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Abstract

Extremely large-scale multiple-input multiple-output (XL-MIMO) is capable of supporting ex-

tremely high system capacities with large numbers of users. In this work, we build a framework for

the analysis and low-complexity design of XL-MIMO in the near-field with spatial non-stationarities.

Specifically, we first analyze the theoretical performance of discrete-aperture XL-MIMO using an

electromagnetic (EM) channel model based on the near-field spherical wave-front. We analytically unveil

the impact of the discrete aperture and polarization mismatch on the received power. We also review

the amplitude-aware Fraunhofer distance based on the considered EM channel model. Our analytical

results indicate that a limited part of the XL-array receives the majority of the signal power in the

near-field, which leads to a notion of visibility region (VR) of a user. Thus, we propose a VR detection

algorithm and exploit the acquired VR information to design a low-complexity symbol detection scheme.

Furthermore, we propose a graph theory-based user partition algorithm, relying on the VR overlap ratio

between different users. Partial zero-forcing (PZF) is utilized to eliminate only the interference from

users allocated to the same group, which further reduces computational complexity in matrix inversion.

Numerical results confirm the correctness of the analytical results and the effectiveness of the proposed

algorithms. It reveals that our algorithms approach the performance of conventional whole array (WA)-

based designs but with much lower complexity.
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I. INTRODUCTION

To fulfill the various challenging demands on the fifth-generation (5G) and beyond wire-

less systems, several appealing technologies have been proposed and investigated, including

massive multiple-input multiple-output (MIMO) [2]–[5], cell-free [6], small cell [7], millimeter-

wave (mmWave) [8], and reconfigurable intelligent surface (RIS) [9]–[12]. Among them, as the

evolution of massive MIMO, extremely large-scale MIMO (XL-MIMO) has recently attracted

new interest [13], [14]. By mounting several thousands of antennas, XL-MIMO can achieve

extremely high spectral efficiency and satisfy the harsh data rate requirements of future wireless

systems. XL-MIMO may have large physical dimensions spanning several tens of meters [15]. It

is expected to be integrated into large structures such as walls of buildings in mega-city, airports,

large shopping malls, and stadiums, and it can serve a large number of users simultaneously.

A classic result for distinguishing the boundary between near and far-field is the Fraunhofer

(Rayleigh) distance df = 2D2

λ
, where D and λ denote the array aperture and wavelength,

respectively [16]. As the array dimension, D, increases, boundary df expands, and the users

will be easily located in the near-field of the XL-MIMO instead of the far-field. Accordingly,

the practical spherical electromagnetic (EM) wave-front can no longer be approximated as planar

wave-front. There are multiple differences between near-field and far-field communications. The

first one is the nonlinear variation of the phase of the received signal across the whole array. Under

the far-field condition, the phase of the array steering vector is approximately linearly scaled for

different elements, which makes mathematical analysis tractable. However, this property does

not hold in the near-field. Secondly, as the array aperture increases, it is essential to consider

the amplitude/pathloss variation across the whole array. This is because the distance between

the user and the array center could be significantly different from that between the user and

the array edge. Thirdly, in the near-field, the incline angle of the incident wave could vary

substantially from the array center to the edge, which results in a variation of the effective

projected aperture for different antennas on the array. Therefore, for studying XL-MIMO, it is

crucial to consider the practical spherical wave-front and investigate the new features introduced

by near-field communications.
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Taking into consideration the near-field behavior, XL-MIMO has been studied recently from

different perspectives. Focusing on the nonlinear phases of the array steering vector, some

work has investigated beam training [17]–[19], channel estimation [20], and multiple-access

design [21]. To further accurately model the near-field spherical wave-front, the variation of the

amplitude across the array was considered in [22]–[29]. Specifically, the authors of [22] modeled

the near-field channel accounting for the variations of the amplitude and incident wave inclination

across the whole array. Derived from Maxwell’s equations, the authors of [23]–[25] adopted an

EM channel model and characterized the EM polarization effect, which accurately describes the

physical near-field behavior. These works proved that due to the amplitude attenuation at the array

edge, even if the array aperture tends to be infinitely large, the received power of the signal is

still limited. However, for tractability, the above contributions [22]–[29] have assumed the array

to be spatially continuous, i.e., edge-to-edge antenna deployment with zero antenna spacing or

infinitely large numbers of infinitesimal antennas. This structure increases the performance but

also causes high fabrication complexity and complicated inter-antenna coupling. By contrast,

discrete-aperture XL-MIMO with half-wavelength spacing was studied in [30]–[33]. However,

these works did not adopt the EM channel model and therefore the impact of polarization

mismatch could not be analyzed.

Another important property of XL-MIMO is spatial non-stationarity [15]. Due to the large array

dimension, different parts of the array may have different views of the propagation environment.

Besides, due to the variations of amplitude and incident wave inclination, the power of the signal

transmitted by a user may be received mainly by a portion of the array, which motivates the

notion of user visibility region (VR). The existence of spatial non-stationarities was validated by

experimental measurements in [34]. The authors of [35] proposed a near-field channel estimation

algorithm for XL-MIMO, which also estimates the mapping between VRs and users. The system

performance in the presence of VRs was analyzed in [36]–[39]. By exploiting the feature

that users at different locations may have different VRs, novel algorithms were proposed, in

terms of low-complexity detectors [40], random access and user scheduling [38], [41], [42], and

antenna selection [43]. Nevertheless, large research gaps still exist. Firstly, most of the existing

contributions assumed that the VR information was available for algorithm design. A rigorous

VR detection algorithm has not been reported yet. Secondly, for tractability, the uniform linear

array (ULA) model was widely adopted in these works. For the general uniform planar array

(UPA) model, VR detection and the overlapping relationship between the VRs of different users
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are more complex and challenging. Finally, most of the existing works assumed that the antennas

outside the VR do not receive any signal. In practice, these antennas receive small but not zero

power, which complicates algorithm design.

To fill the above research gaps, this work investigates discrete-aperture XL-MIMO based on

an EM channel model. We first analyze the impact of the near-field channel on the theoretical

performance, which sheds light on the effect of spatial non-stationarities and motivates the design

of a VR detection algorithm. Based on the obtained VR information, two low-complexity symbol

detection algorithms for XL-MIMO are proposed. The main contributions of this paper are listed

as follows.

• Based on the EM channel model, we derive an explicit expression of the signal-to-noise-ratio

(SNR) for discrete-aperture XL-MIMO with a single user. We analytically study the near-

field characteristics of the SNR, and provide insights into the impact of the discrete aperture

and polarization mismatch. We also review the amplitude-aware Fraunhofer distance in the

presence of polarization mismatch.

• For multi-user XL-MIMO systems, conventional whole array (WA)-based symbol detectors

are proposed and analyzed, including maximum ratio combining (MRC), zero-forcing (ZF),

and minimum mean-squared error (MMSE) detection. Next, inspired by the insights drawn

from the single-user case, we propose a sub-arrays-based VR detection algorithm based on

the explicit received power expressions. Then, a VR-based low-complexity linear symbol

detection algorithm is proposed.

• To further exploit the VR information and to reduce complexity, we propose a graph theory-

based user partition algorithm. The users whose VRs overlap exceeds a certain threshold are

partitioned into one group. Then, the partial ZF (PZF) detector is utilized to only eliminate

the interference within the group.

• Simulation results are provided to validate the correctness of analytical results and reveal that

the proposed algorithms achieve very similar performance as the conventional WA-based

design but with much reduced complexity.

The remainder of this paper is organized as follows. Section II provides the EM channel model

for near-field wireless systems. Section III derives the closed-form SNR expression for single-

user transmission and analyzes the impact of the discrete aperture and polarization mismatch.

Section IV proposes the VR detection algorithm, the user partition algorithm, and two low-
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Fig. 1. Illustration of the considered XL-MIMO system.

complexity symbol detection algorithms. Section V presents the numerical results and Section

VI concludes the paper.

Notations: Vectors and matrices are denoted by boldface lower case and upper case letters,

respectively. The transpose, conjugate transpose, and inverse of matrix X are denoted by XT ,

XH , and X−1, respectively. [X](:,k) denotes the k-th column of matrix X. O denotes the standard

big-O notation. |B| denotes the cardinality of set B. ∇x× denotes the curl operation with respect

to x.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the uplink transmission from K single-antenna users to

an XL-MIMO array. The user indices are collected in set K = {1, . . . , K}. For tractability, we

establish a coordinate system with the center of the array as the origin. The x-y plane is the

plane in which the array lies, and the z-axis is perpendicular to the array. The location of the

user k ∈ K is denoted by uk = [uk,x, uk,y, uk,z]
T .

A. XL-MIMO Array Structure

Different from the works considering continuous surfaces or holographic surfaces [22]–[28],

a discrete-aperture array model is adopted in this work, where the length of each antenna and

the antenna spacing are denoted by
√
A and ∆, respectively, with ∆ ≥

√
A. The XL-MIMO

array has M = MxMy antenna elements and the area of each antenna element is A. Define
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η = A
∆2 ≤ 1 as the array occupation ratio. Considering the (mx,my)-th antenna element, the

coordinate of its center is given by pmx,my = [mx∆,my∆, 0]T , mc ∈Mc, where

Mc = {−(Mc − 1)/2, . . . , (Mc − 1)/2} , c ∈ {x, y}. (1)

The area of the (mx,my)-th antenna element is denoted by Smx,my =
[
mx∆−

√
A

2
,mx∆ +

√
A

2

]
×[

my∆−
√
A

2
,my∆ +

√
A

2

]
. The distance between user k and the center of the (mx,my)-th array

element is given by
∥∥rk,mx,my∥∥ = ‖pmx,mx−uk‖ =

√
(mx∆− uk,x)2 + (my∆− uk,y)2 + (uk,z)

2 ,

rk,mx,my . The distance and the azimuth and elevation angles of arrival (AoAs) from user k to

the array center are denoted by rk,o = ‖uk‖ and ψak and ψek, respectively.

B. Channel Modeling

The channel from user k to the (mx,my)-th antenna element of the XL-MIMO array is given

by

hk,mx,my =
√
ξk,mx,mye

−j 2π
λ
rk,mx,my , (2)

where ξk,mx,my and λ are the channel amplitude/pathloss and wavelength, respectively. Then,

the channel hk ∈ CM×1 from user k to the whole array can be characterized by merging

hk,mx,my ,∀mx,my, into a vector.

We apply the Dyadic Green’s function-based EM channel model for pathloss ξk,mx,my [23],

[24], [44]. This channel model is more practical and allows the characterization of the impact

of EM polarization effects. Specifically, consider a point p = [px, py, 0]T located in the area of

the (mx,my)-th antenna element, i.e., p ∈ Smx,my . Based on Maxwell’s equations, the electric

field of user k satisfies the following inhomogeneous Helmholtz wave equation [23]

(
−∇uk ×∇uk ×+k2

0

)
E(uk) = jk0κJ (uk), (3)

where k0 = 2π
λ

is the wavenumber, κ is the intrinsic impedance, and E(uk) is the electric field ex-

cited by current density J (uk). The inverse map of (3) is given by E(p) =
∫
G(p,uk)J (uk)duk.

In EM theory, G(p,uk) is referred as to the Green function which in the radiating near-field can

be approximately expressed as [44]

G(p,uk) ≈
jκej

2π
λ
‖rk‖

2λ‖rk‖
(
I3 − r̂kr̂

H
k

)
, (4)
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where rk = p − uk = [px − uk,x, py − uk,y,−uk,z]T and r̂k = rk
‖rk‖

. For notational simplic-

ity, define rk = ‖rk‖ and then r̂k =
[
px−uk,x

rk
,
py−uk,y

rk
,
−uk,z
rk

]T
. The Green function G(p,uk)

characterizes the EM response at the point p due to the current source at point uk. Note

that the Green function G(p,uk) ∈ C3×3 describes the response between the three polarized

directions of the field and the three polarized directions of the source produced by a tripole

antenna element. The current of the source can be decomposed orthogonally as J (uk) =

J x(uk)êx + J y(uk)êy + J z(uk)êz, where êc, c ∈ {x, y, z}, are the orthonormal basis vectors,

and J c(uk) denotes the current density in the c polarization direction. As in [23], [24], low-

cost uni-polarized antenna elements are considered in this work and the current is assumed to be

exited in y-axis direction. Therefore, we have J (uk) = J y(uk)êy. For unit density J y(uk) = 1,

we have J (uk) = [0, 1, 0]T and

G(p,uk)J (uk) , Gy(rk)

=
jκej

2π
λ
rk

2λrk

[
(px − uk,x)(py − uk,y)

r2
k

, 1−
(
py − uk,y

rk

)2

,
(−uk,z)(py − uk,y)

r2
k

]T
.

(5)

Based on (5), we can model the pathloss between user k and the (mx,my)-th antenna element

as follows

ξk,mx,my =

∫
Smx,mx

λ2

κ2π
‖Gy(rk)‖2 r

T
k êz
‖rk‖

dp (6)

=

∫
Smx,mx

1

4πr2
k

uk,z
rk

(px − uk,x)2 + u2
k,z

r2
k

dp (7)

p≈pmx,my
≈ A

4π

uk,z
(
(mx∆− uk,x)2 + u2

k,z

)
{

(mx∆− uk,x)2 + (my∆− uk,y)2 + u2
k,z

} 5
2

, (8)

where (6) includes a normalized factor λ2

κ2π
and a projection factor rTk êz

‖rk‖
which projects the signal

to the normal direction to characterize the effective projected aperture due to the incline angle of

the incident wave [23], [24]. In (8), since the size of the antenna element is much smaller than

distance rk, all points p in area Smx,mx are approximated by the center point pmx,my . From (7),

we can observe that the modeled pathloss is comprised of three components, including the free-

space pathloss 1
4πr2

k
, the projection coefficient uk,z

rk
, and the polarization mismatch (px−uk,x)

2
+u2

k,z

r2
k

[24]. Clearly, if the signal is vertically incident, we have uk,x = uk,y = 0 and uk,z
rk

= 1; if

uk,y = py, then (px−uk,x)
2
+u2

k,z

r2
k

= 1 and (8) simplifies to the case without polarization mismatch
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as in [30, (2)]. Thus, the utilized EM channel model is more general and allows us to provide

insights into the impact of polarization.

III. SNR ANALYSIS FOR SINGLE-USER SCENARIO

To gain useful insights for system design, in this section, we first focus on a single-user

scenario, i.e., K = 1. We assume that only user k exists. Our objective is to derive an explicit

expression for the SNR and analyze its properties for near-field transmission. The signal received

at the XL-MIMO array is expressed as

yk =
√
phkxk + n, (9)

where p is the transmit power, xk ∼ CN (0, 1) is the transmit symbol of user k, and n ∼

CN (0, σ2IM). Using an MRC detector, the SNR is calculated as

SNRk =
p

σ2
‖hk‖2 =

p

σ2

∑
mx∈Mx

∑
my∈My

ξk,mx,my , (10)

where ξk,mx,my is given in (8). In the following, we will present an explicit expression of (10)

instead of the form with double-sum.

Theorem 1 Considering channel model (8) and user k with location uk = [uk,x, uk,y, uk,z]
T , if

uk,z = 0, we have SNRk = 0; otherwise, the SNR is given by

SNRk =
p

σ2

η

6π

 Fk

(
My∆

2
− uk,y, Mx∆

2
− uk,x

)
+ Fk

(
My∆

2
− uk,y, Mx∆

2
+ uk,x

)
+Fk

(
My∆

2
+ uk,y,

Mx∆
2
− uk,x

)
+ Fk

(
My∆

2
+ uk,y,

Mx∆
2

+ uk,x

)
 , (11)

where Fk(a, b) = arctan

(
a
uk,z

b√
b2+a2+u2

k,z

)
+

uk,z
2

a
a2+u2

k,z

b√
b2+a2+u2

k,z

.

Proof: See Appendix A. �

For large M , we have (Lc−Mc∆)/Lc ≈ 0, c ∈ {x, y}, and therefore the SNR in (11) can be

further approximated as

SNRk = p
σ2

η
6π

{
Fk

(
Ly
2
− uk,y, Lx2 − uk,x

)
+ Fk

(
Ly
2
− uk,y, Lx2 + uk,x

)
+Fk

(
Ly
2

+ uk,y,
Lx
2
− uk,x

)
+ Fk

(
Ly
2

+ uk,y,
Lx
2

+ uk,x

)}
.

(12)
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The SNR in (12) is a function of array lengths Lx, Ly, user location uk, and array occupation

ratio η = A
∆2 ≤ 1. Coefficient η shows the difference of discrete-aperture arrays compared with

continuous-aperture arrays. The SNR is an increasing function of η since ηLxLy represents the

effective array aperture. Next, we aim to analyze the impact of polarization mismatch on the

SNR when using a discrete array. Substituting (px−uk,x)
2
+u2

k,z

r2
k

= 1 into (7), we can obtain the

SNR without polarization mismatch as follows

SNR
w/o
k =

p

σ2

η

6π

 F
w/o
k

(
Ly
2
− uk,y, Lx2 − uk,x

)
+ F

w/o
k

(
Ly
2

+ uk,y,
Lx
2
− uk,x

)
+F

w/o
k

(
Ly
2
− uk,y, Lx2 + uk,x

)
+ F

w/o
k

(
Ly
2

+ uk,y,
Lx
2

+ uk,x

)
 , (13)

where Fw/o
k (a, b) = 3

2
arctan

(
ab

uk,z
√
a2+b2+u2

k,z

)
. Note that by dividing each term in (13) by rk,o

and switching the x-axis and y-axis, this result is identical to that in [30, (12)]. Comparing

(12) with (13), we note that function Fk(a, b) is more complex than F
w/o
k (a, b), which makes

theoretical analysis more challenging. Recall that y-axis polarization direction is assumed. As a

result, the polarization mismatch increases with the difference in y-coordinates of the user and

the antenna element. Thus, when Ly →∞ (in the severe near-field), we can show that SNRk →
2
3
SNR

w/o
k , which unveils the possible performance loss caused by polarization mismatch. Be-

sides, for large uk,z (in the far-field), we have arctan( a
uk,z

b√
b2+a2+u2

k,z

) ≈ ab

uk,z
√
b2+a2+u2

k,z

and
uk,z

2
a

a2+u2
k,z

b√
b2+a2+u2

k,z

≈ ab

2uk,z
√
b2+a2+u2

k,z

, which results in Fk(a, b) ≈ F
w/o
k (a, b) and accord-

ingly SNRk ≈ SNR
w/o
k ≈ p

σ2
1

4πr2
k,o
MA cosψek [30]. This shows that the polarization mismatch

plays a more important role in the near-field, and its impact is highly dependent on parameter

a, i.e., Ly and uk,y.

In addition, it is worth noting that the SNR in (12) can be also understood from the perspective

of the 3D angles. Define Ψk,x ,
uk,x
rk,o

= sinψek cosψak , Ψk,y ,
uk,y
rk,o

= sinψek sinψak , and Ψk,z ,
uk,z
rk,o

= cosψek. Then, the SNR can be rewritten as a function of the AoAs and rk,o as follows:

SNRk =
p

σ2

η

6π

 FA
k

(
Ly

2rk,o
−Ψk,y,

Lx
2
−Ψk,x

)
+ FA

k

(
Ly

2rk,o
−Ψk,y,

Lx
2

+ Ψk,x

)
+FA

k

(
Ly

2rk,o
+ Ψk,y,

Lx
2
−Ψk,x

)
+ FA

k

(
Ly

2rk,o
+ Ψk,y,

Lx
2

+ Ψk,x

)
 , (14)

where FA
k (a, b) = arctan

(
a

Ψk,z

b√
b2+a2+Ψ2

k,z

)
+

Ψk,z
2

a
a2+Ψ2

k,z

b√
b2+a2+Ψ2

k,z

.
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A. Asymptotic Limit

In massive MIMO systems under far-field conditions and free-space pathloss [2], the SNR in

the single-user case is given by SNRfar
k = p

σ2
λ2

(4π)2r2
k,o
M , which grows linearly with M to infinity.

However, in reality, the received power cannot exceed the transmitted power based on energy

conservation. In fact, when M → ∞, the near-field channel model has to be applied and the

linear scale in SNRfar
k no longer holds. Based on the EM near-field channel, when M →∞, the

SNR in (11) converges to

SNRk →
p

σ2

4η

6π
Fk

(
Ly
2
,
Lx
2

)
→ p

σ2

η

3
. (15)

If the polarization mismatch is neglected, the asymptotic SNR becomes

SNR
w/o
k → p

σ2

η

π
F
w/o
k

(
Ly
2
,
Lx
2

)
→ p

σ2

η

2
. (16)

If the array is assumed to be continuous i.e.,
√
A = ∆, we have

SNRcont
k → p

σ2

1

3
. (17)

The results in (15) - (17) provide the practical performance limit for XL-MIMO with an

infinitely-large array area. As can be observed, the SNR in (15) is smaller compared with the

other two cases in (16) and (17). In (16), at most half of the power can be received by an

infinitely large array surface, since it can only capture the power emitting into half of the space.

With polarization mismatch, the limit reduces from 1/2 to 1/3. This is because as Ly increases,

the attenuation of the amplitude from the source to the edge of the array becomes severer in

the presence of polarization mismatch, and therefore an additional loss is caused. Besides, for

the considered discrete aperture, the asymptotic SNR performance is further limited by array

occupation ratio η since it characterizes the effective array area capable of receiving a signal.

The reason why the SNR is limited as M → ∞ can be explained more clearly from the

perspective of geometric views. Consider a user located perpendicular to the center of the array,
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Fig. 2. Geometric interpretation of the SNR.

i.e., uk,x = uk,y = 0. Then, the SNR becomes

SNRp
k = p

σ2
2η
3π

{
arctan

Ly/2

uk,z

Lx/2√
(Lx2 )

2
+
(
Ly
2

)2
+u2

k,z


+1

2

uk,z√(
Ly
2

)2
+u2

k,z

Ly/2√(
Ly
2

)2
+u2

k,z

Lx/2√
(Lx2 )

2
+
(
Ly
2

)2
+u2

k,z

}
.

(18)

Eq. (18) can be rewritten in the form of geometric angles. As illustrated in Fig. 2, we define

two angles α and β so that tanα = Ly/2

uk,z
and cos β = Lx/2√

(Lx2 )
2
+
(
Ly
2

)2
+u2

k,z

. Then, we have

SNRp
k =

p

σ2

2η

3π

{
arctan(tanα cos β) +

1

2
sinα cosα cos β

}
. (19)

The SNR in (19) is a function of angles α and β. As the aperture of the array increases to

infinitely large, however, the angles of view from the user to the array, i.e., α and β, are still

limited. Specifically, if Lx →∞, we have β → 0. When Ly →∞, we have α, β → π
2
. If both

Lx and Ly tend to infinity, we have α→ π
2

and β → π
4
. As a result, the SNR is limited by the

angles of view and cannot increase infinitely.

B. XL-ULA

To shed more light on the impact of polarization mismatch, in this section, we consider a

simplified case where the XL-UPA degrades to an XL-ULA, i.e., Mx = 1 or My = 1.

Theorem 2 When My = 1, the SNR for the XL-ULA simplifies to

SNRULA
k =

p

σ2

η∆

4π

{
FULA
k

(
Mx∆

2
− uk,x

)
+ FULA

k

(
Mx∆

2
+ uk,x

)}
, (20)
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where

FULA
k (a) =

a
(
a2u2

k,y + 3u2
k,z

(
a2 + u2

k,y + u2
k,z

))
uk,z

3
(
u2
k,y + u2

k,z

)2 (
a2 + u2

k,y + u2
k,z

) 3
2

. (21)

Proof: See Appendix B. �

The result in (20) is consistent with [30] only if we have uk,y = 0. This is because when

My = 1, the y-coordinate of all antenna elements of the XL-ULA is 0. When the y-coordinate

of the user is also uk,y = 0, the difference of y-coordinates of the user and all antennas elements

is zero, and therefore, there will be no polarization mismatch in pathloss (8). For Mx →∞, the

asymptotic limit of the SNR in (20) is

SNRULA
k

M→∞→ p

σ2

A

2π∆

uk,z
(
u2
k,y + 3u2

k,z

)
3
(
u2
k,y + u2

k,z

)2 . (22)

As can be seen, (22) is independent of uk,x. This is because as Mx →∞, the array becomes

infinitely long and therefore the x-coordinate of the user does not matter. Furthermore, the

asymptotic SNR for the XL-ULA without polarization mismatch is given by

SNRULA
k,w/o

M→∞→ p

σ2

A

2π∆

uk,z
u2
k,y + u2

k,z

=
p

σ2

A

2π∆

uk,z
(
3u2

k,y + 3u2
k,z

)
3
(
u2
k,y + u2

k,z

)2 ≥ SNRULA
k , (23)

and the gap between (22) and (23) is

DSNRk = SNRULA
k,w/o − SNRULA

k =
p

σ2

A

3π∆

uk,zu
2
k,y(

u2
k,y + u2

k,z

)2 , (24)

which first increases and then decreases with respect to uk,y. Specifically, we have DSNRk → 0

as uk,y → 0 and uk,y → ∞. This is because when uk,y = 0, the user possesses the same

y-coordinate as the whole ULA, and therefore the polarization mismatch vanishes. As uk,y

increases, the difference in the y-coordinate increases, leading to a larger polarization mismatch.

For large enough uk,y, the user will be located in the far-field and therefore the gap vanishes.

Besides, for uk,x = uk,y = 0, we can rewrite the SNR expression in (20) as follows

SNRULA
k =

p

σ2

η∆

2πuk,z

 Lx
2√(

Lx
2

)2
+ u2

k,z

3

=
p

σ2

η∆

2πuk,z
(sin γ)3, (25)

where γ denotes half of the view angle from the user to the ULA as shown in Fig. 3. Obviously,

when My →∞, we have γ → π
2
, and therefore the SNR is limited.
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Fig. 3. Geometric interpretation in the case of XL-ULA.

C. Near-Field/Far-Field Boundary

In this section, we revisit the boundary between the near-field and the far-field for the

considered discrete array with an EM channel model. A classic result for distinguishing near-

and far-field is the Fraunhofer distance [16], [20], [45], i.e., df = 2D2

λ
, where D is the array

aperture. If the distance is larger than df , the phase of the received signal would vary by no more

than π
8

radians across the whole array. In fact, this definition mainly focuses on the variation

of the phase between different antenna elements while the amplitude variation of ξk,mx,my

across different antenna elements is ignored. In [30], an amplitude-aware Fraunhofer distance

is proposed. Inspired by [30], in this section, we further take the impact of EM polarization

into consideration, which is more challenging and leads to a more general result. For brevity, in

this section, we assume that M is odd, and the case of even values can be tackled in a similar

manner and therefore is omitted here.

Based on the amplitude model of the considered discrete-aperture XL-MIMO array, we quan-

tify the amplitude variation across the whole array as follows

v(uk) =
minmx,my ξk,mx,my
maxmx,my ξk,mx,my

. (26)

For uk located in the far-field with planar wave-front, we have v(uk) = 1. As the user moves

closer to the array, the near-field behavior manifests itself, and the variation of the amplitude

across the array becomes non-negligible. Therefore, we can define an amplitude variation thresh-

old v̄t ∈ (0, 1], and then determine the near/far-field boundary by finding the set of locations ũk,

where v(ũk) = v̄t. Clearly, the field boundary will be a surface comprised of 3D user positions.

Based on (8), we can find that the amplitude ξk,mx,my between user k and the (mx,my)-th antenna

element decreases with their y-coordinate difference |my∆− uk,y| but it is not monotonic of their

x-coordinate difference |mx∆− uk,x|. This is because when |my∆− uk,y| increases, both the

distance and the polarization mismatch increase. By contrast, when |mx∆− uk,x| increases, the



14

distance increases but the relative polarization mismatch decreases.

In the following, we derive the explicit values of mx and my which respectively maximize and

minimize ξk,mx,my for given uk. By defining s = (mx∆− uk,x)2 + u2
k,z and v = (my∆− uk,y)2,

we can rewrite ξk,mx,my in (8) as fξ(s) = s

(s+v)
5
2

with f ′ξ(s) = (s+ v)
−7
2 (v − 3

2
s). For notational

simplicity, define fint(a) =
⌊
a+ 1

2

⌋
as the function rounding a to the nearest integer. Define

further f±x(a) =
uk,x

|uk,x|a, and f|min |(a, b), where f|min |(a, b) = a if |a| ≤ |b| and f|min |(a, b) = b

if |a| > |b|. Then, based on the range in (1), we can derive the domain of s ∈ [smin, ..., smax],

where smax =
(
f±x

(
Mx−1

2

)
∆ + uk,x

)2
+ u2

k,z and

smin =

({
f|min |

(
fint

(uk,x
∆

)
, f±x

(
Mx − 1

2

))}
∆− uk,x

)2

+ u2
k,z. (27)

By analyzing the properties of fξ(s), we obtain the following solutions: to maximize fξ(s), we

have my = f|min |

{
fint

(uk,y
∆

)
, f±y

(
My−1

2

)}
, v∗ = (my∆− uk,y)2, and

mx =


fint

(
f|min |

{√
2
3
v∗−u2

k,z+uk,x

∆
,
−
√

2
3
v∗−u2

k,z+uk,x

∆

})
if smin ≤ 2

3
v∗ ≤ smax;

f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if 2

3
v∗ < smin;

−f±x
(
Mx−1

2

)
, if 2

3
v∗ > smax;

(28)

to minimize fξ(s), we have my = −f±y
(
My

2

)
, v∗ =

(
my∆− uk,y

)2, and

mx =



f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if smin ≤ 2

3
v∗ ≤ smax, fξ (smin) ≤ fξ (smax) ;

−f±x
(
Mx−1

2

)
, if smin ≤ 2

3
v∗ ≤ smax, fξ (smin) > fξ (smax) ;

f|min |
{
fint
(uk,x

∆

)
, f±x

(
Mx

2

)}
, if 2

3
v∗ > smax;

−f±x
(
Mx−1

2

)
, if 2

3
v∗ < smin.

(29)

Based on (28) and (29), we can calculate v(uk) given uk. Then, to find the ũk = [ũk,x, ũk,y, ũk,z]

on the near/far-field boundary, we can fix ũk,x and ũk,y and then use a one-dimensional search

to find the required value of ũk,z, which leads to v(ũk) = v̄t.

IV. MULTI-USER SCENARIO

Based on the single-user case, the previous section has shed light on the performance and

properties of XL-MIMO in the near field. Next, this section focuses on the general multi-user

case and proposes low-complexity symbol detectors by exploiting the near-field properties.



15

A. Whole Array-Based Design

The signal received by the XL-MIMO array from the K users can be expressed as y =
√
pHx + n, where H = [h1, . . . ,hK ] and x = [x1, . . . , xK ]. Define Hk = [H](:,K\k) as the

matrix obtained by removing the k-th column of H. Then, to detect xk, linear MRC, ZF, and

MMSE detectors for user k are given by [31], [46]

aHk,MRC =
hHk
‖hk‖2 , (30)

aHk,ZF =
hHk Pk

hHk Pkhk
,Pk = IM −Hk

(
H

H

kHk

)−1

H
H

k , (31)

aHk,MMSE =
hHk Rk

hHk Rkhk
,Rk = IM −Hk

(
σ2

p
IK−1 + H

H

kHk

)−1

H
H

k . (32)

Based on the detected symbol x̂k = aHk,Cy, C ∈ {MRC,ZF,MMSE}, the sum user rate is

given by R =
∑K

k=1 log(1 + SINRk,C), where the SINR of user k is expressed as

SINRk,MRC =
p ‖hk‖2

p
∑K

i=1,i 6=k |hHk hi|
2
/ ‖hk‖2 + σ2

, (33)

SINRk,ZF =
p

σ2
hHk Pkhk, (34)

SINRk,MMSE =
p

σ2
hHk Rkhk. (35)

For conventional massive MIMO systems with ULA array, the far-field channel of user k can

be expressed as hfar
k = ξk

[
1, e−j2π

∆
λ

sinψk , . . . , e−j2π
∆
λ

(M−1) sinψk

]T
. As can be seen, different

from the considered near-field channel model (2), the amplitudes of different entries of hfar
k are

identical and the phases of different entries of hfar
k are linearly scaled. Accordingly, the multi-user

interference term in (33) can be calculated as [2], [47], [48]∣∣(hfar
k )Hhfar

i

∣∣2∥∥hfar
k

∥∥2 =
sin2

(
π∆
λ
M (sinψi − sinψk)

)
M sin2

(
π∆
λ

(sinψi − sinψk)
) . (36)

Clearly, if user k and user i do not have the same angle, the interference will tend to zero as M →

∞. Therefore, MRC detectors can achieve rather good performance. However, this favorable

property no longer holds for near-field channels with spherical waves, where the amplitudes of

different entries of hk are different and the phases are no longer linearly scaled either, as shown



16

Fig. 4. Illustration of VRs for different users.

in (2). As a result, we have

hHk hi =
∑

mx∈Mx

∑
my∈My

√
ξHk,mx,myξi,mx,mye

j 2π
λ (rk,mx,my−ri,mx,my), (37)

which cannot be simplified as a function of the difference of the angles between users k and

i. Meanwhile, the denominator term ‖hk‖2 is finite for large M and therefore the fraction∣∣hHk hi∣∣2/‖hk‖2 does not tend to zero even if M →∞. This implies that the low-complexity MRC

detector does not work well in XL-MIMO systems in the near field due to the severe interference.

To eliminate the interference, ZF or MMSE detectors are needed, which significantly increases

the computational complexity due to the required matrix inversion. To tackle this challenge,

in the following, we propose low-complexity ZF/MMSE schemes by exploiting the near-field

spatial non-stationarity.

B. VR-Based Low-Complexity Design

Section III has analytically shown that due to the amplitude attenuation across the array, the

SNR is limited even for an infinitely large array. In other words, a limited part of the array

receives a large portion of the signal power, which is referred to as the VR of the user, as

illustrated in Fig. 4. The VR can be approximated as a combination of sub-arrays of the XL-

MIMO array. Considering that the dimension of the sub-arrays located in the VR of a user could

be much smaller than the whole array in the case of large M , we can use the VR of each user

to design low-complexity detectors for XL-MIMO.
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Algorithm 1 VR Detection

Input: $, P̂k = 0, Bk = ∅, SNRk, Pk = {Pk,sx,sy ,∀sx, sy}
Output: Bk

1: for k = 1 : K do
2: Sort Pk using quicksort algorithms; i = 1;
3: while P̂k ≤ $SNRk do
4: Select the i-th element in Pk referred as to Pk,s∗x,s∗y ;
5: Bk = {Bk ∪ (s∗ySx + s∗x)};
6: P̂k = P̂k + Pk,s∗x,s∗y ; i = i+ 1;
7: end while
8: end for

Lemma 1 Assume that the XL-MIMO is partitioned into S = Sx × Sy sub-arrays. For the

(sx, sy)-th sub-array, where 0 ≤ sx ≤ Sx and 0 ≤ sy ≤ Sy, the power of signal received from

user k is given by

Pk,sx,sy =
p

σ2

η

6π

{
Fk (fs,y,1∆− uk,y, fs,x,1∆− uk,x) + Fk (−fs,y,1∆ + uk,y, fs,x,2∆− uk,x)

+Fk (−fs,y,2∆ + uk,y, fs,x,1∆− uk,x) + Fk (fs,y,2∆− uk,y, fs,x,2∆− uk,x)
}
,

(38)

where fs,c,1 = −Mc

2
+ sc

Mc

Sc
, fs,c,2 = −Mc

2
+ (sc + 1) Mc

Sc
, c ∈ {x, y}.

Proof: For the (sx, sy)-th subarray, we can obtain the indices of the antennas as mc ∈{
−(Mc−1)

2
+ sc

Mc

Sc
, . . . , −(Mc−1)

2
+ (sc + 1) Mc

Sc
− 1
}

, c ∈ {x, y}. Then, the proof follows by de-

riving the sum of the powers across this sub-array using a similar method as in Appendix A.

�

Based on Lemma 1, the VR of user k can be determined by selecting the sub-arrays con-

tributing to the main portion of the received SNR as $SNRk, where $ ∈ [0, 1] and SNRk is

given in (11). The procedure for detecting VR is shown in Algorithm 1, where step 5 collects

the sub-array indices for user k in set Bk. Then, we can only use the sub-arrays belonging

to Bk to detect the symbol of user k, ∀k, which helps reduce the computational complexity.

Specifically, for user k, we first construct channel HVR ∈ C(
|Bk|
S
M)×K from the K users to the

antenna elements belonging to Bk. Then, the symbol of user k can be detected based on the

linear detectors in (33)-(35) by substituting the WA channel matrix H with VR channel matrix

HVR. Taking VR-based ZF as an example, we have hVR
k = [HVR](:,k), H

VR

k = [HVR](:,K\k), and
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the detector of user k is obtained as

(aVR
k,ZF)H =

(hVR
k )HPVR

k

(hVR
k )HPVR

k hVR
k

, (39)

where PVR
k = I |Bk|

S
M
−H

VR

k

(
(H

VR

k )HH
VR

k

)−1

(H
VR

k )H .

C. User Partition-Based PZF

Next, we fully exploit the properties of the VRs to further reduce the computational complexity.

In the near field, users with different locations may have different VRs, and users whose VRs do

not significantly overlap may suffer from low mutual interference. Therefore, we can partition the

K users into several groups, where the VRs of users in different groups have low overlap. Then,

the users will be mainly affected by the interference caused by the users in their own group. The

interference from users in other groups is expected to be weak and can be neglected for detector

design. As a result, we propose to utilize the PZF detector [49], [50], which only eliminates

intra-group interference and therefore effectively reduces the computational complexity of the

required matrix inversion. To begin with, we use the VR information to propose a user partition

algorithm based on graph theory.

Definition 1 [51]: A undirected graph can be denoted as G = (V,E), where V and E are

the sets of vertices and edges, respectively. (u, v) ∈ E means that there is an edge between

vertices u and v. The neighborhood of u is N(u) = {v ∈ V |(u, v) ∈ E} and the degree of u is

d(u) = |N(u)|. A path D of G is a degree-two path if all vertices of D have edges with each

other and have degree two. The maximum independent set of graph G is the maximum vertex

set I ⊆ V , in which all vertices have no edge.

Following Definition 1, we construct an undirected graph G = (V,E) with V = {v1, . . . , vK}

corresponding to the K users. The edge (vk, vi) informs the VR overlap situation between users

k and i. Specifically, define ŝovp ∈ [0, 1] as a threshold specifying the maximal overlap ratio

between two users’ VRs. If |Bk∩Bi|
min{|Bk|,|Bi|}

≥ ŝovp, the VR overlap ratio between users k and i is

larger than the threshold, and we set edge (vk, vi) ∈ E. In order to reduce the matrix inversion

complexity while guaranteeing the performance, our target is to partition users into as many as

groups possible, where the VRs of different groups have low overlap. To this end, based on the
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Algorithm 2 User Partition-Based PZF
1: Initialize I = ∅
2: Construct graph G = (V,E), V = {v1, . . . , vK}, (vk, vi) ∈ E if |Bk ∩ Bi| ≥
ŝovp min{|Bk|, |Bi|}

3: Calculate degree d(vk), ∀k; V1 = {vk|d(vk) = 1,∀k}, V2 = {vk|d(vk) = 2,∀k}, V3 =
{vk|d(vk) > 2,∀k}

4: while V1 or V2 or V3 6= ∅ do
5: if V1 6= ∅ then
6: Delete the neighborhood of vk ∈ V1 from G
7: else if V2 6= ∅ then
8: Select a vertex vk ∈ V2, find its maximal degree-two path, and delete vertices based on

rules in [51, Lemma 4.1]
9: else

10: Delete the vertex with the largest degree
11: end if
12: Update the degree for all vertices
13: end while
14: I = {vk|d(vk) = 0,∀k}
15: while I 6= ∅ do
16: Select u ∈ I; construct L = {i|vi ∈ {u,N(u)} ∩ i ∈ K}
17: For users i, i ∈ L, design aHi,PZF =

ĥHi Li

ĥHi Liĥi
, Li = I|Bi|MS

− ĤL\i

(
ĤH
L\iĤL\i

)−1

ĤH
L\i,

where ĤL\i = H(MVR
i ,L\i), ĥi = H(MVR

i , i), and MVR
i denotes the antennas indices

in the VR of user i
18: Remove u from I
19: end while

graph G = (V,E), we solve the following maximum independent set problem:

max |I|, s.t. I ⊆ V ; (u, v) /∈ E,∀u, v ∈ I. (40)

After solving the maximum independent set problem in (40), we obtain as many as possible

vertices in G without edges between each other. In other words, we find as many as possible

users with low-overlap VRs. Then, each vertex in I and its neighborhood form a user group.

Based on the user partitioning results, we design the PZF detector to only eliminate the intra-

group interference. The detailed procedure is shown in Algorithm 2. Specifically, steps 2 and 3

construct the graph G based on the VRs. Steps 4-14 find the maximum independent set I of

G exploiting a degree-based reduction algorithm with linear complexity O(K) [51]. Then, each

vertex in I with its neighborhood vertices form one user group L. For each user group, steps

15-19 design the PZF detector by eliminating the interference within the group.
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TABLE I
COMPUTATIONAL COMPLEXITY

WA ZF O{M2K2 +K4}

VR ZF O{(|B̃|/S)2M2K2 +K4 +KS log(S)}

UP PZF O{(|B̃|/S)2M2K2/|Ĩ|+K4/|Ĩ|3 +KS log(S)}

D. Complexity Analysis

For brevity, only the complexity of ZF is analyzed since MMSE and ZF have the same

asymptotic complexity. We refer to the three algorithms as whole array-based ZF (WA LD),

VR-based ZF (VR LD), and user partitioning-based PZF (UP PZF). The results are presented

in Table I. For tractability, we consider an ideal case where the VR of each user includes the

same number of sub-arrays, i.e., |Bk| = |B̃|, ∀k. Then, the number of antennas in the VR

of each user reduces from M to |B̃|
S
M . We also ideally assume that for the user partitioning

algorithm, K users are divided uniformly into |Ĩ| groups. Therefore, the matrix dimension for

the inversion operation in the PZF scheme reduces from K to K/|Ĩ|. Table I reveals that the

proposed algorithms can significantly reduce the complexity when |B̃|/S is small and when |Ĩ|

is large.

V. SIMULATION RESULTS

In this section, we provide numerical results for validating our analytical conclusions and

providing insight into the performance of XL-MIMO systems. Following the literature [30]–

[33], we set ∆ = λ
2

= 0.0628 m, p
σ2 = 90 dB, A = λ2

4π
, and v̄t = 0.9.

A. Single-User Case

To begin with, the single-user case is considered. Fig. 5 depicts the SNR performance as the

aperture of the XL-UPA grows infinitely large. It can be seen that different from the far-field-

based result which increases linearly with M , the near-field-based SNR first increases but then

saturates to a limit as M →∞. Furthermore, the proposed model, which takes into consideration

both the discrete aperture and polarization mismatch, characterizes the actual performance with

additional loss. Besides, it can be seen that the SNR in (10) which includes a double sum is

well approximated by the derived explicit result.
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Fig. 5. SNR versus M for XL-UPA, uk = [10, 10, 10],
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Fig. 6. SNR versus M for XL-ULA, uk = [0, uk,y, 10],
Mx = M , My = 1.

In Fig. 6, the asymptotic SNR of XL-ULA is studied. A similar tendency as in Fig. 5 is

observed. However, the number of antennas needed for the SNR growth rate to slow down is

much smaller than that in Fig. 5. The SNR of ULA becomes saturated for almost 103 antenna

elements while the required number of antenna elements for UPA is 106. This is because given

M , the ULA has a much larger dimension than UPA and therefore the variations of the amplitude,

the signal incline angles, and the polarization mismatch across the whole array are more apparent.

As a result, the near-field behavior becomes more obvious for the ULA with a given M . This

phenomenon can also be understood via the geometric figures in Fig. 2 and 3. As M increases,

the enlarging of view of angles γ is easier to saturate for ULA than angles α and β for UPA.

Furthermore, it can be observed that the SNR gap between the proposed EM model and the

model without polarization mismatch enlarges as the y-coordinate of the user increases. This

phenomenon agrees with our analytical result (24) since the polarization mismatch is proportional

to the difference in the y-coordinate between the user and the received antenna. As a result, as

uk,y increases, the performance loss caused by polarization mismatch increases, which enlarges

the gap.

In Fig. 7, the amplitude-aware Fraunhofer distance is re-examined after taking into consid-

eration the impact of polarization mismatch. We also present results for the case when the

polarization mismatch and both the polarization mismatch and the angle projection are neglected,

respectively. Different from the classic phase-aware Fraunhofer distance which gives a semicircle,

the three amplitude-aware Fraunhofer distances shrink as the user moves towards the center of

the array (i.e., as x-coordinate → 0). This is because the variation of the amplitude from the
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Fig. 8. Comparison of WA and VR-based design.

center to the edge of the array is smaller than that from one edge to the other edge of the array.

For a milder amplitude variation, the near-field region is reduced. Besides, as can be observed,

the considered EM channel model results in a larger Fraunhofer distance since the polarization

mismatch further aggravates the amplitude variation across the array. Furthermore, the Fraunhofer

distance increases with M due to the larger array dimension and the more apparent near-field

behavior.

B. Multi-User Case

The previous subsection illustrated the impact of near-field spatial non-stationarities, which

inspired the proposed low-complexity design for multi-user scenarios. In this section, numerical

results are presented to illustrate the effectiveness of the proposed algorithms. Unless stated

otherwise, we assume that M = 104, My = 10, Sy = 2, Mx/Sx = 10, $ = 0.8, and ŝovp = 0.6.

K = 20 users are randomly distributed in the region of [−25, 25]× [2, 12].

In Fig. 8, we compare the whole array (WA)-based design with the proposed VR-based design.

The WA-based MMSE, ZF, and MRC detection are carried out based on (30)-(32), while the

VR-based design is conducted as (39). It can be seen that for both the WA and VR-based

cases, the sum user rates for the MMSE and ZF detectors coincide for large M and are much

higher than that for MRC. This is because in near-field scenarios with spherical wave-fronts, the

favorable interference condition in (36) no longer holds, which deteriorates to (37) as a function

of distances and angles. Therefore, considering that the computational complexity of ZF and

MMSE is much higher than that of MRC, it is necessary to employ low-complexity detectors in
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Fig. 10. Sum user rate under different $, where M = 104.

XL-MIMO systems. From Fig. 8, it can be observed that the proposed VR-based low-complexity

MMSE and ZF detectors perform very close to the WA-based design, especially in the context

of large M . This is because for XL-MIMO with the large physical dimension, the variations

of the amplitude, incline angle, and polarization mismatch across the array are apparent. As a

result, the majority of the signal power is received on a limited portion of the array. In other

words, the user will “see” only a part of the array (i.e., the VR). If the VRs are accurately

detected, it is expected that the proposed VR-based algorithms can achieve a performance very

similar to that of the WA-based design. Meanwhile, for large M , the portion of the array that

contributes marginal received power grows. Thus, for a given ratio $, the VR detection algorithm

(Algorithm 1) is more efficient in finding the most relevant sub-arrays, which leads to a smaller

performance gap between the VR and WA-based designs.

Intuitively, the proposed VR-based design aims to achieve a trade-off between performance

and complexity, which can be adjusted by the VR detection ratio $ as shown in Algorithm

1. To quantify the complexity, the ratio of the average number of antennas employed by VR-

based design to the number of antennas employed by the WA-based design is defined as roc =

1
K

∑
k∈K

|Bk|
S

. Clearly, we have roc = 1 for the WA-based design. Next, Figs. 9 and 10 illustrate

the trade-off between performance and the complexity when using VR-based detectors.

From Fig. 9, we observe that ratio roc is an increasing function of the VR detection ratio

$, which implies that the number of antennas considered for the computation of the VR-based

detectors increases with $. This is because the VR is defined as the set of sub-arrays that



24

contribute a fraction of $ to the whole received power. The larger $ is, the more sub-arrays are

included in the VR. Besides, as can be seen, roc is a decreasing function of M . For small M , roc

could even approach 1. This phenomenon actually underscores the motivation for proposing the

VR-based design for XL-MIMO. Specifically, as the number of antennas grows, the physical size

of the array becomes large, and the portion of the array that receives marginal power increases.

In this context, it is inefficient to use the whole array to compute the symbol detectors, since

most of the power is concentrated in a small portion of the array. By contrast, when M is small,

all sub-arrays may receive non-negligible power and therefore roc approaches one. It can be seen

from Fig. 9 that for an XL-MIMO array with M = 104, 25% of the antennas receive 80% power

(i.e., $ = 0.8), which can be exploited to significantly reduce the computational complexity in

VR-based detection.

Fig. 10 reveals the performance loss caused by the reduction of the complexity. As can be

seen, for ZF detection, the performance loss is small for moderate values of $, but performance

deteriorates when $ is small. This is because as shown in Fig. 9, when M = 104, less than 5%

of the antennas contribute 10% of the power, 20% of the antennas contribute 70% of the power,

and 70% of the antennas contribute 99% of the power. As a result, for a moderate value of $,

we can find sub-arrays that receive the main part of the power in the VR but also with a small

number of antennas, which leads to a good performance at low complexity. In other words, a

moderate value of $ can realize a good trade-off between performance and complexity. Besides,

it can be observed that when $ is small, the data rate degradation is severer under small M . This

is because for arrays with small sizes, the spatial non-stationarity effect is weaker, and therefore

more sub-arrays have to be used to receive sufficient power and to realize a good performance.

Furthermore, for MRC, the VR-based design may perform better than the WA-based design. The

reason is that for VR-based MRC, the multi-user interference will be small when the VRs of

the users have less overlap.

In Figs. 11 and 12, we investigate the performance of the proposed user partitioning-based

PZF algorithm. Fig. 11 shows that the proposed PZF detector can achieve almost the same

performance as the VR-based detectors for any value of M and for different values of K. This is

because for the VR-based detectors, the users mainly suffer from the interference from other users

having VRs with large overlap. Therefore, it is reasonable to partition users into different groups

based on the VR information, and then eliminate only the intra-group interference. Meanwhile,

for the PZF detectors, a part of the channel degrees-of-freedom (DoFs) are used for interference
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nulling while the remaining DoFs are used to enhance the desired signal, which is beneficial for

performance improvement.

The PZF detectors exploit user partitioning which is determined by VR overlap threshold

ŝovp, as specified in Algorithm 2. In Fig. 12, we observe that the PZF algorithm only causes

a performance loss for large ŝovp. This is because as ŝovp increases, the condition that adds an

edge between two vertices becomes stricter, and thus the size of the independent set |I| could

grow. In other words, for large ŝovp, the users significantly interfering with each other may not

have edges connecting them, and they could be partitioned into different groups, and therefore

the dominant interference may not be eliminated clearly by the intra-group PZF algorithm. With

proper user partitioning (moderate ŝovp), the PZF algorithm can effectively tackle the dominant

interference and therefore cause negligible performance loss at low complexity. Besides, it can

be seen that the proposed PZF algorithm performs better for larger K.

Fig. 13 shows the computational complexity of WA-based ZF, VR-based ZF, and user partition-

based PZF detection. Following Table I, the complexity is computed based on the actual VR

detection and user partitioning results in MATLAB. As can be seen, the complexity of the

conventional WA-based design has a polynomial growth rate, which is not favorable consid-

ering the large number of antennas typically for XL-MIMO systems. However, by effectively

exploiting the near-field spatial non-stationarities, the two proposed algorithms achieve much

lower complexities. VR-based ZF detection has a complexity that increases sub-linearly with the
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number of antennas, and the complexity of user partitioning-based PZF practically saturates for

large M . The reasons for this are two-fold. On the one hand, the growth rate of the number of

antennas in the VRs is much lower than M . As shown in Fig. 9, given $ = 0.7, as M increases

from 103 to 104, the average number of antennas in the VRs only increases from 600 to 2000.

On the other hand, for large M , the physical size of the array grows, and therefore, the VRs

of different users become more separated on average. Accordingly, users can be divided into

more groups, and then the computational complexity needed for PZF to eliminate the intra-group

interference reduces.

Finally, Fig. 14 illustrates the motivation and benefits of employing XL-MIMO. It can be

seen that XL-MIMO has the capability to support a large number of users with extremely-high

throughput. The sum user rate is nearly linear increasing in terms of the number of users for WA-

based ZF, VR-based ZF, and PZF detectors. Meanwhile, the proposed low-complexity VR-based

and PZF detection algorithms achieve a performance very similar to the WA-based detection for

all considered values of K. However, as has been shown in Fig. 13, the proposed algorithms

have much lower computational complexity. Therefore, Fig. 14 demonstrates the ability of

the proposed VR-based and user partitioning-based PZF algorithms to support extremely-high

capacities in XL-MIMO systems at comparatively low complexity. Fig. 14 also confirms the

effectiveness and necessity of exploiting spatial non-stationarities when using the XL-MIMO.
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VI. CONCLUSION

In this work, we investigated the performance of XL-MIMO based on the EM channel model

with near-field spatial non-stationarities. We derived the explicit expression for the SNR for the

single-user case, which provided useful insights regarding the impact of the discrete aperture and

polarization mismatch. We also studied the Fraunhofer distance under the proposed EM channel

model. Then, we exploited the near-field characteristics to develop VR-based low-complexity

linear detectors. We also provided a graph theory-based user partition algorithm, based on which

PZF was used to further reduce the computational complexity. Simulation results validated the

effectiveness of the proposed two low-complexity algorithms.

APPENDIX A

Define ε = ∆
rk,o

, where rk,o = ‖uk‖ is the distance between user k and the origin. Substituting

ξk,mx,my in (10) with (8), we have

SNRk =
p

σ2

∑
my∈My

∑
mx∈Mx

A

4π

uk,z
(
(mx∆− uk,x)2 + u2

k,z

)
{

(mx∆− uk,x)2 + (my∆− uk,y)2 + u2
k,z

} 5
2

(41)

=
p

σ2

∑
my∈My

∑
mx∈Mx

ηε2

4π

ūk,z
(
(mxε− ūk,x)2 + ū2

k,z

)
{

(mxε− ūk,x)2 + (myε− ūk,y)2 + ū2
k,z

} 5
2

, (42)

where ūk,c =
uk,c
rk,o

, c ∈ {x, y, z}. Since rk,o � ∆, we have ε� 1. Then, we have

SNRk
(a)
=

p

σ2

ηε2

4π

(My−1)ε
2∑

ŷ=
−(My−1)ε

2

(Mx−1)ε
2∑

x̂=
−(Mx−1)ε

2

ūk,z
(
(x̂− ūk,x)2 + ū2

k,z

)
{

(x̂− ūk,x)2 + (ŷ − ūk,y)2 + ū2
k,z

} 5
2

(43)

(b)
≈ p

σ2

ηε2

4π

1

ε2

∫ (My−1)ε
2

+ ε
2

−(My−1)ε
2

− ε
2

∫ (Mx−1)ε
2

+ ε
2

−(Mx−1)ε
2

− ε
2

ūk,z
(
(x̂− ūk,x)2 + ū2

k,z

)
{

(x̂− ūk,x)2 + (ŷ − ūk,y)2 + ū2
k,z

} 5
2

dx̂dŷ (44)

(c)
=

p

σ2

ηε2

4π

ūk,z
ε2

∫ Mxε
2
−ūk,x

−Mxε
2
−ūk,x

∫ Myε

2
−ūk,y

−Myε
2
−ūk,y

(
x2 + ū2

k,z

){
x2 + y2 + ū2

k,z

} 5
2

dydx (45)

where the change of variables x̂ = mxε and ŷ = myε is applied in (a). In (b), since ε� 1, all

variables within domain [x̂ ± ε
2
] × [ŷ ± ε

2
] of area ε2 approximately achieve the same objective

function value as the center point (x̂, ŷ). Then, the double sum is approximated by a double

integral divided by 1
ε2

. The change of variables x = x̂ − ūk,x, y = ŷ − ūk,y is used in (c). The
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proof can be completed by first solving the integral in (45) with respect to y based on [52,

2.271.6] and then solving the integral with respect to x using [52, (2.271.5)] and [52, (2.284)].

APPENDIX B

For the case of My = 1, we have

SNRk =
p

σ2

ηε2

4π

(Mx−1)
2∑

mx=
−(Mx−1)

2

ūk,z
(
(mxε− ūk,x)2 + ū2

k,z

)
{

(mxε− ūk,x)2 + ū2
k,y + ū2

k,z

} 5
2

≈ p

σ2

ηε2

4π

1

ε

∫ Mxε
2

−Mxε
2

ūk,z
(
(x̂− ūk,x)2 + ū2

k,z

)
{

(x̂− ūk,x)2 + ū2
k,y + ū2

k,z

} 5
2

dx̂

=
p

σ2

ηε2

4π

1

ε
ūk,z

∫ Mxε
2
−ūk,x

−Mxε
2
−ūk,x

1{
x2 + ū2

k,y + ū2
k,z

} 3
2

−
ū2
k,y{

x2 + ū2
k,y + ū2

k,z

} 5
2

dx.

(46)

Utilizing [52, (2.271.5)] and [52, (2.271.6)], we can complete the proof after some algebraic

operations.
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