fact that the conventional Rayleigh
distance that ignores the signal direction is a conservative
criterion for separating the plane and spherical waves, as
can be seen in Fig. 8. For ULA, the array response vector
for NUPW model is

aNUPW (r, θ) = β

[√
U1

U

r

r1
, · · · ,

√
UM
U

r

rM
e−j

2π
λ (M−1)d cos θ

]T
,

(19)

which depends on both the distance r and the angle θ.
• USW model: When rUPD (θ) ≤ r < rDDRayl (θ), the

amplitude variation across array elements is negligible,
while the more accurate spherical wave is required for
phase modeling. The array response vector for USW
model is [11], [80], [81]

aUSW (r, θ) =
[
e−j

2π
λ (r1−r), · · · , e−j 2π

λ (rM−r)
]T
.

(20)
For moderately large array physical dimension and/or
moderately short link distance, rsecond

m in (13) is a valid
approximation for phase modeling, which is known as
parabolic wave (PBW) model [82]–[84]. By replacing
rm with rsecond

m in (20), the array response vector for
PBW model is

aPBW (r, θ) =
[
e
−j 2π

λ

(
δ1d cos θ+

δ21d
2sin2θ

2r

)
, · · · ,

e
−j 2π

λ

(
δMd cos θ+

δ2Md2sin2θ

2r

)]T
.

(21)
• NUSW model: When r < min {rUPD (θ) , rDDRayl (θ)},

neither the linear phase approximation nor the uniform
amplitude approximation is valid. Instead, the accurate
model is required for both the phase and amplitude
modeling. By replacing the location s with (r, θ) in (8),

the array response vector of ULA for NUSW model is

aNUSW (r, θ) =

[√
U1

U

r

r1
e−j

2π
λ (r1−r), · · · ,

√
UM
U

r

rM
e−j

2π
λ (rM−r)

]T
.

(22)

It is worth mentioning that NUSW is the most general and
accurate model, which includes the USW, NUPW, and UPW
models as special cases, i.e., NUSW ⊃ USW ⊃ UPW, and
NUSW ⊃ NUPW ⊃ UPW. Motivated by this, we propose a
conservative and simplified near- and far-field separation that
does not depend on the direction, as illustrated in Fig. 9(b),
where the direction-independent UPD is given by rDIUPD ,
max
θ
rUPD (θ). Such a conservative separation approach stems

from the fact that the direction-independent UPD exaggerates
the non-uniform wave region from the perspective of am-
plitude modeling, and the Rayleigh distance exaggerates the
spherical wave region from the perspective of phase modeling.
Furthermore, we typically have rDIUPD < rRayl. As such,
while still preserving the modeling accuracy, we reduce the
number of space partitions from four to three, corresponding
to three models, i.e., UPW, USW, and NUSW models.
• When r ≥ rRayl, the NUSW, USW, and UPW models

are in fact all valid, but UPW gives the simplest model
without notably compromising the accuracy.

• When rDIUPD ≤ r < rRayl, both NUSW and USW
models are valid, and the simpler USW model can be
used.

• When 0.62
√
D3/λ ≤ r < rDIUPD, NUSW model is

needed for the accurate phase and amplitude modeling.
To draw some insights, we consider the commonly used

isotropic array elements, with Um = U = (λ/4π)
2, ∀m. In

the following, the special signal directions with θ = π/2, and
θ = 0, π are respectively discussed.

• θ = π/2, i.e., the normal incidence. The UPD for a
given Υth is rUPD (π/2) = D

2

√
Υth/ (1−Υth). By

choosing Υth = 0.9, we have

rUPD

(π
2

)
= 1.5D. (23)

On the other hand, if we choose Υth = cos2 (π/8),
the UPD is rUPD (π/2) ≈ 1.2D, which is the distance
criterion corresponding to the negligible amplitude
difference derived in [32], [85].

• θ = 0, π, i.e., the source is located along the line
spanned by the ULA. In fact, for any given r, Υ (r, θ)
in (17) achieves the minimum value when θ = 0
or π [9]. For ease of exposition, we show the re-
sult of θ = 0, for which the UPD is rUPD (0) =
D
(
1 + Υth + 2

√
Υth

)
/ (2 (1−Υth)). Similarly, by

choosing Υth = 0.9, we have

rUPD (0) ≈ 19D, (24)

which is much larger than that for the normal incidence.
It is observed that the commonly used distance criterion

1.2D [32], [38], [85] for neglecting the variation of amplitude
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Fig. 9. An illustration of the refined near- and far-field separation, where the ULA is placed along the y-axis, with its center located at the origin. Due to
symmetry, only the first quadrant is shown.
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Fig. 10. Summary of near-field array response vector modeling.

across array elements cannot be safely applied to the case
with inclined incidence. Note that rUPD (0) is smaller than the
Rayleigh distance when D > 9.5λ, which is easily satisfied
for XL-array. Besides, different from the Rayleigh distance
that depends on the electrical size, the UPD is related to the
physical size of the array [9]. Furthermore, the existing array
models for isotropic antenna elements include UPW, USW,
PBW, and NUSW models, which can be obtained based on
(12), (20), (21), and (22), by letting Um = (λ/4π)

2, ∀m.
In summary, the near-field array response vector modeling

involves the near-field phase and amplitude modeling. The
direction-dependent Rayleigh distance is a general criterion to

determine whether the channel phases can be modelled linearly
across array elements, and the UPD aims to determine whether
the channel amplitude can be modelled uniformly across array
elements. Such two distance criteria constitute a refined near-
and far-field separation approach. The main procedure of
generating the appropriate array response vector is summarized
in Fig. 10. In the following, based on the established near-
field array response vectors, the near-field free-space LoS and
multi-path XL-MIMO modeling are respectively discussed.

B. Near-Field Free-Space LoS XL-MIMO

In this subsection, we consider the modeling for near-field
free-space LoS XL-MIMO, where the transmitter and receiver
are equipped with Mt and Mr array elements, respectively,
as illustrated in Fig. 11. Note that for the special cases of
LoS XL-MISO or XL-SIMO communications, the near-field
channel models can be directly obtained based on (7) and the
various simplifications presented in Section II-A. For a general
Mr ×Mt XL-MIMO system with any array architecture, let
smt , 1 ≤ mt ≤ Mt, denote the location of transmit antenna
mt, and sT denote the reference point of the transmit array.
Further denote by δmt the vector from sT to smt , so that
smt = sT + δmt , ∀mt. Similarly, the locations of the receive
array elements are specified by pmr = pR + δmr , 1 ≤ mr ≤
MR, where pR denotes the location of the reference point
of the receive array, and δmr denotes the vector from pR
to pmr . Let URmr,mt denote the antenna gain parameter of
the receive antenna mr with respect to the transmit antenna
mt, which depends on both mr and mt in general since the
receive antenna mr may observe distinct signal directions from
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Fig. 11. Illustration of free-space LoS XL-MIMO between a transmitter and
a receiver of general architectures.

different transmit antennas, and vice versa. Besides, let UR
denote the antenna gain parameter at pR with respect to sT .
The notations UTmr,mt and UT at the transmitter side follow
similar definitions. Moreover, denote by rmr,mt the distance
between receive-transmit antenna pair (mr,mt), and r the link
distance between pR and sT . In general, there are two methods
for near-field LoS XL-MIMO modeling, as elaborated below.

Method 1: The direct method is to model the individual
complex-valued channel coefficient between each transmitter-
receiver antenna pair (mr,mt), so that the LoS channel matrix
HLoS ∈ CMr×Mt can be obtained based on all the MrMt

channel coefficients, given by

HLoS = α̃


√
URmr,mtU

T
mr,mt

URUT

r

rmr,mt
e−j

2π
λ (rmr,mt−r)

 ,

(25)
where α̃ , 4π

√
URUT
λr e−j

2πr
λ is a common coefficient for

all channel elements. For the special case of isotropic array
elements, the USW-based modeling for LoS XL-MIMO was
considered in [86]–[88]. By further modeling the variation of
signal amplitude across antenna pairs, the NUSW-based LoS
XL-MIMO modeling can be found in [89], [90].

Method 2: Inspired by the far-field UPW-based LoS MIMO
modeling, another possible method is to express the near-
field LoS XL-MIMO channel matrix as the outer product of
the near-field transmit and receive response vectors developed
in Section II-A. Specifically, by treating the transmit array
as a point, the near-field receive array response vector can
be obtained with respect to the reference location sT of
the transmit array, denoted as aR (sT ) ∈ CMr×1 as in (8).
Similarly, the transmit array response vector with respect to pR
is aT (pR) ∈ CMt×1, which can be obtained via (8). Thus, the
free-space LoS XL-MIMO channel matrix can be expressed
as

HLoS = α̃aR (sT ) aHT (pR) . (26)

It is observed that the major difference of the aforementioned
two methods lies in that model (26) is always rank-one, while
the rank of (25) could be greater than one.

Note that the classic Rayleigh distance is defined by as-
suming that either the transmitter or the receiver is equipped
with an antenna array, i.e., MISO or SIMO systems. In [91],
by considering the isotropic elements, the authors derived the

MIMO Rayleigh distance (MIMO-RD) based on the largest
phase difference arising from the near-field spherical wave-
front and the far-field planar wavefront, given by

rMIMO−RD =
2(DT +DR)

2

λ
, (27)

where DT and DR denote the array physical dimensions of
the transmitter and the receiver, respectively. Similarly, in the
far-field region r ≥ rMIMO−RD, the three assumptions are
made:

• rmr,mt ≈ r, ∀mr,mt, for modeling the free-space path
loss across array elements.

• URmr,mt ≈ UR and UTmr,mt ≈ UT , ∀mr,mt, are used
for amplitude modeling.

• The first-order Taylor approximation of the link dis-
tance rmr,mt is utilized for phase modeling.

Thus, the free-space LoS XL-MIMO channel matrix for
UPW model is

HLoS = α̃

{
e
−j 2π

λ

(
(pR−sT )T (δmr−δmt )

r

)}
= α̃aUPW

R (sT )
[
aUPW
T (pR)

]H
,

(28)

which is a rank-one matrix. For the case of ULAs equipped
at the transmitter and receiver, the locations of antenna mr

and mt are pmr = pR + δmrdûR and smt = sT + δmtdûT ,
respectively, where δmr = (2mr −Mr − 1) /2 and δmt =
(2mt −Mt − 1) /2, respectively, and ûR and ûT denote the
direction vectors of the receiver and transmitter, respectively.
Besides, denote by θT the angle between vectors pR − sT
and ûT , and θR the angle between vectors pR − sT and ûR.
Based on the geometric relationship between the transmitter
and receiver, the channel matrix in (28) reduces to

HLoS (θT , θR) = α̃aUPW
R (θR)

[
aUPW
T (θT )

]H
, (29)

where aUPW
T (θT ) and aUPW

R (θR) denote the far-field transmit
and receive array response vectors, respectively, as defined in
(12).

In addition, the UPD in Section II-A3 can be extended to the
MIMO case. Specifically, for the channel vector from transmit
antenna mt to all the receive array elements, the corresponding
UPD, denoted as rUPD (θmt), can be obtained based on (18),
where θmt follows the similar definition as θ in (10). By
considering all the Mt channel vectors, the MIMO UPD is
given by

rMIMO−UPD ({θmt}) = max
mt
{rUPD (θm1

) , · · · , rUPD (θMt
)} ,

(30)
i.e., the distance ensuring all the Mt channel vectors satisfying
the uniform wave approximation.

Fig. 12 compares the effective rank of the LoS XL-MIMO
channel matrix for the near-field and far-field modeling, where
the effective rank is defined as the number of significant
singular values that are no smaller than 10% of the sum of all
singular values. The transmit and receive array elements are
Mt = 128 and Mr = 32, respectively, and the cosine element
pattern model with q = 2 is adopted. The transmitter is placed
along the y-axis, with its center located at the origin, and the
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Fig. 12. Effective rank of the LoS XL-MIMO channel matrix versus the link
distance r for the near- and far-field modeling.

receiver is placed perpendicular to the x-axis, with its center
being (r, 0). It is observed that when the distance r is relatively
small, the near-field LoS XL-MIMO modeling (25) yields a
rank much greater than one, thus enabling the possibility of
spatial multiplexing even in free-space environment. As the
distance increases, the rank of the LoS XL-MIMO channel
matrix (25) gradually decreases to one, which is expected
since it will reduce to the far-field UPW based channel matrix.
On the other hand, for both the near-field LoS XL-MIMO
modeling (26) and far-field UPW modeling (28), we always
have a rank-one channel matrix, as expected.

The impact of the spherical wavefront on properties of LoS
MIMO channels was studied in [92], and it was shown that
rank greater than one is achieved when applying the USW
model for the LoS XL-MIMO channel in the near-field region.
By exploiting such a property, the authors in [88] proposed a
distance-aware precoding architecture, where the number of
RF chains is dynamically adjusted according to the distance-
related rank.

C. Near-Field Multi-Path XL-MIMO

Due to signal reflection, diffraction, and scattering, wireless
signals usually undergo the multi-path propagation actually.
Thus, proper multi-path modeling is necessary for XL-MIMO
communications. A common approach is to model the LoS
channel component HLoS and the non-line-of-sight (NLoS)
channel component HNLoS separately, and the multi-path XL-
MIMO channel matrix can be obtained by superimposing these
components [27], [91].

Let ζ be the indicator variable, with ζ = 1 and ζ = 0
denoting the existence and absence of the LoS component,
respectively. Denote by Q the number of scatterers, and eq
the location of scatterer q. By regarding scatterers as isotropic
points, the NLoS channel component can be expressed as the
product of the transmit and receive array response vectors.
Thus, the multi-path XL-MIMO channel matrix H ∈ CMr×Mt

1pReference

 point

Ts

1s

tm
s

tM
s

Reference

 point

Rp

rm
p

rM
p

Transmitter Receiver

Scatterer q

qt qr

Scatterer Q

Scatterer 1

Fig. 13. Illustration of multi-path XL-MIMO between a transmitter and a
receiver of general architectures.

can be expressed as

H = ζHLoS + HNLoS

= ζHLoS +

Q∑
q=1

αqaR (eq) aHT (eq),
(31)

where αq denotes the complex-valued gain of the NLoS
channel path q, and aT (eq) and aR (eq) denote the near-field
transmit and receive response vectors with respect to scatterer
q, respectively, which can be modelled based on Section II-A.
For the special case of XL-SIMO communications, the multi-
path channel matrix reduces to a vector

h = ζhLoS + hNLoS = ζαa (s) +

Q∑
q=1

αqa (eq), (32)

where a (eq) denotes the receive array response vector with
respect to scatterer q. The multi-path channel vector for XL-
MISO communications is similar, which is omitted for brevity.

Another effective modeling of the NLoS channel component
is using the bistatic radar equation due to scattered rays [27],
[93]–[95]. Specifically, let σq > 0 and ψq denote the radar
cross section (RCS) of scatterer q and the additional phase
shift arising from scatterer q, respectively, tq denote the link
distance between the reference point of the transmitter and
scatterer q, and rq denote the link distance between scatterer q
and the reference point of the receiver, as illustrated in Fig. 13.
Then the NLoS channel component can be expressed as [94]

HNLoS =

√
βNLoS

Q

Q∑
q=1

gqe
−j 2π

λ (tq+rq)+jψqaR (eq) aTT (eq),

(33)
where βNLoS =

∑Q
q=1

λ2σq
(4π)3t2qr

2
q

denotes the total power of the
NLoS channel paths between the reference points at the trans-
mitter and receiver, and gq is a random variable accounting for
the signal amplitude between the reference point pair that is
contributed by scatterer q, with Q−1

∑Q
q=1 E

[
g2
q

]
= 1 [27],

[94]. Besides, for the XL-MISO or XL-SIMO communica-
tions, the multi-path channel vector can be similarly modelled
[27], [95].

Note that the above models assume that all the array
elements are visible to the same set of user equipments
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(UEs)/scatterers. However, as the array size significantly in-
creases, the spatial non-stationarity appears across the array,
i.e., different portions of the array may experience distinct
propagation environment, such as cluster sets and/or obsta-
cles [25], [26], [96]–[98]. Therefore, VR can be utilized to
characterize such spatial non-stationarity. Initially, VR was
introduced at the UE side to achieve smooth time evolution
[99]. Specifically, when the UE moves inside the UE-side
VR, the associated scatterers will be active and are visible to
the UE. Furthermore, if the UE moves inside the area where
multiple VRs overlap, multiple associated scatterers will be
visible to the UE simultaneously. It is worth mentioning that
one scatterer is at least associated with one VR, while one
VR determines the visibility of only one scatterer. For XL-
MIMO, the concept of VR is further extended to the BS side
[8], [26]. In the following, we give a general overview on the
basic concept and modeling methods.

In [26], the authors summarized the evolution of VR from
massive MIMO systems to XL-MIMO systems, and grouped
the VR into two categories, i.e., UE-side VR and BS-side
VR. The former refers to a geographical area at the UE side,
corresponding to the scatterers that can be seen from the UE.
The latter stands for the portion of BS side array that are
visible to the scatterers or UE, as illustrated in Fig. 14.

Regarding the UE-side VR, it is derived from geometry-
based stochastic model (GBSM) such as COST 2100 [99],
which are defined as geographical areas shown in Fig. 14. The
UE-side VR is modelled in the time domain to achieve smooth
time evolution. For the time-varying scenarios, the visibility
of the UE may change due to its movement, thus resulting in
the switching of VR mapping relationships [99], [100]. Let
Ψ denote the set of scatterers visible to the UE, which is
determined by the UE location. On the other hand, BS-side
VR for XL-MIMO systems can be divided into BS-side VR
with respect to (w.r.t.) UE and BS-side VR w.r.t. scatterer.
They are defined as the portion of array visible to the UE
and scatterers, corresponding to the LoS link and NLoS links,
respectively, as illustrated in Fig. 14. Specifically, BS-side VR
w.r.t. UE, denoted as ΦLoS, is the portion of array that is visible
to the UE. Besides, BS-side VR w.r.t. scatterer, denoted as
ΦNLoS, is the portion of array that is visible to the scatterer.
The occurrence of BS-side VR can be viewed as two major

manifestations [26]: 1) unequal pathloss across the array, and
2) signal blockage stemming from obstacles between the UE
and the array.
• Unequal Pathloss: When moving towards the XL-MIMO

regime, the UE and scatterers are less likely to be located
in the far-field region, and the NUSW characteristic may
result in significant variations of signal amplitude across
array elements, as discussed in Section II-A. Thus, an
unequal pathloss will be observed, and channel measure-
ments have reported the variations of the channel power
across the array [101]–[103].

• Signal Blockage: For XL-MIMO systems, the XL-array
can be widely spread on the facades of a building to serve
densely distributed UEs in hotspot scenarios. Therefore,
part of the array elements may be blocked due to the
existence of obstacles, such as vehicles, tree, buildings,
thus leading to the uneven channel power distribution
across the array.

Note that to achieve the smooth time evolution, the UE-side
VR can be modelled as a birth-death process at the time axis
[100]. The birth and death rates of scatterers are assumed to be
λG and λR, respectively. At time t, an initial set of scatterers,
denoted as Ψ (t), are generated, and N (t) , |Ψ (t)| denotes
the cardinality of the set Ψ(t). At time t+∆t, scatterer evolves
on the time axis, and a random number of new scatterers are
generated according to a Poisson distribution, given by

E [N (t+ ∆t)] =
λG
λR

(1− PT (∆t)) , (34)

where PT (∆t) denotes the survival probability of a scatterer
after ∆t, as defined in [104].

Furthermore, denote by ΦNLOS (eq) the BS-side VR w.r.t.
scatterer q, ∀q ∈ Ψ [28]. By taking into account VR, the
multi-path channel vector can be modelled as [105]–[108]

h = ζαa (s)� b
(
ΦLoS

)
+∑

q∈Ψ

αqa (eq)� b
(
ΦNLoS (eq)

)
, (35)

where b
(
ΦLoS

)
∈ {0, 1}M×1 and b

(
ΦNLoS (eq)

)
∈

{0, 1}M×1 are binary vectors that indicate the visibility or
invisibility of UE and scatterer q to the BS array, respectively.
For example, bm(ΦLoS) = 1 means that UE is visible to array
element m, and bm(ΦLoS) = 0 otherwise. However, when a
priori knowledge of the actual environment is unavailable, the
UE’s or scatterers’ invisibility/visibility can be modelled as a
random process in the spatial domain along the array axis. In
general, the invisibility/visibility of the UE or scatterers to the
BS array is modelled as a Markov process or a birth-death
process [82], [83], [104], [109].

D. Spatial Correlation Based Near-Field Modeling

Apart from the multi-path channel model in (35) that
describes each decomposable path, spatial correlation matrix-
based model is another widely used channel model [110]. The
spatial correlation is an important approach to characterize
the second-order channel statistics, which helps develop the
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Kronecker channel model [111] and the transmission strat-
egy with the statistical CSI [112]. The spatial correlation
matrix of wireless SIMO or MISO channels is defined as
R = 1

ςE{hhH} ∈ CM×M , where ς denotes the large-scale
channel factor at the reference antenna element.

For the conventional far-field UPW assumption, the spatial
correlation based channel vector between the single-antenna
UE and the M -dimensional antenna array is modelled as [113],
[114]

h =
√
ςR1/2h̃, (36)

where h̃ ∼ CN (0, IM ) denotes a circularly symmetric com-
plex Gaussian random vector. In particular, when R is an
identity matrix, h reduces to the well-known independent and
identically distributed (i.i.d.) Rayleigh fading channel [115].
It is observed from (36) that all the channel entries share
the common large-scale channel factor, and each scatterer is
visible to the whole array. However, in XL-MIMO systems,
due to the NUSW property and the existence of VR, (36)
should be modified to fit the new channel characteristics, as
elaborated in the following.

1) Differences Brought by NUSW: When the UE is located
in the near-field region, different array elements experience
different large-scale fading conditions, as reflected by the
following modified model [116]–[119]

h =
√
ς �R1/2h̃, (37)

where ς ∈ RM×1. The m-th element of ς , denoted as ςm,
depends on the link distance rm, which can be modelled as
[116]

ςm = εrνm, (38)

where ε is the attenuation coefficient, and ν is the path
loss exponent. In this case, when R is an identity matrix,
h becomes an independent and non-identically distributed
Rayleigh fading channel.

On the other hand, the NUSW characteristic can be reflected
by the spatial correlation matrix R. For example, for the
conventional far-field UPW assumption, the (m,n)th element
of R is expressed as [120]

Rm,n =

∫ θ̄+∆

θ̄−∆

ej
2π
λ (m−n)d sin θf(θ)dθ, (39)

where θ̄ and ∆ denote the mean and spread of scatterers’
angles, respectively, and f(θ) is the power angular spectrum
(PAS). It is observed that the conventional far-field UPW based
spatial correlation in (39) only depends on the PAS and the
relative antenna locations m−n, which exhibits spatial wide-
sense stationarity (SWSS). Furthermore, the authors in [27]
derive an integral expression for the near-field spatial corre-
lation based on the NUSW model, to accurately characterize
the XL-MIMO communication. It was revealed in [27] that
the near-field spatial correlation is actually determined by the
power location spectrum (PLS), whose scatterer distribution is
characterized by both the scatterer’s angles and the distances
from the antenna array. The element of the near-field spatial
correlation based on NUSW model can be expressed as [27]

Rm,n =

∫
q∈Q

r2(q)

rm(q)rn(q)
ej

2π
λ (rm(q)−rn(q))f(q)dq, (40)

where Q denotes the set of scatterers, r(q) denotes the
distance between scatterer q and the array reference element,
rm(q) denotes the distance between scatterer q and the m-th
array element, and f (q) represents the PLS of the scattering
environment. Note that such a NUSW characteristic renders
SWSS no longer valid for the near-field spatial correlation.
Moreover, for the XL-SIMO communications, a closed-form
expression of the near-field spatial correlation was derived by
considering the generalized one-ring model in [27].

2) Differences Brought by VR: By taking into account the
VR, the channel model in (36) is modified as [25], [121], [122]

h =
√
ς �

(
RVR

)1/2
h̃, (41)

where RVR denotes the spatial correlation matrix considering
the VR. When the BS-side VR w.r.t. scatterers cannot cover
the whole array, some channel entries have zero value. Then,
the spatial correlation matrix RVR can be modelled as [123]–
[125]

RVR = D1/2RD1/2, (42)

where D ∈ {0, 1}M×M is a determined diagonal matrix,
which indicates whether each antenna element is seen by the
UE. Specifically, Dm,m = 1 represents that the UE is visible
to the m-th array element, and Dm,m = 0 indicates otherwise.
Besides, the spatial correlation matrix R in (42) is defined
based on the conventional far-field UPW-based model in (39)
[123], [125]. Furthermore, a non-stationary channel model
based on the double scattering MIMO channel [126] was
introduced in [28], [127]. In this model, the VR is modelled
based on the visibility between the UE and UE-side scatterers,
as well as the visibility between the BS array and BS-side
scatterers.

In addition, the authors in [95] developed a new integral
form for near-field spatial correlation in (41), which takes into
account both the NUSW model and the BS-side VR w.r.t.
scatterers. The spatial correlation matrix is expressed by

RVR
m,n =

∫
q∈Q

E
[
bm
(
ΦNLoS(q)

)
bn
(
ΦNLoS(q)

)]
× r2(q)

rm(q)rn(q)
ej

2π
λ (rm(q)−rn(q))f(q)dq,

(43)

where bm
(
ΦNLoS(q)

)
describes the invisibility/visibility of

scatterer q to the m-th array element. To unveil the evolution
of VR, the authors in [95] proposed a two-stage homogeneous
Markov process to model the BS-side VR w.r.t. scatterers. It
was shown that the SWSS is no longer valid for the near-field
spatial correlation considering the partial visibility in (43).
A comparison of the spatial correlation matrices for different
models is summarized in Table III.

E. Extensions of Near-Field Modeling

In this subsection, we discuss some extensions of near-field
modeling for XL-MIMO.

Uniform planar array (UPA) and modular XL-MIMO:
UPA-based XL-MIMO can be deployed to enable three-
dimensional (3D) spatial resolution, and the above near-field
modeling for the ULA can be extended to UPA, by consider-
ing the two-dimensional (2D) signal directions. Specifically,
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TABLE III
SPATIAL CORRELATION MATRICES FOR DIFFERENT MODELS

Model Spatial Correlation Matrix

Far-field UPW model Rm,n =
∫ θ̄+∆
θ̄−∆

ej
2π
λ

(m−n)d sin θf(θ)dθ

Near-field NUSW model Rm,n =
∫
q∈Q

r2(q)
rm(q)rn(q)

ej
2π
λ

(rm(q)−rn(q))f(q)dq

Near-field NUSW model
considering BS-side VR w.r.t. scatterers RVR

m,n =
∫
q∈Q E

[
bm

(
ΦNLoS(q)

)
bn
(
ΦNLoS(q)

)]
× r2(q)
rm(q)rn(q)

ej
2π
λ

(rm(q)−rn(q))f(q)dq

denote by M = MHMV the number of UPA elements,
with MH and MV denoting the number of array elements
per row and per column, respectively. Let dH and dV de-
note the antenna spacing along the horizontal and vertical
directions, respectively. Further denote by ûH and ûV the
direction vectors of the UPA along the horizontal and vertical
dimensions, respectively, with ‖ûH‖ = ‖ûV ‖ = 1. By
indexing the array element row-by-row, the corresponding
row and column of array element m are mV = d m

MH
e,

mH = mod (m,MH), respectively. Let the array center be
the reference point p. The location of the m-th array element
is pm = p + δmV dV ûV + δmHdH ûH , with δmV = (2mV −
MV −1)/2 and δmH = (2mH−MH−1)/2, respectively. The
distance between the signal source s and array element m is
rm = ‖pm − s‖ = ‖p− s + δmV dV ûV + δmHdH ûH‖. By
substituting rm into (8), the general near-field array response
vector of UPA can be obtained. In this case, the near-field
channel between the source and the antenna array depends on
the link distance and the 2D signal direction pair.

On the other hand, besides the conventional collocated XL-
array architecture, near-field modeling for the new modular
XL-array architecture has been pursued in [57], [128]. Com-
pared to the collocated XL-array where adjacent elements
are separated by half-wavelength, the inter-module spacing
is typically much larger than the signal wavelength, thus
achieving a larger array aperture, as illustrated in Fig. 15. This
renders the modular XL-array exhibit stronger near-field effect
than the collocated counterpart. Let Z and Dmo denote the
physical dimensions of each module and the whole modular
XL-array, respectively. Further denote by Γd the inter-module
separation between the reference points of adjacent modules,
with Γ being a module separation parameter and d denoting
the antenna spacing within each module. In particular, when
the source is located in the near-field region of the whole
modular XL-array but the far-field region of each module, i.e.,
2Z2/λ ≤ r < 2D2

mo/λ, a simplified subarray based USW
model with distinct angles was developed in [129], [130].
Moreover, when the source is located in the near-field region
of the whole array but the extended far-field region of each
module, specified by the region max {5Dmo, 4ZDmo/λ} ≤
r < 2D2

mo/λ, the AoAs of all modules are approximately
equal, i.e., θn ≈ θ, ∀n, where θn denotes the AoA at the
reference point pn of module n. In this case, the subarray
based USW model with common angle can be used. It was also
found that under the near-field subarray based USW model
with common angle, the array response vector of the modular
XL-array can be expressed as the Kronecker product of the
array response vectors of a sparse array and a collocated array.

Polarization mismatch: The polarization effect can be
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Fig. 15. An illustration of modular XL-array.

applied to increase the capacity of the system by creating
independent channels, and the research on the polarization
effect mainly focused on the dual-polarization [131], [132] and
triple polarization [133]–[135]. As discussed in Section I-B,
the array elements will experience different mismatch due to
the distinct AoAs in the near-field region, whose effect cannot
be reflected by simply multiplying the common loss coefficient
as in the far-field region [37]. By accurately modeling the
variations of wave propagation distances, projected aperture,
and losses of the polarization mismatch across array elements,
the free-space LoS channel is established in [37] based on the
electric field between the transmitter and receiver. With such a
channel model, the normalized antenna array gain, defined as
the total received power of M antennas divided by the received
power of M reference antennas (as if they were all located at
the origin), is introduced in [38], so as to characterize the array
gain difference in the near- and far-field regions. In the far-
field region, all the array elements capture the same power as
the reference antenna, and the normalized antenna array gain
is equal to one. Besides, it was shown that the normalized
antenna array gain approaches one when the link distance is
beyond the Björnson distance [38], given by rB = 2Ad

√
M ,

where Ad is the diagonal dimension of each antenna. This
implies that when the link distance is smaller than the Björnson
distance, it is necessary for near-field modeling to consider the
losses of the polarization mismatch across array elements [37],
[38]. The impact of polarization has also been considered for
the modeling of the LIS [36].

Spatial-wideband effect: In practice, XL-MIMO could be
accompanied by high-frequency communication systems, such
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as millimeter wave (mmWave) and THz bands [136], [137].
For wideband mmWave or THz XL-MIMO communications
with the significantly increased system bandwidth B, the max-
imum propagation delay between different array elements is
comparable to or even exceeds the symbol duration (inversely
proportional to B). In this case, different array elements may
even receive distinct symbols at the same sampling time, thus
giving rise to the unsynchronized reception, which is known as
spatial-wideband effect [138]–[141], and such an effect causes
beam squint/split issue in the frequency domain. To include
the impact of the variation of the propagation delay across
array elements, the channel impulse response from the source
to antenna m can be expressed as

hm (t) = α

√
Um
U

r

rm
e−j

2π
λ (rm−r)δ (t− τm) , (44)

where τm = rm/c denotes the propagation delay from the
source to antenna m, and U follows the same definition in
(7). On the other hand, when D � c/B, the propagation
delays of different array elements are approximately equal
[138], [142]. In particular, the beam squint/split effect can be
mitigated by utilizing the true-time-delay (TTD) line, which
can introduce a programmable true time delay to compensate
for the propagation delay among array elements, thus enabling
frequency-dependent phase shift [139], [143]–[146].

Green’s Function: Note that the above near-field channel
modeling based on array response vector is applicable only for
XL-MIMO with discrete array architecture. One generalized
modeling method is based on the Green’s function, which can
be applied for both the discrete- and continuous-aperture XL-
MIMO. The Maxwell’s equations can depict the relationship
between the current distribution J (r) and the electric field
E (r) as [36]

∇r ×∇r ×E (r)− κ2E (r) = jκZ0J (r) , (45)

where r is an arbitrary point, κ = 2π/λ is the wavenumber,
Z0 = 376.73 Ω is the intrinsic impedance of spatial medium,
and∇r is the first-order partial derivative operator with respect
to r. Note that (45) can be solved numerically by the Green’s
function G (r, s) [133]–[135] as

E (r) =

∫
VS

G (r, s) J (s) ds, (46)

where J (s) is the current distribution at the transmitter point
s, and VS is the transmitter volume. It is observed that the
Green’s function can link the current distribution at the trans-
mitter and the electric field at the receiver. One generalized
approach is the dyadic Green’s function, which can depict the
polarization effect between the transmitter and receiver [133]–
[135] as

G (r, s) =
jκZ0

4π

e−jκ‖r−s‖

‖r− s‖

(
I3 +

∇r∇Hr
κ2

)
, (47)

where I3 denotes a 3 × 3 identity matrix. Specifically,
G (r, s) ∈ C3×3 in (47) can be expressed as [133]

G =

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

 , (48)

where Gab denotes the scalar Green’s function between polar-
ization direction a of r and polarization direction b of s, with
a, b ∈ {x, y, z}. Thus, the effect of all polarization directions
x, y, z can be showcased. In [133] and [134], the authors stud-
ied the dyadic Green’s function based channel for the discrete
plane array and continuous surface, respectively. For far-field
approximation ‖r− s‖ � λ, (47) can be approximated as

G (r, s) ≈ jκZ0

4π

e−jκ‖r−s‖

‖r− s‖
(
I3 − p̂p̂H

)
, (49)

with p̂ = (r− s) / ‖r− s‖. Moreover, one simplified ap-
proach without the polarization effect is the scalar Green’s
function as

G (r, s) =
jκZ0

4π

e−jκ‖r−s‖

‖r− s‖
. (50)

The authors in [42] and [147] studied the scalar Green’s
function based channel for the continuous surface.

Electromagnetic Information Theory (EIT): As an
emerging research topic, EIT has attracted significant research
interest recently [134], [148], [149]. Specifically, EIT is a
research field that combines the EM theory and the information
theory to exploit the potentials through EM waves. Note
that the classical information theory relies on the spatially
discrete modeling and mismatches the continuous EM fields.
Thus, EIT is expected to uncover the EM theoretical capacity
bounds. The authors in [149] considered two continuous
regions over random EM fields. Then, the mutual information
between the parallel linear transmitter/receiver was derived
based on the Mercer expansion. More specifically, the capac-
ity bounds based on parallel infinite-length linear transmit-
ter/receiver, infinite-length linear transmitter/receiver, parallel
linear infinite-length transmitter and finite-length receiver, and
finite-length transmitter/receiver are derived.

On the basis of the methods in [149], the authors in [134]
studied the mutual information for the scenario where a single
BS equipped with the continuous surface served multiple
users equipped with the continuous surface. Then, the electric
current density distribution at the transmitter was optimized to
maximize the sum capacity. As observed, EIT can be applied
to depict the theoretical capacity for the EM based XL-MIMO
systems and to optimally design the XL-MIMO systems. To
further promote the analysis and practical implementation for
XL-MIMO systems, the EIT for more practical scenarios, such
as the scenario with multiple UEs, should be investigated
in the future. Besides, the polarization effect also should be
introduced to construct the EIT analysis framework.

F. Near-Field Channel Measurements

The new characteristics of near-field NUSW, spatial non-
stationarity and channel hardening have been validated via
XL-MIMO channel measurements for sub-6 GHz [102], [119],
[152]–[157] and mmWave bands [103], [158], [160]–[164].
The near-field channel measurement campaigns are summa-
rized in Table IV. The typical carrier frequencies for channel
measurements at sub-6 GHz include 1.4725, 2.6, 3.5, 5.3, and
5.8 GHz. The mmWave XL-MIMO channel measurements
have been well studied at some typical frequency bands, e.g.,
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TABLE IV
A SUMMARY OF NEAR-FIELD CHANNEL MEASUREMENT CAMPAIGNS

Reference Frequency
(GHz) Bandwidth Scenario Antenna Configuration Measured Channel Parameters

[150] 1.4725 91 MHz Outdoor TX: 128-element virtual ULA
RX: a bi-conical antenna NUSW: PAS

[151] 2.6 50 MHz Outdoor TX: single antenna
RX: 128-element virtual ULA

NUSW: PAS
Non-stationarity: channel gain, K-factor, PAS

[152] 2.6 40 MHz Indoor
Outdoor

TX: single antenna
RX: 128-element practical UCA

Channel hardening: channel gain
standard deviation

[153] 3.5 200 MHz Outdoor TX: 256-element virtual UPA
RX: 16-element practical array Non-stationarity: PAS, RMS AS

[154], [155] 5.3 160 MHz Outdoor TX: 8 omnidirectional antennas
RX: (128×8)-element practical ULA

NUSW: PAS
Non-stationarity: PDP, RMS DS, RMS AS

Channel hardening: channel gain
standard deviation

[156], [157] 5.8 100 MHz Outdoor
Indoor

TX: 128-element practical ULA
RX: 2 antennas

Non-stationarity: channel gain
Channel hardening: channel gain

standard deviation

[158] 11/16/28/38 2/2/4/4 GHz Indoor
TX: (51×51)-/(76×76)-/(91×91)-/

(121×121)-element vertical UPA
RX: an omnidirectional biconical antenna

NUSW: PAS
Non-stationarity: PDP, PAS, RMS DS, RMS AS

[159] 15 4 GHz Outdoor TX: an omnidirectional antenna
RX: 40× 40-element virtual UPA Non-stationarity: K-factor, RMS DS, RMS AS

[160] 26 0.2 GHz Indoor

TX: 64-/64-/128-element
vertical ULA/UPA/UPA

RX: 4-/4-/1-element virtual
ULA/ULA/antenna

Non-stationarity: path loss, PDP, RMS DS

[161] 28 2 GHz Indoor TX: 360-element virtual UCA
RX: an omnidirectional antenna Non-stationarity: PDP

[162] 29 2 GHz Indoor TX: a biconical antenna
RX: 720-element virtual UCA

NUSW: PAS
Non-stationarity: path loss, PAS, PDP

[103] 29.5 6 GHz Indoor TX: 720-element virtual UCA
RX: an omnidirectional biconical antenna Non-stationarity: channel gain, PDP

[163] 32 1 GHz Outdoor TX: an omnidirectional antenna
RX: 250-element virtual UCA

Non-stationarity: path loss, K-factor,
RMS DS, RMS AS

[164] 60 2 GHz Indoor
TX: (72×25)-/(15×15×6)-element

virtual uniform array
RX: 250-element virtual UCA

NUSW: PAS
Non-stationarity: PDP, PAS, RMS DS, RMS AS

26, 28, 29, 29.5, 32, 38, and 60 GHz bands. Besides the carrier
frequency, the bandwidth, type of antenna, array configuration,
and measurement scenario are considered for XL-MIMO chan-
nel measurements. Most of XL-MIMO channel measurement
campaigns adopt the virtual array architecture, i.e., the array
virtually formed by sequentially re-positioning one single
antenna in space, and a few measurement campaigns for sub-6
GHz adopt the practical array architecture [102], [119], [154],
[155]. The ULA, UPA, and uniform cylindrical array (UCA)
are the three most commonly used XL-array architectures in
channel measurement campaigns. After setting up the config-
uration of the measurement system, the parameter estimation
algorithms are utilized to extract the channel parameters from
the calibrated measurement data. The investigated channel s-
tatistical properties consist of first- and second-order statistics,
where the former include channel gain, path loss, shadow
fading (SF), K-factor, power delay profile (PDP), PAS, power
angle delay profile (PADP) and so on, and the latter include
root mean square (RMS) delay spread (DS), RMS angle spread
(AS), standard deviation of channel gain and so on.

In [150], [151], [154], [155], [158], [162], [164], the AoA of
the LoS path exhibits an angle offset across the antenna array,
which indicates that the far-field UPW model is invalid for
XL-MIMO communications. This feature is regarded as the
near-field NUSW characteristic and can be observed through

the PAS of the LoS path. Besides, the spatial non-stationarity
characteristic can be observed through the significant vari-
ations of channel gain [103], [151], [156], [157], K-factor
[151], [159], [163], PDP [103], [154], [155], [158], [160]–
[162], [164], PAS [151], [153]–[155], [158], [162], [164],
RMS DS [154], [155], [158]–[160], [163], [164], and RMS
AS [153]–[155], [158], [159], [163], [164] over the XL-array.
Furthermore, the measured PDP and PAS over the array show
the cluster birth-death property, where some clusters are visible
to the whole array and others are only seen by the partial
array. The channel hardening characteristic can be studied
from the frequency and time domains, where the small channel
gain standard deviation in frequency and time domains can
be observed [152], [154]–[157]. In particular, in contrast to
the near-field measurement campaigns, the angle offset and
variations of measured channel parameters utilized to validate
spatial non-stationarity are not observable for the far-field
measurement campaigns, and the far-field channels exhibit a
larger channel gain standard deviation in frequency and time
domains. It is also worth mentioning that many efforts have
been devoted to considering the above characteristics for near-
field channels. For example, according to the approved release-
19 study item “Study on Channel Modelling Enhancements
for 7-24 GHz for NR”, 3GPP will validate the existing
channel models with measurement data, at least for 7-24 GHz
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spectrum, and if necessary, the channel models will be adapted
by taking into account the near-field propagation and spatial
non-stationarity [165], [166].

G. Lessons Learned

1) Far-Field Versus Near-Field: The deployment of XL-
MIMO and the continuously shrinking cell size lead to a
paradigm shift from far-field communications to near-field
communications. In the conventional far-field communica-
tions, the assumptions of UPW and spatial stationarity are
typically used, under which the channel phases are modelled
linearly and amplitudes are modelled uniformly across array
elements. However, several new channel characteristics appear
in near-field communications, such as NUSW and spatial non-
stationarity, rendering the assumptions of linear phase and
uniform amplitude no longer valid. Moreover, instead of only
dependent on the signal direction as in the far-field channel,
the near-field channel is dependent on both the signal direction
and distance. As will become clearer later, these differences
have profound impacts on XL-MIMO performance analysis
and practical designs.

2) Near-Field Modeling: Accurate near-field modeling is
the prerequisite of XL-MIMO communications. The basic
array response vector modeling consists of near-field phase and
amplitude modeling, which yield four array response vector
models, i.e., UPW, NUPW, USW, and NUSW models, as
summarized in Fig. 10. For near-field free-space XL-MIMO
modeling, the direct method is to model the channel coefficient
between each transmit-receive antenna pair individually, and
the whole channel matrix can be obtained by stacking all
the channel coefficients. Moreover, the near-field multi-path
XL-MIMO channel can be obtained by separately modeling
the LoS and NLoS channel components, where an effective
modeling of the NLoS channel component is based on the
bistatic radar equation. On the other hand, VR is typically
used to characterize the spatial non-stationarity, and VR of XL-
MIMO communications is classified into UE-side VR and BS-
side VR. By considering the two VRs, the near-field channel
can be obtained correspondingly.

Spatial correlation matrix-based model is another widely
used approach, where the differences brought by NUSW and
VR should be considered to cater to the near-field channel
characteristics. One important finding is that the near-field
spatial correlation is determined by PLS rather than PAS as
in the conventional far-field UPW model, and the SWSS is no
longer valid. Moreover, the impacts of polarization mismatch
and spatial-wideband effect are other factors to consider for
accurate near-field modeling.

III. PERFORMANCE ANALYSIS OF XL-MIMO

In this section, we focus on the performance analysis of
near-field communication with XL-MIMO, including SNR
scaling laws, beam focusing pattern, achievable rate, DoF, and
near-field sensing.

Collocated XL-array

s

q
( )span MD

r

Fig. 16. An illustration of angular span in near-field communication with
XL-array.

A. SNR Scaling Laws

We first discuss the SNR scaling law for single-user com-
munication with collocated XL-ULA with isotropic elements.
Specifically, we consider a free-space SIMO communication
system shown in Fig. 7, where the UE is located at s. By
substituting Um = U = (λ/4π)

2 into (22), and applying the
optimal maximal-ratio combining (MRC) beamforming, the
resulting SNR can be expressed in closed-form as [9]

γNUSW = P̄
∥∥αaNUSW (r, θ)

∥∥2
=

P̄ λ2

(4π)
2
dr sin θ

∆span (M) ,

(51)
where α follows the same definition below (7), P̄ , P/σ2,
with P and σ2 denoting the transmit and the noise power,
respectively, and ∆span (M) , arctan

(
Md

2r sin θ + cot θ
)

+
arctan

(
Md

2r sin θ − cot θ
)
. The above result shows that with

the near-field NUSW model, the resulting SNR scales with
antenna number M nonlinearly according to the parameter
∆span (M), termed angular span [9], rather than growing
linearly with M as in the far-field UPW model. Besides, a
closer look at Fig. 16 shows that the angular span is the angle
formed by the two line segments connecting the source with
both ends of the antenna array. Therefore, for infinitely large-
scale array such that M → ∞, we have ∆span (M) → π.
Then the resulting SNR in (51) reduces to

lim
M→∞

γNUSW =
P̄ λ2π

(4π)
2
dr sin θ

, (52)

which is a constant depending on the user’s projected distance
to the collocated XL-array r sin θ.

As a comparison, when the far-field UPW array response
vector (12) is used, the resulting SNR is given by

γUPW = P̄
∥∥αaUPW (θ)

∥∥2
=
P̄Mλ2

(4πr)
2 , (53)

which increases linearly with the antenna number M . As M →
∞, the resulting SNR with the UPW model will go to infinity,
which fails to comply with the law of power conservation.
Note that when r � Md/2, it is verified that γNUSW ≈
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Fig. 17. SNR versus the number of antenna elements M with NUSW and
UPW models [9].

γUPW = P̄Mλ2/(4πr)
2 [9], which implies that the NUSW

model generalizes the far-field UPW model.
In Fig. 17, we compare the resulting SNRs for the near-field

NUSW and the far-field UPW models. The locations of the
source and the reference point of the array are s = [0, 0]

T m
and p = [15, 0]

T m, respectively. The direction vector of the
array is û = [0, 1]

T . The carrier frequency is 2.4 GHz, and
the antenna separation is d = λ/2 = 0.0628 m. Besides, the
transmit SNR is P̄ = 90 dB. It is observed that for relatively
small antenna number M , γNUSW matches well with γUPW.
This is expected since the far-field UPW model gives a valid
approximation. However, as M further increases, quite differ-
ent scaling laws are observed for the two SNR expressions,
i.e., approaching a constant value versus increasing linearly
and unbounded. The above result demonstrates that the proper
spherical wavefront modeling is essential for the XL-array.

Furthermore, by considering the variation of projected aper-
ture across array elements, a closed-form SNR expression was
derived for the general UPA [10], which is applicable for
both the conventional discrete antenna array and the emerging
continuous surfaces. As the antenna number M → ∞, the
received power of the continuous surface approaches to P/2.
Such a result makes an intuitive sense since for the isotropic
source, only half of the transmitted power will be captured by
the infinitely large continuous surface, while the other half of
the power will never reach the surface [10], [43]. By further
taking into account the loss of the polarization mismatch for
the continuous-aperture and discrete-aperture XL-array, the
SNR expressions were derived in [37] and [167], respectively.
It was shown that in the presence of polarization mismatch,
as M → ∞, only P/3 can be captured by the continuous
surface. Moreover, the power scaling law and the asymptotic
analysis for the continuous-aperture LIS can be found in [36].

While the abovementioned works mainly focus on the
standard collocated XL-array, preliminary efforts have been
devoted to the new modular XL-array architecture in [57],
[128]. In [57], the closed-form SNR with the NUSW model
was derived for the modular XL-ULA, which depends on its

geometric characteristics, such as the physical dimension and
the inter-module separation. When the inter-module separation
is equal to the antenna spacing d, it was mathematically shown
that the SNR of the modular XL-ULA degenerates to that of
the collocated XL-ULA. Moreover, by properly modeling the
variation of projected aperture across all modular elements,
the SNR scaling law for the more general modular XL-UPA
was analyzed in [128], for which the similar observation as
the modular XL-ULA is obtained.

B. Near-Field Beam Focusing Pattern

In near-field XL-MIMO communications, the order of mag-
nitude increase in antenna number brings enhanced spatial
resolution beyond current massive MIMO systems [8], [9].
For multi-user communications, one important aspect is the
evolution from the far-field beam pattern to the near-field
beam focusing pattern. Specifically, the beam pattern under
the far-field UPW model describes the intensity distribution
of a designed beam intended for a certain direction as a
function of the observation direction. By contrast, the near-
field beam focusing pattern is capable of characterizing the
intensity distribution as a function of the observation location
[66], [75], [130]. As illustrated in Fig. 18, let v (s′) denote the
beamforming vector designed for the desired location s′, and
s denote the actual observation location. The beam focusing
pattern can be defined as [130]

G (s; s′) ,

∣∣vH (s′) a (s)
∣∣

‖v (s′)‖ ‖a (s)‖
, (54)

where a (s) denotes the array response vector of the obser-
vation location s. The observation location s can be located
in either the near-field or the far-field regions. Besides, the
choice of the beamforming vector v (s′) is closely depen-
dent on the available CSI and/or the pre-determined beam
codebook, which includes the far- and near-field beamforming
designs. In the following, similar to [130], depending on the
observation location and the used beamforming vector, three
beam focusing patterns are discussed.1

1) Far-Field Observation With Far-Field Beamforming:
When the observation location s is in the far-field region, and
the far-field UPW-based beamforming vFF = aUPW (s′) in
(9) is used, the beam focusing pattern in (54) reduces to the
conventional far-field beam pattern. For ease of comparison
for different array architectures, we consider an antenna array
with a total of NM elements, and the far-field beam pattern
is

GFF,FF (s; s′) ,
1

NM

∣∣∣(aUPW (s′)
)H

aUPW (s)
∣∣∣ , (55)

where the first subscript FF represents the far-field observation,
i.e., the far-field array response vector aUPW (s) is used for
the far-field observation point s, and the second subscript
FF represents the far-field beamforming for v. For collocated
ULA where adjacent elements are separated by d = λ/2, by

1In fact, we have another case for “far-field observation with near-field
beamforming”, which is not discussed here for brevity.
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Fig. 18. Illustration of near-field beam focusing pattern.

substituting (12) into (55), we have

Gco
FF,FF (θ; θ′) =

∣∣∣∣∣ sin
(
π
2NM∆θ

)
NM sin

(
π
2 ∆θ

) ∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣ΞNM, 1
2

(∆θ)

∣∣∣∣

, (56)

where the superscript “co” refers to collocated ULA, d̄ ,
d/λ = 1/2, ∆θ , cos θ′ − cos θ, and ΞM̃,d̃ (∆θ) ,

sin(πM̃d̃∆θ)/(M̃ sin(πd̃∆θ)) is the Dirichlet kernel function
[130]. On the other hand, for modular ULA with N modules
and each module consisting of M elements, the far-field beam
pattern is [130],

Gmo
FF,FF (θ; θ′) =

∣∣∣∣∣ sin
(
π
2NΓ∆θ

)
N sin

(
π
2 Γ∆θ

) ∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣ΞN,Γ
2

(∆θ)

∣∣∣∣

∣∣∣∣∣ sin
(
π
2M∆θ

)
M sin

(
π
2 ∆θ

) ∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣ΞM, 1
2

(∆θ)

∣∣∣∣

, (57)

where the superscript “mo” refers to the modular ULA, and
Γ ≥ M is the module separation parameter, with Γd being
the inter-module separation between the reference points of
adjacent modules, as illustrated in Fig. 15. Moreover, for
sparse ULA where adjacent elements are separated by Iλ/2,
with I > 1, the far-field beam pattern is

Gsp
FF,FF (θ; θ′) =

∣∣∣∣∣ sin
(
π
2NMI∆θ

)
NM sin

(
π
2 I∆θ

) ∣∣∣∣∣︸ ︷︷ ︸
Ξ
NM, I

2
(∆θ)

, (58)

where the superscript “sp” refers to sparse ULA. It is observed
that the far-field beam patterns of the three array architectures
are only determined by the difference of two spatial frequen-
cies, i.e., ∆θ, while irrespective of the link distance. Besides,
the null-to-null beam width of ΞM̃,d̃ (∆θ) can be obtained by
letting πM̃d̃∆θ = ±π, given by 2/M̃d̃. By defining half of
the null-to-null beam width as the angular resolution, for the

three architectures, we have
ωco
θ =

2

NM
,

ωmo
θ =

2

NΓ
,

ωsp
θ =

2

NMI
,

(59)

i.e., the increase in antenna number NM helps improve the
angular resolution. In particular, by letting Γ = M , modular
array reduces to collocated array. Therefore, with the same
number of array elements, modular array provides a higher
angular resolution than the conventional collocated array since
Γ > M . However, it is worth mentioning that the undesired
grating lobes will appear in the beam pattern when d̃ > 1/2
[31]. Since Γ/2 > 1/2 in (57), the improvement of angular
resolution of the modular array is in fact at the cost of
grating lobes, with the adjacent grating lobes separated by
2/Γ. Fortunately, the grating lobes are suppressed to certain
extent by the envelope of the other term ΞM, 12

(∆θ). On the
other hand, since I > 1, grating lobes also exist for sparse
array, with the adjacent grating lobes separated by 2/I [55].
Besides, the sparse array also includes the collocated array as
a special case when I = 1.

Fig. 19 shows the comparisons of far-field beam pattern
for collocated, modular and sparse array architectures. The
total number of array elements is NM = 16, with N = 4
and M = 4, respectively. The module separation parameter
for modular array is Γ = 13, and the antenna separation
parameter for sparse array is I = 13. For the considered
setup, it is observed that the angular resolution of modular
array is superior to collocated array, but inferior to sparse
array, as can be inferred from (59). It is also observed that
the undesired grating lobes exist in both modular and sparse
arrays. Fortunately, the grating lobes of modular array is
suppressed to certain extent by the envelope of the other term
ΞM, 12

(∆θ) in (57), while for sparse array, the amplitude and
bandwidth of grating lobes are equal to those of the main lobe.

2) Near-Field Observation With Far-Field Beamforming:
When the observation location s lies in the near-field region,
while the far-field beamforming is used for the desired loca-
tions s′, the near-field beam focusing pattern is

GNF,FF (s; s′)
∆
=

∣∣∣(aUPW (s′)
)H

a (s)
∣∣∣

‖aUPW (s′)‖ ‖a (s)‖
. (60)

For collocated ULA, by using the USW-based array response
vector in (20) for the observation location, we have

Gco
NF,FF (r, θ; θ′) =

1

NM

∣∣∣∣∣
NM∑
m=1

e−j
2π
λ (rm−md cos θ′)

∣∣∣∣∣ . (61)

On the other hand, by using the subarray based USW model
with different angles for the observation point, the near-field
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Fig. 19. Comparisons of far-field beam pattern for collocated, modular and
sparse array architectures.

beam focusing pattern of the modular ULA is [130]

Gmo
NF,FF (r, θ; θ′) =

1

N

∣∣∣∣∣
N∑
n=1

e−j
2π
λ (rn−(n−1)Γd cos θ′)×

ΞM, 12
(cos θ′ − cos θn)

∣∣∣∣∣,
(62)

where rn denotes the distance between s and pn.
It is observed that different from the far-field beam pattern

discussed in Section III-B1, the near-field observation pattern
under the far-field beamforming design depends on the specific
observation location (r, θ) and the intended beamforming
direction θ′. Besides, when the observation location s co-
incides with the desired location s′, (60) characterizes the
beamforming gain loss due to the mismatch between the
near-field channel and the far-field beamforming. In [168],
the distance metric termed effective Rayleigh distance was
introduced, which is defined as the minimum link distance
so that the normalized beamforming gain is no smaller than a
certain threshold. By setting the threshold as 0.95, the effective
Rayleigh distance is given by [168]

reffRayl (θ) =
(
0.367sin2θ

) 2D2

λ
. (63)

In the following, the interference created by a far-field
beamforming to the near-field observation location is studied,
where the energy spread effect will appear in the beam
focusing pattern [11], [130], [169]. As an example, Fig.
20 shows the beam pattern of collocated ULA versus the
spatial frequency difference ∆θ, by fixing the desired location
(r′, θ′) = (2000 m, π/2). The near-field and far-field obser-
vation distances are r = 50 m and r = 2000 m, respectively.
The number of antennas is 256. It is observed that when the
observation location lies in the far-field region, corresponding
to r = 2000 m, we have the far-field beam pattern, and
the energy focuses on the desired beamforming direction.
However, for the near-field observation location, an expanded
beam width is observed for the near-field beam focusing

-1 -0.5 0 0.5 1
-30

-25

-20

-15

-10

-5

0

B
ea

m
 f

oc
us

in
g 

pa
tte

rn
 (

dB
)

G
FF,FF
co

G
NF,FF
co

Fig. 20. Illustration of energy spread effect.

pattern, i.e., the energy will spread towards the neighboring
directions.

The beam focusing pattern reflects the correlation between
the near- and far-field channels. As a result, the energy
spread effect will cause another key fact from an interference
perspective, i.e., inter-user interference (IUI) between near-
field user and far-field user [169]. Specifically, when the
near-field user locates in the neighbor of the far-field user,
a more complicated IUI issue arises as compared to the
conventional far-field communications. On the other hand,
the interesting inter-user channel correlation in the mixed-
field communications also brings new design opportunities.
For example, from the WPT perspective, the power leakage
caused by discrete Fourier transform (DFT)-based codebook
for serving far-field users can be exploited to charge the near-
field energy-harvesting (EH) user. In [170], [171], the joint
beam scheduling and power allocation was investigated for si-
multaneous wireless information and power transfer (SWIPT)
in mixed-field channels to maximize the harvested sum-power
at EH users under a minimum sum-rate constraint for far-field
information-decoding users. An interesting result was revealed
that for mixed-field SWIPT, the energy-harvesting user located
in the near-field should always be scheduled to maximize
the harvested sum-power, which is in sharp contrast with
the convention far-field SWIPT, for which only information-
decoding users are scheduled [172].

3) Near-Field Observation With Near-Field Beamforming:
When the observation location s lies in the near-field region,
and the near-field beamforming is designed for the desired
location s′, i.e., vNF = a (s′), the beam focusing pattern in
(54) is given by

GNF,NF (s; s′) ,

∣∣aH (s′) a (s)
∣∣

‖a (s′)‖ ‖a (s)‖
. (64)

For collocated XL-array and USW-based array response vector
in (20), we have

Gco
NF,NF (r, θ; r′, θ′) =

1

NM

∣∣∣∣∣
NM∑
m=1

ej
2π
λ (r′m−rm)

∣∣∣∣∣ . (65)
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Fig. 21. Comparisons of beam focusing patterns for collocated, modular and
sparse XL-array architectures.

For moderately large array, rsecond
m is an effective approxima-

tion for phase modeling, and a closed-form near-field beam
focusing pattern can be derived based on [130]. On the other
hand, under the subarray based USW model with common
angle, the closed-form near-field beam focusing pattern of
modular XL-array was derived in [130]. In particular, one
important difference is that the near-field beam focusing
pattern provides the spatial resolution over both the angular
and distance domains. In order to quantify the angular and
distance resolution, the effective angular resolution is defined
as half of the approximated null-to-null beam width in the
angular domain, and the effective distance resolution is half
of the 3 dB beam width in the distance domain.

• Angular resolution: The near-field beam focusing
pattern gives comparable angular resolution as the far-
field beam pattern. The effective angular resolution is
approximated given in (59).

• Distance resolution: Let rhp (θ′) = 0.1sin2θ′ 2D
2

λ
denote the half power effective distance [130]. The
effective distance resolution of the near-field beam
focusing pattern is

ω1/r (θ′) =
1

rhp (θ′)
, (66)

and the two locations along the same direction can
be separated when |1/r′ − 1/r| ≥ 1/rhp (θ′). Such a
result is applicable to the three architectures, by using
the corresponding physical dimension D. Compared
to the effective angular resolution that is inversely
proportional to array physical dimension, the effective
distance resolution is inversely proportional to the
square of array physical dimension.

The spatial resolution and grating lobes for the three array
architectures are summarized in Table V.

Fig. 21 compares the beam focusing pattern versus the
distance separation ∆r = r − r′ for collocated, modular
and sparse XL-array architectures, by fixing r′ = 200 m
and θ = θ′ = π/2. The total number of array elements is

NM = 512, with N = 128 and M = 4, respectively, and
the USW-based array response vector is used. The module
separation parameter for modular XL-array is Γ = 13, and the
antenna separation parameter for sparse XL-array is I = 13.
It is observed that the near-field beam focusing patterns of all
the three array architectures exhibit a general trend of decreas-
ing, and the sparse XL-array possesses the highest distance
resolution due to the narrowest beam width in the distance
domain. This is expected since under the setup of Γ = I ,
sparse XL-array has the largest physical dimension. Besides,
the distance resolution of modular XL-array is superior to that
of collocated XL-array. Thus, XL-array provides not only the
angular resolution as in the conventional MIMO and massive
MIMO systems, but also the new distance resolution. The
similar observations can be found in [9], [65], [173]. This thus
enables the possibility of XL-array to extract the propagation
distance of EM waves in space, i.e., spatial depth [8].

C. Achievable Rate of Near-Field Communication

The enhanced spatial resolution of XL-MIMO brings a new
DoF for IUI suppression, i.e., the IUI can be suppressed not
only by the angular separation as in the conventional far-field
UPW model, but also by the distance separation for users along
the same direction [9], [75], [173]. For example, in [173], the
signal-to-interference-plus-noise ratio (SINR) performance of
three typical beamforming schemes, i.e., MRC, zero-forcing
(ZF), and minimum mean-square error (MMSE) beamform-
ing, were evaluated for multi-user near-field communications.
Specifically, consider a multi-user uplink communication sys-
tem, where the XL-array equipped with M elements serves
K single-antenna users. Let hk ∈ CM×1 denote the multi-
path channel of user k, which can be obtained based on (32),
and Pk denote the transmit power of user k. By applying the
receive beamforming vk ∈ CM×1 to user k, with ‖vk‖ = 1,
the resulting SINR of user k is

γk =
P̄k
∣∣vHk hk

∣∣2
K∑

i=1,i6=k
P̄i
∣∣vHk hi

∣∣2 + 1

, ∀k, (67)

where P̄k , Pk/σ
2 denotes the transmit SNR of user k. Then

the achievable sum rate in bits/second/Hz (bps/Hz) is

Rsum =

K∑
k=1

log2 (1 + γk). (68)

In particular, for the special case of two users, the closed-
form SINR expressions were derived in [173], with the ex-
pressions of user k, k = 1, 2, given by

γk =



P̄k‖hk‖2
(

1− P̄k′‖hk′‖2ρkk′
P̄k′‖hk′‖2ρkk′ + 1

)
, MRC,

P̄k‖hk‖2 (1− ρkk′) , ZF,

P̄k‖hk‖2
(

1− P̄k′‖hk′‖2ρkk′
P̄k′‖hk′‖2 + 1

)
, MMSE,

(69)



24

TABLE V
SPATIAL RESOLUTION AND GRATING LOBES FOR DIFFERENT ARRAY ARCHITECTURES

Array Architectures Far-Field Angular
Resolution

Near-Field Angular
Resolution Near-Field Distance Resolution Separation of Adjacent

Grating Lobes

Collocated ULA
• NM : number of elements ωco

θ = 2
NM

ωco
θ = 2

NM

ωco
1/r

(θ′) = 1
rco
hp

(θ′) ,

rco
hp (θ′) = 0.1sin2θ′

2D2
co
λ

, Dco =
(NM−1)λ

2

No grating lobes

Modular ULA
• N : number of modules
• M : number of elements
within each module
• Γ: module separation parameter

ωmo
θ = 2

NΓ
ωmo
θ = 2

NΓ

ωco
1/r

(θ′) = 1
rmo
hp

(θ′) ,

rmo
hp (θ′) = 0.1sin2θ′

2D2
mo
λ

, Dmo =
[(N−1)Γ+M−1]λ

2

2
Γ

Sparse ULA
• NM : number of elements
• I: antenna separation parameter

ωsp
θ = 2

NMI
ωsp
θ = 2

NMI

ωco
1/r

(θ′) = 1
r
sp
hp

(θ′)
,

rsp
hp (θ′) = 0.1sin2θ′

2D2
sp

λ
, Dsp =

(NM−1)Iλ
2

2
I
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Fig. 22. Sum rate versus the antenna number M for near- and far-field
MMSE, ZF, and MRC beamforming.

where k′ 6= k, ρkk′ ,
|hHk hk′ |2
‖hk‖2‖hk′‖2

, with 0 ≤ ρkk′ ≤ 1,
accounts for the channel’s squared-correlation coefficient be-
tween users k and k′. For free-space LoS propagation, ρkk′
is related to the beam focusing pattern presented in Section
III-B, via ρkk′ = G2

NF,NF (rk, θk; rk′ , θk′). It is observed
from (69) that the SINR of user k can be expressed as the
SNR of the single-user system minus the penalty term due
to the existence of IUI, where the penalty term varies for
the three beamforming schemes. Besides, the increase of ρkk′
deteriorates the SINR of all the three beamforming schemes,
and it can be shown that MMSE beamforming yields the best
SINR performance.

Fig. 22 shows the sum rate of the SIMO system versus
antenna number M , where the multi-path channels of users are
based on the near-field NUSW model in (32). For comparison,
the NUSW-based near-field and UPW-based far-field receive
beamforming designs are respectively considered, including
MRC, ZF, and MMSE. The carrier frequency and transmit
SNR of each user are the same as Fig. 17. K = 10 users are
uniformly distributed in the circular area with center rc = 600
m and radius rmax = 200 m, i.e., rk ∈ [rc − rmax, rc − rmax]
and θk ∈ [−θmax, θmax], with θmax = arcsin (rmax/rc).
Besides, the multi-path channel (32) is considered, where each
user has one LoS channel path and Q = 9 NLoS channel

paths. The NLoS channel component follows the bistatic radar
equation based modeling, and the locations of scatterers are
randomly distributed in the area given by rq ∈ [200, 500]
m and θq ∈ [−60◦, 60◦]. The RCS of each scatterer is
uniformly distributed in [1, 10] m2. It is observed that for
relatively small antenna number M , all the three far-field
beamforming schemes give the similar performance as the
near-field beamforming counterparts. This is expected since
when M is small, the users and scatterers are located in
the far-field region, for which the far-field UPW model is
a valid approximation for NUSW model. However, as M
increases, the far-field beamforming schemes give much worse
performance than the near-field beamforming schemes, since
the far-field beamforming schemes are designed based on the
far-field UPW channels, which fail to match with the actual
near-field NUSW channels. It is also observed that for large
M , the performance of the near-field ZF beamforming is
comparable to that of the near-field MMSE beamforming. This
is due to the fact that the IUI is dominated over the noise in
this case.

Furthermore, by taking into account VR, the authors in
[123] studied the SINR performance by deriving the approx-
imate SINR expressions under conjugate beamforming and
ZF precoders, which are functions of the VR size of each
UE and the size of the overlapping VR regions. In [125],
the authors proposed a subarray-based system architecture for
XL-MIMO system, by considering the spatial non-stationary
channel. The tight closed-form uplink spectral efficiency ap-
proximations with linear receivers were derived, including
MRC and linear MMSE receivers. Then the subarray phase
coefficient design was proposed to maximize the achievable
spectral efficiency. To resolve the undesired grating lobe issue
suffered by modular XL-array, an efficient user grouping
method was developed for multi-user transmission scheduling
in [130], which avoids allocating the same time-frequency
resource block to users located within the grating lobes, so
as to maximize the achievable sum rate. Moreover, from a
network perspective, it is worthy of analyzing the network-
wide XL-MIMO performance over the conventional network-
wide massive MIMO [174] in the future, such as network area
spectral efficiency.

Regarding the near-field power control to achieve higher
spectral efficiency, there exist both advantages and challenges
compared to the far-field counterpart. On one hand, the near-
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field beam focusing pattern brought by spherical wave renders
it possible to separate users along the same direction but differ-
ent distances. This enables more flexible multi-user scheduling
and power control for achieving higher spectral efficiency. On
the other hand, due to the near-field spatial non-stationarity,
different users may have distinct visibility region [25], [175],
which can be exploited for user grouping, e.g., assigning the
same time-frequency resource block to users with the non-
overlapping visibility region, so as to simplify the near-field
power control. It is also worth mentioning that near-field power
control faces several challenges [176], [177]. For example,
for the mixed near- and far-field user communications, the
energy-spread effect results in a more complicated IUI, and
hence a more complicated power control strategy is required.
Besides, the grating lobes appearing in modular and sparse
arrays should be carefully considered for near-field power
control. Last but not least, the difference between near- and
far-field power control schemes becomes non-negligible for
the cases of near-field user communications and mixed near-
and far-field user communications. In particular, when all users
are located in the far-field region, the near-field power control
scheme reduces to the far-field counterpart, i.e., no mismatch
occurs in this case.

It is also worth mentioning that spectral efficiency can be
improved by exploiting the polarization effect. In particular,
compared to the single-polarization multi-user system, the
dual- and triple-polarization counterparts suffer from both the
IUI and cross-polarization interference, rendering near-field
precoding more complicated. In [178], to reap the benefit of
polarized multi-user communication, a triple-polarization near-
field channel was modelled with the dyadic Green’s function.
Based on the constructed channel model, a user-cluster-based
precoding scheme and a two-layer precoding scheme were
proposed to mitigate the cross-polarization interference and
IUI. The results showed that the triple-polarization system
yields a higher spectral efficiency than the dual- and single-
polarization systems.

D. DoF

In wireless communications, DoF, also known as the spatial
multiplexing gain, is defined as the asymptotic slope of the
capacity versus SNR [179]. In general, DoF is applied to
denote the number of independent data streams that can be
simultaneously supported by channels, and a higher system
capacity performance can be obtained with a larger DoF.
For the conventional massive MIMO communications with
UPW-based channel modeling, DoF is limited by the number
of channel paths, which is only one for the LoS scenario.
However, in the near-field XL-MIMO communications, a
superior DoF performance can be achieved, thanks to the
NUSW characteristics with both angle and distance resolution
capabilities.

Considerable research efforts have been devoted to exploit-
ing the DoF performance for XL-MIMO systems [36], [133],
[180]–[183]. For example, the authors in [36] studied the
DoF performance for continuous-aperture surface based XL-
MIMO. Firstly, the authors modelled the channel based on the

dyadic Green’s function under the far-field approximation as
(49). Then, achievable DoF expression was derived based on
the 2D sampling theory arguments as shown in [36, Sec. IV].
Besides, the authors in [133] studied the effective degrees-of-
freedom (EDoF) performance for the discrete antenna array,
where the transmitter and receiver are equipped with Mt

and Mr antennas, respectively. The concept of EDoF was
originally introduced in [184] to approximate the MIMO
channel capacity in the low-SNR regime as EDoF×[log2

Eb
N0
−

log2
Eb
N0 min

], where Eb
N0

denotes the bit energy over the noise
power spectral density, and Eb

N0 min
denotes the minimum

value for reliable communications. In [133], by modeling the
channel H ∈ CMr×Mt based on the dyadic Green’s function,
the EDoF is approximately given by

EDoF ≈

(
tr
(
H̄
)∥∥H̄∥∥
F

)2

, (70)

where H̄ = HHH ∈ CMr×Mr .
Furthermore, EDoF for both the continuous surface and

discrete array was analytically studied in [180], [181]. In
[180], for the discrete ULA based transmitter and receiver,
the channel H ∈ CMr×Mt was modelled based on the scalar
Green’s function, and the EDoF was computed as (70). More-
over, the EDoF result for the discrete ULA is extended to the
continuous-aperture ULA, by exploiting the auto-correlation
kernel function. Specifically, the transmitter and receiver are
equipped with the continuous-aperture ULA, with the lengths
being DT and DR, respectively. Besides, let T and R denote
the region of the transmitter and receiver, respectively. The
scalar Green’s function between any two arbitrary locations
rT ∈ T and rR ∈ R was denoted as G (rR, rT ). Then,
the auto-correlation kernel K (rT , r

′
T ), which correlates two

arbitrary locations rT , r
′
T ∈ T at the transmitter region, was

defined as

K (rT , r
′
T ) =

∫
R
GH (rR, rT )G (rR, r

′
T ) drR. (71)

Note that the continuous array scenario can be viewed as
the asymptotic scenario for the discrete array scenario with
Mr,Mt → ∞. As such, the (n1, n2)-th element of H̄ =
HHH would have the asymptotic form as[

H̄
]
n1,n2

→ M2
r

D2
R

|K (rT , r
′
T )|2 . (72)

Then the EDoF for the continuous-aperture ULA is derived as
[180]

EDoFcon = lim
Mt,Mr→∞

(
tr
(
H̄
)∥∥H̄∥∥
F

)2

=

(∫
T
∫
R |G (rR, rT )|2drRdrT

)2

∫
T
∫
T |K (rT , r′T )|2drTdr′T

,

(73)

and such a result holds for both the near-field and far-
field regions. It is also worth mentioning that some elegant
approximate DoF expressions were obtained in [185], [186].



26

For example, the DoF for the ULA-based transmitter and
receiver can be approximated as

DoFULA ≈
DRDT

λr
, (74)

where DT and DR are the physical dimensions of the trans-
mitter and receiver, respectively, and r denotes the distance
between the transmitter and receiver. On the other hand,
the DoF for the UPA-based transmitter and receiver can be
approximately computed as

DoFUPA ≈
ArAt
λ2r2

, (75)

where AT and AR denote the areas of the transmitter and
receiver, respectively. Besides, it would be interesting to
explore the accurate DoF performance to provide guidance
for the practical design of XL-MIMO systems in the future.

E. Near-Field XL-MIMO Sensing

Besides the basic wireless communications, XL-MIMO can
be leveraged to support the various applications, such as
sensing [142], [187]–[189], localization [79], [108], [190]–
[194], and tracking [195]. In [187], the sensing SNR expres-
sions for the NUSW model were derived in closed-form for
both XL-MIMO radar and XL-phased-array radar modes, and
more practical sensing SNR scaling laws were observed as
compared to those for the existing UPW model. Subsequently,
another important metric of radar sensing, i.e., Cramér-Rao
bound (CRB), was studied for the near-field sensing in [142],
whose closed-form expressions were respectively derived for
the above two radar modes based on the USW model. It
was mathematically revealed that as the transmit array size
goes to infinity, the CRB for angle estimation tends to a
certain limit for the near-field XL-MIMO radar, rather than
decreasing indefinitely as in the conventional UPW model.
In particular, such a saturation limit for the near-field XL-
MIMO radar is observed since for the near-field spherical
wave, the phase curvature of the signal along the far-end
elements becomes diminishing as the array goes very large. In
this case, further increasing the array size does not contribute
additional gain for CRB. Besides, thanks to the capability to
resolve the propagation distance with spherical wavefront, the
position rather than only the direction can be inferred for near-
field sensing with one single antenna array. For example, the
possibility of directly positioning the signal source based on
the wavefront curvature was investigated in [190]. By taking
into account the VR of the signal source, the localization
with the XL-array can be found in [108], [192]. Moreover,
based on the accurate EM propagation model, the authors in
[193] proposed a generic near-field positioning model that
considered three different observed electric field types and
the universality of the terminal position. The CRBs for the
three electric field observation types were then derived, and
an improved estimation accuracy of dimensions parallel to
the receiving antenna surface can be observed for the case of
multiple receiving antennas. On the other hand, the curvature
information encapsulated in the spherical wavefront can be
exploited to achieve the signal source tracking for inferring

its position and moving velocity [195], wherein the accuracy
of different Bayesian tracking algorithms was evaluated.

Besides the conventional collocated array, sparse array can
also be used for near-field sensing [196], [197]. In particular,
benefiting from the improved spatial resolution, a superior
sensing capability can be achieved for sparse array, thus en-
abling a better discrimination and characterization of practical
EM environments [196]. Besides, in [197], two types of non-
uniform sparse arrays were designed for mixed near- and far-
field source localization, which outperform the conventional
collocated array in terms of angle and distance estimation. It
is also worth mentioning that the grating lobes appearing in
modular and sparse arrays may lead to the angular ambiguity
problem, i.e., notable estimation error occurs when the target
locates within the grating lobes. Such an issue can be alleviated
if prior information about the target location is obtained by
performing spatial filtering. In summary, near-field sensing
with modular and sparse arrays in the presence of grating lobes
remains an open problem.

F. Lessons Learned

Near-field XL-MIMO communications lead to quite differ-
ent performance from conventional far-field communications,
as reflected by SNR scaling laws, near-field beam focusing
pattern, achievable rate, and DoF. It is revealed that for free-
space LoS SIMO communication, the resulting SNR scales
with antenna number nonlinearly according to the angular
span, rather than increasing linearly as in conventional far-
field UPW model. Besides, the significantly enhanced spatial
resolution leads to the evolution from far-field beam pattern
to near-field beam focusing pattern, and XL-MIMO provides
not only the angular resolution as in the conventional MIMO
or massive MIMO systems, but also the distance resolution.
Such an improvement of resolution enables new opportuni-
ties for various applications, such as IUI suppression, WPT,
sensing, localization and tracking. Moreover, compared to far-
field MIMO communications, a superior DoF performance
can be achieved in near-field XL-MIMO communications,
which can be leveraged for spatial multiplexing and capacity
enhancement.

IV. XL-MIMO DESIGN

In this section, we present practical XL-MIMO design issues
in near-field beam codebook, beam training, channel estima-
tion, DAM, cost-efficient and low-complexity implementation.
First, to fully reap the promising beamforming gain brought by
XL-MIMO, efficient near-field beam training methods based
on carefully designed codebook are indispensable to establish
strong initial link between the BS and user before conducting
channel estimation and data transmission. Moreover, chan-
nel estimation for obtaining the complete CSI facilitates the
signal processing design and performance analysis. Second,
the super spatial resolution of XL-MIMO motivates a novel
DAM transmission technology that enables an inter-symbol
interference (ISI)-free communication. Last, practical issues
of cost and signal processing complexity with respect to XL-
MIMO implementation are discussed in this section.
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Let W = {w1, · · · ,wN} denote a beam codebook to be
designed that includes N beam codewords. Then, the aim of
XL-array beam training is to find the best codeword in the de-
signed beam codebookW that achieves the maximum received
SNR at the user, which can be mathematically formulated as

wopt = arg max |y(wm)|2

s.t. wm ∈ W,
(76)

where y(wm) = hHwmx+z, with x and z denoting the pilot
signal and receiver noise, respectively. Generally speaking,
the beam training performance can be characterized by the
following three performance metrics:

1) Beam training overhead, which specifies the number of
required training symbols for determining the best beam
codeword, while its scaling order is proportional to the
number of required training symbols.

2) Beam training success rate, which denotes the probability
that the best beam codeword can be found by a beam
training method,

3) Achievable rate, which characterizes the achievable rate
when the XL-array applies the obtained beam codeword
for data transmission.

Note that both the success rate and achievable rate indicate
the accuracy of the considered beam training methods, while
the achievable rate is more representative since it is directly
related to the ultimate objective of beam training, i.e., max-
imizing the received SNR. As shown in (76), the codebook
design and beam-training method critically determine the near-
field beam training performance, which will be elaborated in
the following.

A. Near-Field Beam Codebook Design

In this subsection, we elaborate the basic codebook design
for near-field beam-training. Recall that in the conventional
far-field beam training, the DFT-based codebook in the angular
domain has been widely used for determining the user angle.
Let ϑ , 2d cos θ/λ = cos θ denote the spatial angle, with d =
λ/2. The far-field DFT-based codebook can be mathematically
denoted as [198]

Wang = [a(ϑ1),a(ϑ2), · · · ,a(ϑN )] , (77)

with each codeword pointing towards a specific spatial angle
ϑn = 2n−N+1

N , n = 0, · · · , N − 1, given by

a(ϑn) =
1√
N

[
1, ejπϑn , · · · , ejπ(N−1)ϑn

]T
. (78)

However, this codebook is not best suited to the near-field
beam training for XL-arrays. Specifically, when the DFT-
based codebook is adopted for the exhaustive-search beam
training, the user may receive high signal energy at multiple
beam codewords due to the energy spread effect, as illustrated
in Fig. 20, thus rendering it incapable of finding the best
beam. This can be intuitively explained, since the DFT-based
codebook is designed for matching the user direction only,
while the optimal near-field beamforming is jointly determined
by both the user direction and distance, hence leading to the
channel mismatch issue and performance loss.

To address the above issue, several new codebooks dedi-
cated to near-field beam training have been proposed, which
spans the beam codewords in different domains.

1) Cartesian Domain: Cartesian-domain codebook is de-
signed to cover the entire 2D plane by uniformly sampling in
the x-y coordinate system with sampling steps being ∆x and
∆y, respectively [105], [199], as illustrated in Fig. 23(a). As
such, the Cartesian-domain codebook is given by

Wcar , [a(x, y)|(x, y) ∈ Θ], (79)

where each column of Wcar denotes a near-field codeword
that steers towards its targeted location (x, y) in the x-y
plane, and Θ = {(x, y)|x = xmin, xmin + ∆x, · · · , xmax; y =
ymin, ymin + ∆y, · · · , ymax}.

Note that the dimension of the Cartesian-domain codebook
is prohibitively high, which is determined by the product of
the number of sampled points on the x- and y-axes. This
thus imposes great challenges to the subsequent beam training
method design, resulting in long training overhead.

2) Polar Domain: The codewords in polar-domain code-
book is obtained by sampling both the angular and distance
domains, which has been recently proposed for near-field beam
training [11]. Specifically, let N and S denote the numbers of
angle and distance samples in these two domains. Then the
polar-domain codebook can be represented as

Wpol , [a(r1,1, ϑ1), · · · ,a(r1,S , ϑ1), · · · ,
a(rN,1, ϑN ), · · · ,a(rN,S , ϑN )],

(80)

where each column of Wpol represents a near-field codeword
targeting the sampled spatial angle ϑn and distance rn,s.

For the polar-domain sampling, one straightforward ap-
proach is taking a similar idea as in far-field codebooks, that is,
uniformly sampling the spatial angular and distance domains
as illustrated in Fig. 23(b). In particular, the spatial angular
domain can be divided into N samples similarly as in the DFT-
based codebook to cover the entire angular domain, while the
number of distance domain uniform samples is determined by
the channel representation accuracy. Generally speaking, the
more samples in the distance domain, the more accurate the
channel representation and the higher the training overhead. To
exploit this fact, a more efficient non-uniform polar-domain
codebook was proposed in [11], which leverages the com-
pressed sensing (CS) framework for designing the sampling
method of the polar-domain codebook. Specifically, to satisfy
the channel recovery accuracy, the column-wise codeword cor-
relation, defined as ψ = max

p 6=q
|aH (rp, ϑp) a (rq, ϑq) |, should

be set as small as possible. Although ψ is highly complicated,
it can be obtained in a more tractable form as below by using
the Fresnel approximation

ψ = f (rp, rq, ϑp, ϑq)

≈

∣∣∣∣∣∣ 1

M

(M−1)/2∑
m=−(M−1)/2

e
jmπ(ϑp−ϑq)+j 2π

λ m
2d2

(
1−ϑ2

p
2rp
−

1−ϑ2
q

2rq

)∣∣∣∣∣∣ .
(81)

Define the curve 1−ϑ2

r = 1
υ as the distance ring υ, which is

marked as red curves in Fig. 23(c). Then, for the locations sam-
pled along the same distance ring υ, i.e.,

1−ϑ2
p

rp
=

1−ϑ2
q

rq
= 1

υ ,
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Fig. 23. Illustration of different near-field beam codebook designs.

the column correlation function reduces to f (rp, rq, ϑp, ϑq) =

f(ϑp − ϑq) =
∣∣∣ 1
M

∑(M−1)/2
m=−(M−1)/2 e

jmπ(ϑp−ϑq)
∣∣∣ =∣∣ΞM,1/2(ϑp − ϑq)

∣∣, which only depends on the difference
of spatial angles. As such, it can be easily shown that the
spatial angular domain along the same distance ring should be
uniformly sampled to minimize the column correlation, similar
as that in the DFT-based codebook. On the other hand, given
the same spatial angles, the correlation function f(rp, rq, ϑ, ϑ)
can be approximated as

f (rp, rq, ϑ, ϑ) ≈ |G(Λ)| =
∣∣∣∣C(Λ) + jS(Λ)

Λ

∣∣∣∣ , (82)

where Λ =

√
M2d2(1−ϑ2)

2λ

∣∣∣ 1
rp
− 1

rq

∣∣∣, C (Λ) =
∫ Λ

0
cos(π2 t

2)dt

and S (Λ) =
∫ Λ

0
sin(π2 t

2)dt denote the Fresnel integrals [200].
As such, the sampled distances are set as follows

rn,s =
1

s
Z∆(1− ϑ2

n), s = 0, 1, 2, · · · , (83)

where Z∆ = D2

2λΛ2
∆

is the threshold distance defined to limit
the correlation between two near-field steering vectors. For
example, if the correlation is set lower than ∆ = 0.5, then
Λ ≥ 1.6 which can be obtained by solving |G(Λ0.5)| = 0.5.
It can be easily observed from (83) that, in contrast to
the spatial angular-domain uniform sampling, the distance
domain is more densely sampled in the short-range region
and less sampled otherwise. This can be intuitively explained,
since the distance has a more prominent effect on the phase
variations when the distance is shorter, while the near-field
spherical wavefront reduces to the planar wave when the
distance is sufficiently large. Compared with the uniform
polar-domain sampling method, the non-uniform counterpart
is more efficient, since it requires less codewords for channel
representation.

3) Slope-Intercept Domain: The fundamental idea of slope-
intercept-domain codebook origins from the linear frequency
modulation signal in continuous wave radar, which shares the
same structure as the near-field PBW-based array response
vector in (21) [201]. As a result, the quadratic term and linear
term can be represented as slope k and intercept b, respectively.
Then, the slope-intercept-domain codebook can be generated

by uniformly quantizing the slope k and intercept b, which is
given by

Ws+i , [a(k, b)|k ∈ [kmin, kmax], b ∈ [−1, 1]], (84)

where (k, b) corresponds to one point in Fig. 23(d). When the
slope and intercept quantization is properly chosen, this slope-
intercept-domain codebook may include a smaller number of
codewords than the polar-domain codebook, while its involved
beam training design is more complicated.

B. Near-Field Beam Training

In this subsection, we elaborate efficient near-field beam
training algorithms for the narrowband and wideband XL-
MIMO communication systems, respectively. It is worth not-
ing that most of beam training methods in this subsection are
designed based on the (non-uniform) polar-domain codebook,
which may not suit for other forms of codebooks such as the
slope-intercept domain codebook.

1) Narrowband Near-Field Beam Training: For narrow-
band XL-array systems in high-frequency bands, it is usually
assumed that there exists a single dominant LoS path between
the XL-array and user. Various beam training approaches have
been proposed in the literature for finding the best beam
codeword with low training overhead.

Exhaustive search: Given the non-uniform polar-domain
codebook [11], the most straightforward near-field beam train-
ing method is performing a 2D exhaustive search over all
possible beam codewords in the angular-distance domains,
as illustrated in Fig. 24. This method, however, will incur
a prohibitively high beam training overhead, which is the
product of the numbers of sampled angles and distances, i.e.,
NS. For example, when N = 512, S = 6, the total training
overhead is 3072 training symbols.

Two-phase search: To reduce the training overhead of the
2D exhaustive search, one efficient approach is sequentially
estimating the user angle and distance in two phases. To this
end, the authors in [202] revealed a key “angle-in-the-middle”
observation as illustrated in Fig. 25, where the true spatial
angle approximately locates in the middle of the dominant
angular region with sufficiently high beam powers, when the
conventional DFT-based far-field beams are applied for beam
training. As such, the best polar-domain codeword can be
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Fig. 24. Illustration of different near-field beam training methods.

identified by firstly estimating the user spatial angle using
the DFT-based codebook, and then resolving the user distance
along the estimated user angle based on the polar-domain
codebook, as illustrated in Fig. 24. To improve the angle
estimation accuracy, K spatial angles in the middle of the
dominant-angle region can be selected as candidate angles,
which is termed as the middle-K angle selection scheme.
This two-phase near-field beam training method only entails
a training overhead of N +KS, hence leaving more time for
data transmission than the 2D exhaustive search method. For
example, when N = 512, S = 6, and K = 3, the overall
training overhead is 530 training symbols, which is much less
than 3072 as required by the exhaustive search method.

The above two-phase search method was further extended in
[203], where the authors proposed to jointly estimate the user
angle and distance based on the DFT codebook only, which
achieved reduced training overhead and enhanced distance
estimation accuracy. To this end, the authors analyzed the
received beam pattern at the user when far-field beamforming
vectors are used for beam scanning. An interesting result was
shown that this beam pattern actually contains useful user
angle and distance information. Specifically, the user angle
can be estimated based on the dominant angular region, while
the user distance can be inferred from the width of dominant

angular region, which is monotonically decreasing with the
user distance given fixed user angle. Then, two efficient beam
training schemes were proposed. The first scheme estimated
the user angle based on the dominant angular region and
decided the user distance by leveraging its width, while the
second scheme estimated the user distance by minimizing a
defined power ratio mean square error to improve the distance
estimation accuracy. Similar to [202], the middle-K angle
selection scheme was applied to improve the angle estimation
accuracy. Hence, the total beam training overhead of the
joint estimation scheme is only N + K. For example, when
N = 512 and K = 3, the total training overhead is 515
training symbols.

Hierarchical search: It is worth mentioning that the train-
ing overhead of the two-phase beam training scheme is still
proportional to the number of array antennas, which is still
very large for the XL-array. This thus motivates another
line of research that targets at designing hierarchical beam
training schemes for near-field communications. Thus, the
new hierarchical codebook tailored to near-field communica-
tions needs to be developed. Unlike the far-field hierarchical
codebook design that concerns the spatial angular domain
only, the near-field hierarchical codebook design is more
challenging, since it needs to take into account both the
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spatial angular- and distance-domains. Specifically, similar to
the far-field hierarchical codebook design, the ideal near-field
hierarchical codebook design should satisfy the following two
basic criteria:

1) Intra-layer beam coverage: For each hierarchical layer,
the union of beam patterns of its all codewords should
cover the whole angular- and distance-domains.

2) Inter-layer beam coverage: For an arbitrary codeword
within a layer, its beam coverage should be covered by
the union of those of several codewords in the next layer,
in both the angular- and distance-domains.

If given the ideal near-field hierarchical codebook in Section
IV-A, near-field hierarchical beam training can be easily
performed: the XL-array can first generate polar-domain wide
beams to find the coarse user angle and distance, and then
gradually refine it using narrower beams. However, the ideal
near-field hierarchical codebook design is much more chal-
lenging than that in the far-field case, since each codeword
spans its beam pattern in both the angular and distance domain,
which renders the above two criteria difficult to be satisfied.

Several efficient approaches have been proposed in the
existing literature to address the above issues [201], [204],
[205]. For example, the authors in [204] proposed an adaptive
near-field hierarchical codebook, in which the lower-layer
codewords are designed to cover the Fresnel region by using
a steering beam gain calculation method, while the upper-
layer codewords are devised to generate an arbitrary beam
pattern at target locations by using the beam rotation and
beam relocation techniques. On the other hand, the authors
in [205] showed that the ideal hierarchical near-field beam
pattern can only be realized by the fully digital beamforming,
which, however, incurs unaffordable energy and hardware cost
for XL-arrays. To tackle this difficulty, a hybrid digital-analog
structure was proposed to design the near-field hierarchical
codebook. This is achieved by formulating and solving a multi-

resolution near-field codewords design problem to minimize
the error between the ideal beam pattern in the near-field hi-
erarchical codebook and that achieved by practical codewords
based on hybrid beamforming structure. Besides the near-
field hierarchical codebook design in the polar domain, the
authors in [201] studied a new joint spatial-angular and slope-
intercept representation for the near-field channel model, based
on which a novel spatial-chirp beam-aided codebook was
proposed for designing the near-field hierarchical codebook
under similar criteria in the polar domain. Moreover, a hybrid
hierarchical codebook design was developed in [206] for
facilitating fast near-field beam training. Specifically, it first
employs a central subarray of the XL-array to estimate a coarse
spatial angle by using the conventional far-field hierarchical
codebook. Then, the fine-grained user angle-and-distance pair
is progressively resolved by devising a polar-domain hierarchi-
cal codebook, where the antenna deactivation scheme is used
for guaranteeing the angle coverage and the distance domain
is progressively divided in a binary-tree manner, as illustrated
in Fig. 24. By this way, the original linear order O(N) of the
two-phase near-field beam training can be reduced to an order
of O(log(N)).

Learning-based search: Moreover, in [80], a deep-learning
aided beam training scheme was investigated, in which the best
near-field codeword is predicted by utilizing powerful neural
networks with measurements of the beam gains given conven-
tional far-field wide beams. Specifically, the DFT-based far-
field wide beams are first generated and applied to acquire the
measurements of various received signals for neural networks
input, based on which two neural networks, i.e., the direction
and distance networks, are leveraged to obtain the optimal
polar-domain near-field beam.

2) Wideband Near-Field Beam Training: For wideband
XL-array systems, the near-field beam training design becomes
more difficult due to the following two reasons. First, the
multi-path channel model needs to be considered for relatively
low-frequency band systems, which calls for new and efficient
near-field beam training for multi-path channels. Second, the
large bandwidth and XL-array aperture introduce the so-called
near-field beam split effect [136]. Specifically, the beams
generated at different frequencies with spherical wavefronts
are generally dispersed at different locations due to use of the
frequency-independent phase shifters at the XL-array. Note
that the near-field beam split effect is more severe than that
in the far-field case, since the beam disperses in both the
angular and distance domains. This effect renders the near-
field beam training more challenging, since the beams cannot
be well focused at the targeted location for each codeword as
in narrow-band beam training (see Section IV-B1). Fortunately,
it was shown that using TTD lines can introduce specific
time delays to signals and thereby create frequency-dependent
phase shifts [143]–[146], so that both the angular and distance
coverage region of the beams under the beam split effect can
be flexibly controlled [168]. In other words, the XL-array
beamformer based on TTD devices can flexibly tune multiple
beams towards multiple locations by one RF chain. This thus
motivates the design of an efficient near-field rainbow-based
beam training for wideband XL-array systems [136], which



31

TABLE VI
COMPARISON OF BEAM TRAINING OVERHEAD OF DIFFERENT METHODS

Beam Training Method Training Overhead
(number of required training symbols)

Example
N = 512, S = 6, K = 3,

NL = 128, T = 4

Narrowband

Exhaustive-search based near-field beam training [11] NS 3072
Two-phase near-field beam training [202] N +KS 530

Near-field beam training with DFT codebook [203] N +K 515

Two-stage hierarchical near-field beam training [206] 2 log2(NL) + 4 log2( N
NL

) 22

Deep learning based near-field beam training [80] N/T + S 134
Far-field exhaustive-search based beam training N 512

Far-field hierarchical beam training 2 log2(N) 18
Wideband Near-field rainbow beam training [136] S 6

generates multiple beams pointing to all sampled angles with
the same distance in each time, while the XL-array controls
the beam sweep over different distances at different time for
determining the best distance. Therefore, the wideband near-
field beam training with controllable beam split achieves a low
overhead of S, hence significantly reducing the training over-
head of narrow-band near-field beam training. The comparison
of beam training overhead of different methods is summarized
in Table VI.

C. Channel Estimation

The previous subsection discusses the codebook based near-
field beam training methods, which aim to select the best
beam for establishing a high-quality link between the BS and
user, yet without requiring the explicit CSI. In this subsection,
we consider the channel estimation for XL-MIMO with the
purpose of obtaining the complete channel matrices, which
is beneficial to implementing further signal processing design
and performance analysis. However, as discussed above, XL-
MIMO embraces quite different channel characteristics from
the conventional massive MIMO. As a result, it is important to
develop efficient channel estimation schemes, so as to match
the channel characteristics of XL-MIMO with high accuracy
and acceptable complexity [207].

1) Channel Estimation Based on Statistical Characteristics:
As discussed in Section II-D, one widely used near-field
modeling for XL-MIMO is to model the channel based on
the statistical characteristics, such as the channel correlation
matrix. Correspondingly, channel estimation schemes based
on statistical characteristics can be implemented. Based on the
channel correlation matrix, MMSE channel estimation scheme
has been widely applied in massive MIMO [20], [208], which
can realize lower normalized mean-square error (NMSE) com-
pared to the least-squares (LS) estimator. However, for XL-
MIMO communications, MMSE channel estimation scheme
would lead to extremely high computational complexity. Be-
sides, it is also difficult to obtain complete knowledge of
the spatial correlation matrix, which is of extremely high
dimension. In this case, the LS channel estimation scheme
can typically be applied for channel estimation, which does
not require prior knowledge of channel statistics. However,
the LS channel estimation scheme leads to a higher NMSE
performance compared to the MMSE channel estimation
scheme, especially at low SNR. Thus, it is necessary to balance

the accuracy and complexity to design efficient statistical
characteristics based estimation schemes.

To tackle this issue, the authors in [209] proposed a
subspace based channel estimation scheme called reduced-
subspace LS (RS-LS), where only the orthonormal eigen-
vectors matrix of the spatial correlation matrix instead of
the whole spatial correlation matrix was applied. The pro-
posed RS-LS channel estimation scheme outperformed the
conventional LS channel estimation scheme and approached
the MMSE channel estimation scheme. The study of low-
complexity estimation schemes based on some key channel
statistical characteristics deserves more investigation in the
future.

2) Channel Estimation Exploiting Sparsity: The near-field
XL-MIMO channel exhibits some interesting sparsity charac-
teristics, which can be exploited to implement efficient channel
estimation. For the conventional far-field communications, the
channel exhibits the angular-domain sparsity, and an angular-
domain representation for the far-field channel can be imple-
mented, where a Fourier transform matrix sampled from the
angular space can be utilized to construct the angular-domain
sparsity. Based on the angular-domain sparsity, several CS
based channel estimation schemes can be applied. However,
this angular-domain sparsity is no longer valid in XL-MIMO
communications. Instead, the channel embraces the sparsity
in the polar-domain, and the polar-domain representation for
the near-field channel was proposed in [11]. A new transform
matrix was designed which was composed of several near-
field steering vectors sampled in the angular-distance domains.
Based on this new transform matrix, an on-grid polar-domain
simultaneous orthogonal matching pursuit and an off-grid
polar-domain simultaneous iterative gridless weighted channel
estimation schemes were then proposed in [11] to estimate the
near-field channel.

For near-field wideband XL-MIMO systems, channel esti-
mation faces a further challenge due to the existence of beam
split effect, i.e., the beams generated at different frequencies
would disperse in both the angular and distance domains. To
tackle this issue, the authors in [210] first revealed that the
sparse set of near-field channels exhibits a linear relationship
with the frequency in both the angular and distance domains,
i.e., the bilinear pattern of the near-field beam split effect.
Based on this characteristic, a bilinear pattern detection based
algorithm was proposed to estimate the near-field wideband
channels, by exploiting the polar-domain sparsity. Besides,
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by exploiting the channel sparsity, a federated learning based
approach was proposed in [211] as a model-free solution for
near-field wideband channel estimation.

Moreover, the XL-MIMO channel also exhibits the spatial
non-stationary characteristic, where the VR could be consid-
ered for the near-field channel estimation [105]–[108], [212]–
[214]. In [105], the VRs of subarrays and scatterers were
introduced to describe the channel non-stationarity, and the
subarray-wise and scatterer-wise channel estimation schemes
were proposed to estimate the spatial non-stationary channel
from the perspectives of scatterer and subarray, respectively.
For the subarray-based analog beamforming structure, the
authors in [108] proposed an element-wise VR identification
scheme, and the results showed that its achievable spectral
efficiency is close to that with perfect CSI. In [212], VR is
assumed to be location-independent, and the VRs of some
beacon users are known a priori. By training these beacon
users, the VR can be obtained through the Voronoi cell
partition or the proposed VR-Net when the location of one
user serves as the input. Besides, by exploiting the block-wise
sparsity caused by spatial non-stationarity, joint activity and
channel estimation was studied in [213], [214].

3) Channel Knowledge Map: The large-dimensional chan-
nel matrix of XL-MIMO renders it more challenging to acquire
the instantaneous CSI as compared to the conventional massive
MIMO. To this end, channel knowledge map (CKM) for
environment-aware communications was proposed in [215],
which facilitates or even avoids the real-time CSI acquisition
in XL-MIMO communications. Specifically, CKM is a site-
specific database, tagged with the locations of the transmitters
and/or receivers [215], and the stored channel knowledge
includes complex-valued channel coefficients, AoAs/AoDs,
delays and Doppler frequencies, where the real channel-related
data required for CKM construction can be collected from the
offline and online measurements [215]–[219]. As such, CKM
is able to enable environment-awareness communications and
provide the location-specific channel knowledge, thus circum-
venting the prohibitive pilot overhead and complicated channel
estimation. This provides an efficient and low-complexity CSI
acquisition method for near-field XL-MIMO communications.

4) Machine Learning Based Estimation Schemes: To fur-
ther improve the efficiency of channel estimation schemes,
machine learning can be utilized to design efficient and
intelligent channel estimation schemes. Based on the existing
multiple residual dense network (MRDN), the authors in [220]
proposed a polar-domain MRDN (P-MRDN) based channel
estimation scheme relied on the polar-domain sparsity. Further-
more, with atrous spatial pyramid pooling-based residual dense
network (ASPP-RDN), a polar-domain multi-scale residual
dense network (P-MSRDN) based channel estimation scheme
was considered to further improve the accuracy. Numerical
results found that the P-MRDN and P-MSRDN based channel
estimation schemes could efficiently capture the polar-domain
sparsity and outperform the conventional MRDN based chan-
nel estimation scheme. In the future, more machine learning
based channel estimation schemes can be designed to exploit
the channel characteristics of XL-MIMO and enable intelligent
processing solutions tailored for XL-MIMO.

D. Delay Alignment Modulation

Orthogonal frequency-division multiplexing (OFDM) has
been a dominant wideband transmission technology in 4G,
5G, and WiFi wireless networks. However, OFDM also faces
many well-known challenges, e.g., high out-of-band (OOB)
emission [221], sensitivity to carrier frequency offset (CFO)
[179], [222], and high peak-to-average-power ratio (PAPR)
[223], [224]. Though various techniques have been pro-
posed to resolve these issues, such as windowing, filter bank
multi-carrier (FBMC) [221], single-carrier discrete Fourier
transform-spread OFDM (DFT-s-OFDM), and orthogonal time
frequency space (OTFS) [225], they either incur performance
loss or exacerbate the signal processing complexity.

Motivated by the super spatial resolution of XL-MIMO and
the multi-path sparsity of mmWave/THz channels, a novel
transmission technology termed delay alignment modulation
was recently proposed in [226]. The key idea of DAM is path
delay pre-/post-compensation and path-based beamforming.
In particular, the unprecedented spatial resolution of XL-
MIMO and ISAC endow the transmitter/receiver with the
capability of extracting the features of each multi-path, e.g.,
AoA/AoD, propagation delay, and Doppler frequency [227],
[228]. In this context, by judiciously performing delay pre-
/post-compensation matching the respective multi-paths, and
in conjunction with path-based beamforming, DAM enables
all multi-path signal components to reach the receiver con-
currently and constructively. As a result, the original time-
dispersive channel can be transformed into the simple additive
white Gaussian noise (AWGN) channel, yet free from the
sophisticated channel equalization or multi-carrier transmis-
sions [226], [227]. It is also worth mentioning that though
DAM involves path delay compensation, it is quite different
from TTD-based design, since the two techniques focus on
different issues, where the former aims to address the ISI issue
by exploiting the spatial-delay processing without requiring
additional hardware, while the latter targets for mitigating the
beam squint/split effect.

To illustrate the effect of DAM, we consider a basic XL-
MISO communication system, where there exists L temporal-
resolvable multi-paths between the transmitter and the receiver.
Under the quasi-static block fading model, the channel im-
pulse response within each channel coherence block can be
expressed as

h [n] =

L∑
l=1

hlδ [n− nl], (85)

where hl ∈ CM×1 denotes the channel vector of multi-
path l and it can be obtained based on (7), and nl denotes
its discretized delay. For transmitter-side single-carrier DAM,
the transmitter architecture is illustrated in Fig. 26, where
path delay compensation simply means time shift of symbol
sequence, without requiring the additional hardware like TTD
lines. The transmitted signal is [226], [227]

x [n] =

L∑
l=1

fls [n− κl], (86)

where s [n] denotes the i.i.d. transmitted data symbol, with
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Fig. 26. Transmitter architecture of single-carrier delay alignment modulation
that exploits the super spatial resolution of XL-MIMO and multi-path sparsity
of high-frequency channels [226].

E[|s[n]|2] = 1, fl ∈ CM×1 denotes the path-based beam-
forming associated with multi-path l, and κl ≥ 0 denotes
the deliberately introduced path delay pre-compensation for
multi-path l, with κl 6= κl′ , ∀l 6= l′. The power of (86) is
E[|x [n]|2] =

∑L
l=1 ‖fl‖

2 ≤ P , where P is the maximum
available power at the transmitter.

By setting κl = nmax−nl, ∀l, with nmax , max
1≤l≤L

nl being

the maximum delay among all the L multi-paths, the received
signal can be expressed as

y [n] = hH [n] ~ x [n] + z [n]

=

(
L∑
l=1

hHl fl

)
s [n− nmax]︸ ︷︷ ︸

desired signal

+

L∑
l=1

L∑
l′=1

hHl fl′s [n− nmax + nl′ − nl]︸ ︷︷ ︸
ISI

+z [n] ,

(87)

where z [n] ∼ CN
(
0, σ2

)
denotes the AWGN at the receiver.

When the receiver is synchronized to the delay nmax, the first
term in (87) is the desired signal, which is contributed by all
the L multi-path signal components, and the second term leads
to the undesired ISI.

For the asymptotic case when the number of transmit
antennas M is much lager than that of multi-paths L, i.e.,
M � L, it was shown in [227] that the multi-path channel
vectors tend to be asymptotically orthogonal, which helps
ease the path-based beamforming design. Specifically, with the
low-complexity path-based maximal-ratio transmission (MRT)

beamforming fl =
√
Phl/

√∑L
i=1 ‖hi‖

2, the received signal
in (87) reduces to

y [n]→

(√
P
∑L

l=1
‖hl‖2

)
s [n− nmax] + z [n] . (88)

The result shows that there only exists the symbol sequence
s [n] delayed by nmax in the received signal, and the coherent

combining of all the L multi-path signal components is
achieved. This implies that the original time-dispersive channel
can be transformed into the simple ISI-free AWGN channel,
without the aid of traditional ISI-mitigation techniques such
as channel equalization or multi-carrier transmissions.

It is worth mentioning that when channel vectors are non-
orthogonal, the ISI-free AWGN channel is still attainable, by
properly designing the path-based ZF beamforming such that
the ISI is completely eliminated, i.e.,

hHl fl′ = 0, ∀l 6= l′, (89)

which are feasible almost surely when M ≥ L. In this case,
the received signal in (87) reduces to [227]

y [n] =

(
L∑
l=1

hHl H⊥l bl

)
s [n− nmax] + z [n] , (90)

where H⊥l ∈ CM×(M−L+1) is an orthonormal basis for
the orthogonal complement of Hl, with Hl ∈ CM×L ,
[h1, · · · ,hl−1,hl+1, · · · ,hL], and bl ∈ C(M−L+1)×1 denotes
the new path-based beamforming vector to be designed. As
such, an ISI-free AWGN channel can be similarly achieved,
provided that M ≥ L. On the other hand, when certain ISI is
tolerable, path-based MRT and MMSE beamforming schemes
were further developed for DAM in [226]. Moreover, the
comparisons of single-carrier DAM, OFDM, and OTFS are
summarized in Table. VII.

In addition to the above perfect DAM targeting for zero
delay spread, the generic DAM technique was further devel-
oped in [227] for manipulating the channel delay spread to a
certain value, which enables a flexible framework for efficient
single- or multi-carrier transmissions. Furthermore, to address
the Doppler shift and ISI issues in the more general time-
variant frequency-selective channels, DAM can be extended
to delay-Doppler alignment modulation (DDAM) to achieve
the Doppler-ISI dual mitigation [229], [230], where the time-
variant frequency-selective channels can also be transformed
into time-invariant ISI-free channels. Besides the mobile
scenarios, DDAM is also applicable to near-field and far-
field quasi-static scenarios by reducing to DAM. In particular,
for the asymptotic case when M � L, it was shown in
[229] that DDAM is able to achieve the time-invariant ISI-
free communications with the simple delay-Doppler compen-
sation and path-based MRT beamforming. Moreover, the result
showed that DDAM yields a better spectral efficiency than
OTFS as M increases, yet with much lower receiver complex-
ity and detection latency. Despite the appealing advantages,
DAM also faces several practical challenges. For example,
accurate CSI is crucial to DAM for performing path delay
pre-compensation and path-based beamforming, and a first
attempt towards channel estimation for DAM can be found
in [231]. However, it only focuses on the single-carrier DAM,
more research endeavors are thus needed to develop efficient
channel estimation methods for multi-carrier DAM and the
more general DDAM. Besides, the fractional delay brings a
new challenge to distinguish multi-path components, rendering
perfect DAM difficult to achieve in practice. Moreover, prac-
tical low-cost hybrid analog/digital path-based beamforming
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TABLE VII
COMPARISON OF SINGLE-CARRIER DAM, OFDM, AND OTFS

Single-Carrier DAM OFDM OTFS
Signal representation Time domain Time-frequency domain Delay-Doppler domain
Signal detection latency Low Relatively high High
Receiver complexity Low Relatively high High
PAPR Low High Relatively high
CP overhead Low High Relatively high

architecture deserves future investigation.

E. Cost-Efficient and Low-Complexity Implementation

Practical implementation of XL-MIMO involves the cost
and signal processing complexity issues. On one hand, the
deployment of XL-MIMO renders the hardware cost issue
more prominent, e.g., expensive RF chains. On the other hand,
XL-MIMO suffers from the complicated signal processing due
to the large-dimensional channel. As such, many efforts have
been endeavored for cost-efficient and low-complexity XL-
MIMO design.

1) Cost- and Energy-Efficient Implementation: The uti-
lization of low-cost and low-resolution devices brings the
opportunity to reduce the cost and energy expenditure of
XL-MIMO. Besides, the spatial non-stationarity characteristic
renders antenna selection suitable for addressing the cost and
energy issues.

a) Low-Resolution ADCs and Mixed-ADCs: To allevi-
ate the high cost and power consumption of high-resolution
ADCs, the simple low-resolution ADCs can be used, where
fewer bits are applied to digitize the received signal [232]–
[234], thus decreasing the signal processing complexity of XL-
MIMO and meeting the demands of green communications.
However, the low-resolution ADCs are at the cost of perfor-
mance degradation. Fortunately, the mixed-ADCs are proposed
to balance the spectral efficiency and energy efficiency [235]–
[237]. For mixed-ADCs, a large number of low-resolution
ADCs and a small number of high-resolution ADCs are
used, and such a setting can balance the trade-off between
the cost and performance for XL-MIMO. Note that existing
mixed ADC designs for the conventional massive MIMO
communications are based on the far-field UPW assumption.
For XL-MIMO communications, it would be interesting and
potential to implement the low-resolution or mixed ADC
designs that consider the NUSW and spatial non-stationarity
characteristics.

b) Antenna Selection: In practice, due to the spatial non-
stationarity characteristic of XL-MIMO, not all antennas are
equally important to the UEs. To reduce the circuit cost and
computational complexity, antenna selection can be applied,
whose idea is to select partial antennas to serve the UE. Ex-
tensive research efforts have been devoted to antenna selection
for XL-MIMO communications [122], [238]–[240].

In [122], the authors proposed four antenna selection
schemes to select a suitable subset of antennas for serving
UEs, based on the long-term channel fading parameters. A
simple antenna selection scheme was first proposed based
on the highest received normalized power (HRNP) criteri-
on, and three heuristic schemes were considered, including

local search, genetic algorithm (GA), and particle swarm
optimization based on the HRNP active antennas set as the
initial solution. The results showed that GA based antenna
selection scheme usually achieves the best energy efficiency
performance. Based on a subarray switching architecture, the
authors in [238] proposed the GA-based near-optimal and low-
complexity antenna selection schemes, where joint antenna
selection and power allocation were optimized to maximize the
spectral efficiency. Compared to the benchmarking schemes,
the two GA-based optimization schemes achieve higher spec-
tral efficiency performance, especially in crowded XL-MIMO
scenarios.

Moreover, the flexible antenna selection (FAS) and fixed
subarray selection (FSS) algorithms were proposed in [240].
Different from FAS that directly selected the suitable antenna
subset, FSS partitioned the whole antenna array into multiple
subarrays of fixed size, and then the antenna selection was
implemented in a subarray manner. The results showed that
the FSS algorithm yields comparable performance as FAS,
while reducing the computational complexity and hardware
implementation. Note that antenna selection also helps reduce
the computational complexity, since only the subset of BS an-
tennas are activated for uplink/downlink transmissions [239].
For example, in [241], a low-complexity antenna selection
algorithm based on matching pursuit was proposed, which
achieved a compromise between bit error rate and computa-
tional complexity.

2) Low Signal Processing Complexity Implementation: In
addition to hardware cost and energy expenditure, XL-MIMO
also faces the high signal processing complexity. One direct
approach is to develop low-complexity algorithms to reduce
the signal processing requirement at the central processing unit
(CPU). Alternatively, the distributed processing architecture
can be exploited to assign the task to multiple local processing
units (LPUs).

a) Low-Complexity Algorithms: In order to reduce
the high signal processing complexity caused by large-
dimensional channel matrix, the randomized Kaczmarz algo-
rithm (rKA) was introduced in XL-MIMO to approximate
the performance of regularized zero-forcing (RZF) in [124],
where rKA solves the linear equation in a cyclic and iterative
manner, thus avoiding the high computational complexity
of matrix inversion. Based on rKA, the authors in [242]
proposed a new mode of randomization termed sampling
without replacement randomized Kaczmarz algorithm (SwoR-
rKA), which improves the probability of choosing users with
better channel conditions and achieves a better convergence
performance than rKA with equal user probabilities. In [243],
the authors proposed a new low-complexity ZF precoding
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scheme termed mean-angle based zero-forcing. By partitioning
the antenna array into multiple subarrays and grouping the
users according to their elevation angles, the ZF precoding
can be approximated by the Kronecker product of two low-
dimensional UPW based ZF precoding vectors, thus reducing
the high computational complexity suffered by the classic
ZF precoding in XL-MIMO communications. Besides the
ZF/RZF scheme, the low-complexity variational message pass-
ing (VMP) receiver was proposed for multi-user XL-MIMO
communications in [116], together with a MRC processing for
initialization. It was shown that since no matrix inversion is
involved, the computational complexity of VMP only linearly
scales with the number of array elements and users, which is
appealing for XL-MIMO communications.

On the other hand, a distance-based user scheduling scheme
was proposed for multi-user XL-MIMO communication in
[244], where the equivalent distance was used to approximate
the equivalent channel gains for determining the user priority.
Such a distance-based user scheduling achieves a comparable
performance as the benchmarking scheme of ZF beamforming
with successive user selection, while significantly alleviating
the computational cost. Last but not least, distributed opti-
mization algorithms, such as the dual decomposition method
and the alternating direction method of multipliers, can be
implemented in a parallel and low-complexity manner [245],
and thus are suitable for near-field XL-MIMO systems. The
applications of these low-complexity distributed optimization
algorithms in near-field XL-MIMO communications deserve
further studies.

b) Distributed Processing: Instead of centralized pro-
cessing at the CPU, the distributed processing is an alternative
architecture for XL-MIMO communications to alleviate the
processing complexity [25], [127], [246], [247]. Specifically,
the XL-array is partitioned into multiple subarrays, where each
subarray is equipped with a LPU and connected to the CPU.
The signal processing task is then distributed to parallel LPUs,
thus avoiding the large-dimensional signal processing. In [25],
the authors proposed a distributed receiver architecture based
on distributed linear data fusion. The users were firstly detect-
ed per subarray, and the detected signals from each individual
subarray were then fused at the CPU, so as to perform the final
hard decision. Besides, the distributed XL-MIMO detector
based on expectation propagation was proposed in [247],
which achieved a balance between the system performance and
practical implementation of XL-MIMO. In [121], the authors
modelled the VR under two power normalization schemes
for the spatially non-stationary channel and proposed a low-
complexity signal detection algorithm. By exploiting the non-
stationarity, the algorithm achieved signal detection through
subarray-wise processing and data fusion at the central unit.

The distributed processing also can be applied to resolve
the random access (RA) and pilot allocation in high user-
density scenarios [248]–[251]. Different from the centralized
strongest user collision resolution (SUCRe) protocol, a 2-step
non-overlapping VR XL-MIMO (NOVR-XL) RA protocol
was proposed in [248] based on the distributed processing.
Such a distributed access protocol only needs 2 steps to seek
UEs with non-overlapping VRs to be scheduled in the same

payload data, which reduces the access latency and improves
the sum rate. Apart from the 2-step RA protocol, the works
[249]–[251] improved the RA performance for XL-MIMO
systems based on the 4-step protocol. In [250], [251], more
than one inactive UEs were selected which can be served
at the same resource through a collision resolution based on
non-orthogonal multiple access (NOMA), and LPUs decoded
the UEs’ signals sharing the same pilot sequence and VR
via successive interference cancellation strategy. The output
signals are then equally combined in an equal gain combiner
at the CPU, where the UEs can be identified and allocated the
payload pilot. Compared to the centralized RA protocol, the
distributed RA protocol with parallel processing can achieve
a lower access latency and higher connectivity performance.

F. Lessons Learned

XL-MIMO communications face various practical design
issues. To fully reap the benefits of XL-MIMO, new beam
codebooks dedicated to near-field beam training are essential,
so as to match the new channel characteristics. Compared
to far-field beam training, near-field beam training involves
the codebook search in the angular-distance domains, and it
is important to devise efficient beam training methods. To
acquire the complete CSI, channel estimation for XL-MIMO
can exploit the characteristic of spatial non-stationarity to
reduce the complexity, or use the new technology of CKM. To
address the issues of hardware cost and energy expenditure, the
low-resolution ADCs or mixed-ADCs can be applied, together
with appropriate antenna selection schemes. Besides, some
low-complexity algorithms and the distributed processing ar-
chitecture can be utilized to alleviate the signal processing
complexity of XL-MIMO. Moreover, by exploiting the super
spatial resolution brought by XL-MIMO and the multi-path
sparsity of mmWave/THz channels, the new transmission
technology of DAM enables ISI-free communication, without
resorting to the conventional channel equalization or multi-
carrier transmissions, which may complement with existing
transmission technologies.

V. CONCLUSION AND FUTURE DIRECTIONS

A. Conclusion

The release of 6G visions by 3GPP identifies the require-
ments for 6G networks, and XL-MIMO is expected to enhance
the network capacity, coverage, connection density, sensing-
related capabilities, and localization, thanks to its unprece-
dentedly high spectral efficiency and spatial resolution. Specif-
ically, XL-MIMO is able to alleviate network congestion and
improve the quality of service for users in high-density urban
areas, and extend network coverage and provide high-speed
connectivity to previously underserved communities in remote
areas. The enhanced spatial resolution and multiplexing of XL-
MIMO empowers ultra-dense connectivity, which contributes
to a variety of new use cases, such as smart home, wearables,
agricultures, and factories. Besides, the super spatial resolution
brought by XL-MIMO lays foundation for high-accuracy wire-
less localization and sensing, thus enabling the future network
new capabilities beyond communications. However, instead of
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a simple increase in antenna number or size, the evolution
from MIMO and massive MIMO to XL-MIMO fundamentally
changes channel characteristics and leads to a paradigm shift
from far-field communications to near-field communications.
In this article, we provided a comprehensive tutorial overview
on near-field XL-MIMO communications, by focusing on
the near-field modeling, performance analysis, and practical
design issues. We first presented the near-field modeling of
XL-MIMO communications, spanning from near-field array
response vector, free-space LoS XL-MIMO and multi-path
XL-MIMO modeling to spatial correlation based near-field
modeling, as well as some important extensions and channel
measurements. The performance analysis of XL-MIMO was
then presented, including SNR scaling laws, near-field beam
focusing pattern, achievable rate, DoF, and near-field sensing.
Furthermore, we reviewed the practical design issues in near-
field beam codebook and beam training, channel estimation,
and the new transmission technology of DAM, followed by
the discussion of cost- and energy-efficient implementation
for XL-MIMO. In summary, near-field XL-MIMO commu-
nications still face new design challenges, and more dedicated
research efforts are needed to devise innovative solutions. It is
hoped that this article will provide fresh motivation and useful
resources to inspire future research on near-field XL-MIMO
communications.

B. Future Directions

Finally, some possible future directions for XL-MIMO com-
munications that deserve further investigation are discussed.

1) Multi-Cell Near-Field XL-MIMO Communications:
Most existing studies on near-field XL-MIMO communica-
tions only focus on single-cell systems. Compared to single-
cell XL-MIMO communications, multi-cell XL-MIMO com-
munications face the additional inter-cell interference. De-
pending on the XL-MIMO physical dimension and cell size,
the UE served by the current cell can be located in the far-
field or near-field region of the adjacent cell. In particular,
when the cell edge UE is located in the near-field region
of the adjacent cell, it will suffer from more severe inter-
cell interference caused by the near-field beam focusing. As
such, the near-field multi-cell interference analysis is impor-
tant to investigate for multi-cell XL-MIMO communications.
Besides, to address the issue of inter-cell interference, several
techniques have been proposed, including CoMP and coor-
dinated scheduling/beamforming [252], [253]. However, it is
difficult to directly apply the CoMP transmission to multi-
cell XL-MIMO communications, due to a higher computation
complexity and larger amount of information exchange among
coordinated BSs as compared to existing MIMO and massive
MIMO systems. Moreover, the CoMP transmission relies on
the accurate CSI to mitigate or exploit the interference, while
channel estimation for multi-cell XL-MIMO communications
is practically challenging. In particular, limited by the finite
number of orthogonal pilots, pilot contamination remains a
critical issue in multi-cell XL-MIMO communications [254],
[255], as in the conventional massive MIMO systems [174].
As a result, more research efforts are needed to investigate

efficient multi-cell XL-MIMO channel estimation with pilot
contamination, as well as the low-complexity interference
mitigation methods.

2) Multi-Path Near-Field Beam Training and Beam Track-
ing: Most of the existing works on near-field beam training
have focused on the single LoS path setup in low mobility
scenarios, while multiple NLoS paths and/or high mobility
scenarios need to be studied in future work.

Multi-path beam training is particularly important when
there are multiple scatterers between the XL-array and UE.
Among others, one straightforward approach for this scenario
is searching over all possible locations over the non-uniform
polar domain, similar to the LoS case. However, to reduce
the training overhead, the near-field beam training methods
designed for the LoS case cannot be directly applied. For
example, the dominant angular regions of different paths may
be heavily overlapped, thus making it incapable of resolving
the candidate angle for different paths. Moreover, how to
design the hierarchical near-field beam training for multi-path
channels remains an open problem. Hence, new near-field
beam training methods tailored to the multi-path case need
to be developed in future work.

Furthermore, for near-field high-mobility UEs, it is nec-
essary to devise efficient near-field beam tracking methods
to maintain high-quality links over time. Otherwise, a slight
beam misalignment may result in considerable performance
loss. Besides, compared to far-field beam tracking over the
angular domain, the near-field beam tracking is more chal-
lenging, since it needs to keep track of both the UE angle
and distance. These thus call for developing efficient near-
field beam tracking methods in future work. For example,
the (extended) Kalman filter based methods can be leveraged
to predict the best near-field beam based on the estimated
and predicted UE position and velocity [256]. Moreover, for
mobile UEs, the UE beams in previous time slots can be used
to effectively estimate the UE angle and distance in the present
time slot [257]. The key challenge lies in how to choose the
optimal beam based on the estimated parameters to meet the
beam tracking accuracy requirement.

3) Near-Field Hybrid Active and Passive Communications
With XL-MIMO: IRS is a promising technology to configure
the wireless propagation environment in favor of signal trans-
mission and sensing, by judiciously tuning the phase shifts
and/or amplitude of reflecting elements [258]. Besides, fully
passive metal reflectors can be deployed for coverage en-
hancement, blind-zone compensation and rank improvement,
by properly adjusting their orientations [259]. Compared to
the semi-passive IRS, the fully passive metal reflectors have
the appealing features of ultra low cost, maintenance-free
and full compatibility with existing wireless networks, though
without the capability of dynamic adjustment as IRS. In
general, to fully reap the benefits brought by IRS or metal
reflector, their physical dimensions should be sufficiently large,
rendering the UEs/scatterers also likely located in their near-
field regions [76]. This thus leads to the near-field hybrid
active and passive communications, and more research efforts
are needed to devise efficient near-field channel estimation
methods, as well as practical active and passive beamforming
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designs. On the other hand, symbiotic radio with passive am-
bient backscattering devices achieves spectrum- and energy-
efficient communications [260], which is appealing for XL-
MIMO communications. When symbiotic radio meets XL-
MIMO, accurate near-field modeling and effective near-field
beamforming designs to compensate for the severe double-
fading attenuation of passive backscattering links are worthy
of investigation in future work.

4) Near-Field ISAC With XL-MIMO: The unprecedented
spatial resolution brought by XL-MIMO provides new oppor-
tunities for high-precision ISAC, which in turn facilitates XL-
MIMO communications. For example, XL-MIMO may help
to improve the sensing performance like estimation accuracy
and sensing SNR. On the other hand, the combination of XL-
MIMO and ISAC with extremely high resolution is expected
to bring a paradigm shift for channel estimation, i.e., from
estimating the composite channels superimposed by multi-
path channel components to extracting the path information of
each individual channel component, such as AoA/AoD, delay,
Doppler frequency [228]. By leveraging the sensing-aided
near-field beam training, e.g., angle and distance information,
the search space of candidate beams can be significantly
narrowed, thus reducing the training overhead. Moreover, with
the enhanced near-field sensing, ISAC endows XL-MIMO
the capability of high-accuracy localization and tracking for
supporting various applications, such as autonomous driving
and smart manufacturing. However, near-field ISAC with
XL-MIMO faces the high signal processing complexity and
hardware cost. Thus, low-complexity yet efficient sensing
algorithms deserve future studies.
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